1.
“Comprehensive magnetohydrodynamic
hybrid simulations of fast ion driven instabilities in a Large Helical Device
experiment,” Todo, Y.; Seki, R.; Spong, D.A.; Wang, H.; Suzuki, Y.; Yamamoto,
S.; Nakajima, N.; Osakabe, M., Physics of Plasmas, 24, n 8, 2017.
2.
“Rotation and neoclassical ripple
transport in ITER,” Paul, E.J.; Landreman, M.; Poli,
F.M.; Spong, D.A.; Smith, H.M.; Dorland, W., Nuclear Fusion, 57, n 11, p 116044 , 2017.
3.
“Analysis of Alfven eigenmodes
destabilization by energetic particles in TJ-II using a Landau closure model,”
Varela, J.; Spong, D.A.; Garcia, L. Nuclear Fusion, 57, n 12, 2017.
4.
“Two species drag/diffusion model
for energetic particle driven modes,” Aslanyan, V.; Sharapov, S.E.; Spong,
D.A.; Porkolab, M. Physics of Plasmas, 24, n 12, p 122511, 2017.
5.
“Major results from the first plasma
campaign of the Wendelstein 7-X stellarator,” Wolf,
RC; Ali, A; Alonso, A; Baldzuhn, J; Beidler, C; Beurskens, M; Biedermann, C; Bosch, HS; ...; Spong, D. A., ...;Zhang, H.; Zhu, J.; Nuclear Fusion 57, 2017.
6.
“Overview of the RFX-mod fusion
science activity,” Zuin, M.; Dal Bello, S.; Marrelli, L.; Puiatti, M.E.; Agostinetti, P.; Agostini, M.; Antoni, V.; Auriemma, F,… Spong, D. A., …; Nuclear Fusion 57 102012, 2017.
7.
V. N. Duarte, H. L. Berk, et al, “Theory and observation of the onset of nonlinear structures due to
eigenmode destabilization by fast ions in tokamaks”, Phys. Plasmas 24, 122508 (2017). [selected as both Editor Pick and AIP Scilight].
8.
V. N. Duarte, H. L. Berk, et al, “Prediction of Nonlinear Evolution Character of Energetic-Particle-Driven Instabilities” Nucl. Fusion 57 054001 (2017).
9.
M.
Podestà et al, Computation
of Alfvén eigenmode stability and saturation through a reduced fast ion
transport model in the TRANSP tokamak transport code, Plasma
Phys. Control. Fusion 59 (2017) 095008
10. Simulation of toroidicity-induced Alfven eigenmode excited by
energetic ions in HL-2A tokamak plasmas, Hongda He, Junyi Cheng, J. Q. Dong, Wenlu Zhang, Chenxi Zhang, Jinxia Zhu, Ruirui Ma, T. Xie, G. Z. Hao, A. P. Sun, G. Y. Zheng,
W. Chen and Z. Lin, Nuclear Fusion 58, 126023 (2018).
11.
W. Heidbrink et al, The phase-space dependence of
fast-ion interaction with tearing modes, Nucl. Fusion 58 (2018) 082027
12.
D. Liu et al, Effect of sawtooth crashes on fast
ion distribution in NSTX-U, Nucl. Fusion 58 (2018) 082028
13.
“Dynamic neutral beam current and
voltage control to improve beam efficacy in tokamaks,” Pace, D.C.; Austin,
M.E.; Bardoczi, L.; Collins, C.S.; Crowley, B.; Davis, E.; Du, X.; Ferron, J.;
Grierson, B.A.; Heidbrink, W.W.; Holcomb, C.T.; McKee, G.R.; Pawley, C.; Petty,
C.C.; Podestà, M.; Rauch, J.; Scoville, J.T.; Spong,
D.A.; Thome, K.E.; Van Zeeland, M.A.; Varela, J.; Victor, B., Physics of
Plasmas, 25, n5, 2018.
14.
Stellarator Research Opportunities:
A Report of the National Stellarator Coordinating Committee, Gates, D.A.;
Anderson, D.; Anderson, S.; Zarnstorff, M.; Spong, D, et al., Journal of Fusion
Energy, 37, n 1, p 51-94, 2018.
15.
Analysis of Alfven eigenmode
destabilization in DIII-D high poloidal β discharges using a Landau
closure model, Varela, J.; Spong, D.A.; Garcia, L.; Huang, J.; Murakami, M.;
Garofalo, A.M.; Qian, J.P.; Holcomb, C.T.; Hyatt, A.W.; Ferron, J.R.; Collins,
C.S.; Ren, Q.L.; McClenaghan, J.; Guo, W. Nuclear Fusion, 58, n 7, 2018.
16.
“Observation of Alfvén eigenmodes
driven by fast electrons during lower hybrid wave heating in EAST plasmas,” Hu,
Wenhui; Li, Jiangang; Xiao, Bingjia; Heidbrink,
William W.; Shi, Tonghui; Hu, Youjun; Chen, Jiale; Spong, Donald A.; Liu, Haiqing;
Wang, Shouxin; Lin, Shiyao;
Li, Yongliang; Yuan, Yi; Zhou, Ruijie,
Nuclear Fusion, 58, n 9, 2018.
17.
V. N. Duarte, N. N. Gorelenkov, M. Schneller, E.
D. Fredrickson, M. Podestà and H. L. Berk, “Study of the likelihood for Alfvénic mode
bifurcation to chirping in NSTX and predictions for ITER baseline scenarios”, Nucl. Fusion 58, 082013 (2018).
18.
R. B. White, N. N. Gorelenkov, V. N. Duarte and
H. L. Berk, “Resonances between high energy particles and ideal
magnetohydrodynamic modes in tokamaks” Phys.
Plasmas 25, 102504 (2018).
19.
B. J. Q. Woods, V. N. Duarte, A. De-Gol, N. N.
Gorelenkov and R. G. L. Vann, “Stochastic effects on phase-space holes and clumps in systems near
marginal stability”, Nucl. Fusion 58,
082015 (2018).
20.
N. N. Gorelenkov, V. N. Duarte, M. Podestà and H. L. Berk, “Resonance broadened quasi-linear (RBQ) model for fast ion
distribution relaxation due to Alfvénic eigenmodes”, Nucl. Fusion 58, 082016 (2018).
21.
G. Meng, N. N. Gorelenkov, V. N. Duarte, H. L.
Berk, R. B. White and X. Wang, “Resonance frequency broadening of wave-particle interaction in
tokamaks due to Alfvénic eigenmodes”, Nucl. Fusion 58, 082017 (2018).
22.
Heterogeneous Programming and Optimization of
Gyrokinetic Toroidal Code Using Directives, Wenlu Zhang, Wayne Joubert, Peng Wang, Matthew Niemerg, Bei
Wang, William Tang, Sam Taimourzadeh, Lei Shi, Jian Bao, Zhihong Lin, Lecture Notes in Computer Science 11381, 3–21 (2019). (WACCPD 2018
Workshop, Dallas).
23.
Gyrokinetic simulations of Toroidal Alfven
Eigenmodes excited by energetic ions and external antennas on the Joint
European Torus, V. Aslanyan, S.
Taimourzadeh, L. Shi, Z. Lin, G. Dong, P. Puglia, M. Porkolab, R. Dumont, S. E.
Sharapov, J. Mailloux, M. Tsalas, M. Maslov, A. Whitehead, R. Scannell, S. Gerasimov, S.
Dorling, S. Dowson, H. K. Sheikh, T. Blackman, G. Jones, A. Goodyear, K. K.
Kirov, P. Blanchard, A. Fasoli, D. Testa, and JET Contributors, Nuclear Fusion 59, 026008 (2019).
24.
Nonlinear Saturation of Kinetic Ballooning
Modes by Zonal Fields in Toroidal Plasmas,
G. Dong, J. Bao, A. Bhattacharjee, and Z. Lin, Phys. Plasmas 26, 010701
(2019).
25.
Effects of RMP-Induced Changes of Radial
Electric Fields on Microturbulence in DIII-D Pedestal Top, S. Taimourzadeh, L. Shi, Z. Lin, R. Nazikian, I. Holod, D.
Spong, Nuclear Fusion59, 046005 (2019).
26.
Global simulation of ion temperature gradient
instabilities in a field-reversed configuration, J. Bao, C. K. Lau, Z. Lin, H. Y. Wang, D. P. Fulton, S.
Dettrick, and T. Tajima, Phys. Plasmas26, 042506 (2019).
27.
Verification and validation of integrated
simulation of energetic particles in fusion plasmas, S. Taimourzadeh, E. M. Bass, Y. Chen, C. Collins, N. N.
Gorelenkov, A. Konies, Z. X. Lu, D. A. Spong, Y.
Todo, M. E. Austin, J. Bao, A. Biancalani, M. Borchardt, A. Bottino, W. W.
Heidbrink, Z. Lin, R. Kleiber, A. Mishchenko, L. Shi, J. Varela, R. E. Waltz,
G. Yu, W. L. Zhang, and Y. Zhu, Nuclear
Fusion 59, 066006 (2019).
28.
Global gyrokinetic simulation of
microturbulence with kinetic electrons in the presence of magnetic island in tokamak, K. S. Fang and Z. Lin, Phys. Plasmas 26, 052510 (2019).
29.
Kinetic
particle simulations in a global toroidal geometry, S. De, T. Singh, A. Kuley, J. Bao, Z. Lin, G. Y. Sun, S. Sharma,
and A. Sen, Phys. Plasmas 26, 082507 (2019).
30.
Gyrokinetic simulations of nonlinear
interactions between magnetic islands and microturbulence, Kaisheng Fang, Jian Bao, and Zhihong Lin, Plasma Sci. Technol. 21, 115102 (2019).
31.
Verification
of gyrokinetic particle simulation of current-driven instability in fusion
plasmas. IV. Drift-tearing mode,
Hao Shi, Wenlu Zhang, Hongying Feng, Zhihong Lin, Chao Dong, Jian Bao, and Ding
Li, Phys. Plasmas 26, 092512 (2019).
32.
Verification
of an energetic-electron-driven b-induced Alfven eigenmode in the HL-2A
tokamak, Yang Chen, Wenlu
Zhang, Junyi Cheng, Zhihong Lin, Chao Dong, and Ding Li, Phys. Plasmas 26, 102507 (2019).
33.
L. Bardóczi
et al, Quantitative
modeling of neoclassical tearing mode driven fast ion transport in integrated
TRANSP simulations, Plasma Phys. Control.
Fusion 61 (2019) 055012
34.
D. Kim et al., Investigation of fast particle
redistribution induced by sawtooth instability in NSTX-U, Nucl. Fusion 59 (2019) 086007
35.
“Modelling of beam-driven Alfven
modes in TJ-II plasmas,” Rakha, A.; Mantsinen, M.J.; Melnikov, A.V.; Sharapov, S.E.; Spong,
D.A.; Lopez-Fraguas, A.; Castejo´n,
F.; Gutierrez-Milla´, A.; de Pablos, J.L.; Sa´ez, X., Nuclear Fusion, v 59, 056002, May 2019.
36.
“Shear Alfven wave continuum
spectrum with bifurcated helical core equilibria,” Rakha,
A.; Lauber, P.; Mantsinen, M.J.; Spong, D.A., Nuclear
Fusion, v 59, 106042,Oct. 2019.
37.
“Study of Alfven eigenmodes
stability in plasma with multiple NBI driven energetic particle species,”
Varela, J.; Spong, D.A.; Garcia, L.; Todo, Y.; Huang, J.; Murakami, M., https://doi.org/10.1063/1.5098347 ,Physics of Plasmas, v 26,
062502, June 2019.
38.
“Subdominant modes and optimization
trends of DIII-D reverse magnetic shear configurations,” Varela, J.; Spong,
D.A.; Murakami, M.; Garcia, L.; D'Azevedo, E.; Van Zeeland, M.A.; Munaretto, S., Nuclear Fusion, v 59, 046017, April 2019.
39.
“Modification of the Alfven wave
spectrum by pellet injection,” Oliver, H.J.C.; Sharapov, S.E.; Breizman, B.N.; Fontanilla, A.K.; Spong, D.A.; Terranova,
D., Nuclear Fusion, v 59, 106031, Oct. 2019.
40.
“Observation of a beam-driven low-frequency
mode in Heliotron J,” Zang, L.G.; Yamamoto, S.;
Spong, D.A.; Nagasaki, K.; Ohshima, S.; Kobayashi, S.; Minami, T; et al.,
Nuclear Fusion, v 59, 056001, May, 2019.
41.
“Analysis of Alfven eigenmode
destabilization in ITER using a Landau closure model,” Varela, J.; Spong, D.A.;
Garcia, L., Nuclear Fusion, v 59, 076036, July, 2019.
42.
“Fast ion transport in the
quasi-single helical reversed-field pinch,” Bonofiglo,
P.J.; Anderson, J.K.; Gobbin, M.; Spong, D.A.;
Boguski, J.; Parke, E.; Kim, J.; Egedal, J., Physics
of Plasmas, v 26, 022502,Feb., 2019.
43.
“Fast Ion Transport in the
Three-Dimensional Reversed-Field Pinch,” Bonofiglo,
P.J.; Anderson, J.K.; Boguski, J.; Kim, J.; Egedal,
J.; Gobbin, M.; Spong, D.A.; Parke, E.,
10.1103/PhysRevLett.123.055001, Physical Review Letters, v 123, 055001, 2 Aug.
2019.
44.
“Comprehensive magnetohydrodynamic
hybrid simulations of Alfven eigenmode bursts and fast-ion losses in the Large
Helical Device,” Seki, R.; Todo, Y.; Suzuki, Y.; Spong, D.A.; Ogawa, K.; Isobe, M.; Osakabe, M., Nuclear Fusion, v 59, 096018, Sept.
2019.
45.
“Analysis of the MHD stability and
energetic particles effects on EIC events in LHD plasma using a Landau-closure
model,” Varela, J.; Spong, D.A.; Garcia, L.; Ohdachi,
S.; Watanabe, K.Y.; Seki, R., Nuclear Fusion, v 59, 046008, April 2019.
46.
V. N. Duarte, H. L. Berk, N. N. Gorelenkov and
R. B. White; “Collisional resonance function in discrete-resonance quasilinear
plasma systems” Phys.
Plasmas 26, 120701 (2019).
47.
V. N. Duarte and N. N. Gorelenkov; Analytical nonlinear dynamics of near-threshold eigenmodes Nucl. Fusion 59, 044003 (2019).
48.
R. B. White; V. N. Duarte, N. N. Gorelenkov.; G.
Meng.; Collisional
enhancement of energetic particle Alfvénic resonance
width in tokamaks, Phys.
Plasmas 26, 032508 (2019).
49.
R. B. White, V. N. Duarte, N. N. Gorelenkov, E.
D. Fredrickson, M. Podestà and H. L. Berk, Modeling of chirping toroidal Alfvén eigenmodes in NSTX, Phys. Plasmas 26, 092103 (2019).
50.
R. B. White and V. N. Duarte; A simple
model for kinetic perturbative resonances in tokamaks, Phys. Plasmas 26, 042512 (2019).
51.
N. N. Gorelenkov, V. N. Duarte, C. Collins, M. Podestà and R. B. White, “Verification and applications of
resonance broadened quasi-linear model for fast ion relaxation in the presence
of Alfvénic instabilities” Phys. Plasmas 26, 072507 (2019);
52.
M. A Van Zeeland, C.S. Collins, W.W. Heidbrink,
M.E. Austin, X.D. Du, V.N. Duarte et al, Alfvén Eigenmodes and Fast Ion Transport in Negative Triangularity
DIII-D Plasmas, Nucl. Fusion 59
086028 (2019).
53.
M. Podestà N. N.
Gorelenkov, W. W. Heidbrink, L. Bardoczi, C. S. Collins, V. N. Duarte et al, “Reduced Energetic Particle Transport
models enable comprehensive time-dependent tokamak simulations” Nucl. Fusion, 59 106013 (2019).
54.
Gyrokinetic particle simulations of
interactions between energetic particles and magnetic islands induced by
neoclassical tearing modes, X. Tang, Z. Lin, W. W.
Heidbrink, J. Bao, C. Xiao, Z. Li and J. Li, Phys. Plasmas 27,
032508 (2020).
55.
GTC simulation of linear stability of tearing
mode and a model magnetic island stabilization by ECCD in toroidal plasma, Jingchun Li, Chijie Xiao, Zhihong Lin, Dongjian Liu, Xiaoquan Ji, and Xiaogang Wang, Phys. Plasmas 27, 042507 (2020).
56.
Temperature Gradient, Toroidal and Ion FLR
Effects on Drift-Tearing Modes, Hao Shi, Wenlu Zhang,
Chao Dong, Jian Bao, Zhihong Lin, Jintao Cao, and Ding Li, Chin. Phys. Lett. 37, 085201 (2020).
57.
Global
Gyrokinetic Particle Simulations of Microturbulence in W7-X and LHD
Stellarators, H. Y. Wang, I. Holod,
Z. Lin, J. Bao, J. Y. Fu, P. F. Liu, J. H. Nicolau, D. Spong, Y. Xiao, Phys. Plasmas 27, 082305 (2020).
58.
Electrostatic quasi-neutral formulation of
global cross-separatrix particle simulation in field-reversed configuration
geometry, C. K. Lau, D. P.
Fulton, J. Bao, Z. Lin, S. Dettrick, M. Binderbauer, T. Tajima, and L.
Schmitz, Phys. Plasmas 27, 082504 (2020).
59.
Verification
of Energetic-Particle-Induced Geodesic Acoustic Mode in Gyrokinetic Particle
Simulations, Yang Chen, Wenlu
Zhang, Jian Bao, Zhihong Lin, Chao Dong, Jintao Cao, and Ding Li, Chin. Phys. Lett. 37, 095201 (2020).
60.
Verification of local electrostatic
gyrokinetic simulation of driftwave instability in field-reversed
configuration, Shuying Sun, Xishuo
Wei, Zhihong Lin, Pengfei Liu, Wenhao Wang, and Huasheng Xie, Phys. Plasmas 27, 112504 (2020).
61.
“MHD stability of JT-60SA operation
scenarios driven by passing energetic particles for a hot Maxwellian model,”
Varela, J.; Watanabe, K.Y.; Shinohara, et al., Nuclear Fusion, v 60, n 9,
September 2020.
62.
“Progress in extending high poloidal
beta scenarios on DIII-D towards a steady-state fusion reactor and impact of
energetic particles: Huang, J.; Garofalo, A.M.; Qian, J.P.; et al., Nuclear
Fusion, v 60, n 12, December, 2020.
63.
“Theoretical analysis of
energetic-ion-driven resistive interchange mode stabilization strategies using
a Landau closure model,” Varela, J.; Ohdachi, S.;
Watanabe, K.Y.; Spong, D.A.; Garcia, L.; Seki, R., Nuclear Fusion, v 60, n 4,
2020.
64.
“Modeling of the ECCD injection
effect on the Heliotron J and LHD plasma stability,”
Varela, J.; Nagasaki, K.; Nagaoka, K.; Yamamoto, S.; Watanabe, K.Y.; Spong,
D.A.; Garcia, L.; Cappa, A.; Azegami,
A., Nuclear Fusion, v 60, n 11, November 2020.
65.
“Energetic particle transport and
loss induced by helically-trapped energetic-ion-driven resistive interchange
modes in the Large Helical Device,” Ogawa, K.; Isobe,
M.; Sugiyama, S.; Matsuura, H.; Spong, D.A.; Nuga,
H.; Seki, R.; Kamio, S.; Fujiwara, Y.; Yamaguchi, H.;
Osakabe, M., Nuclear Fusion, v 60, n 11, p 112011, Nov. 2020.
66.
“Effect of the tangential NBI
current drive on the stability of pressure and energetic particle driven MHD
modes in LHD plasma,” Varela, J.; Cooper, W.A.; Nagaoka, K.; Watanabe, K.Y.;
Spong, D.A.; Garcia, L.; Cappa, A.; Azegami, A., Nuclear Fusion, v 60, n 2, p 026016, Feb. 2020.
67.
B. Madsen et al, Tomography of the positive-pitch
fast-ion velocity distribution in DIII-D plasmas with Alfvén eigenmodes and
neoclassical tearing modes, Nucl. Fusion 60 (2020) 066024
68.
D. Liu et al, Cause and impact of low-frequency
chirping modes in DIII-D hybrid discharges,
Nucl. Fusion 60 (2020) 112009
69.
J. Kang et al, Role of fast-ion transport
manipulating safety factor profile in KSTAR early diverting discharges, Nucl. Fusion 60
(2020) 126023
70.
“Hybrid simulation of NBI fast-ion
losses due to the Alfven eigenmode bursts in the Large Helical Device and the
comparison with the fast-ion loss detector measurements,” Seki, R.; Todo, Y.;
Suzuki, Y.; Ogawa, K.; Isobe, M.; Osakabe, M.; Spong,
D., Journal of Plasma Physics, v 86, n 5, p 815860502, Oct. 2020.
71.
R. B. White, V. N. Duarte, N. N. Gorelenkov, E.
D. Fredrickson and M. Podestà, “Phase-space dynamics of Alfven Mode
Chirping”, Phys. Plasmas 27, 052108 (2020).
72.
B. J. Q. Woods; V. N. Duarte; E.
Fredrickson; N. N. Gorelenkov; M. Podestà; R. Vann; Machine-learning-driven correlations of Alfvénic
and sub-Alfvénic chirping in NSTX, IEEE Trans. Plasma Sci. 48, 71 (2020).
73.
R. B. White, V. N. Duarte, N. N. Gorelenkov, E.
D. Fredrickson and M. Podestà, Simulation of Alfvénic avalanche onset in
NSTX, Phys. Plasmas 27, 022117 (2020).
74.
Prediction of Alfvén eigenmode
energetic particle transport in ITER scenarios with a critical gradient model, E.M. Bass and R.E. Waltz, Nucl.
Fusion 60 (2020) 016032. IAEA-FEC 2018
oral.
75.
Linear gyrokinetic simulations of reversed
shear Alfvén eigenmodes and ion temperature gradient modes in DIII-D tokamak, Hongyu Wang, Pengfei Liu, Zhihong Lin, and Wenlu Zhang, Plasma Sci. Technol. 23, 015101 (2021).
76.
‘BAAE’ instabilities observed without fast ion
drive, W. W. Heidbrink, M. A.
Van Zeeland, M. E. Austin, A. Bierwage, Liu Chen, G. J. Choi, P. Lauber, Z.
Lin, G. R. McKee and D.A. Spong, Nuclear
Fusion 61, 016029 (2021).
77.
Linear simulation of kinetic electromagnetic
instabilities in a tokamak plasma with weak magnetic shear, Yunchuan Zhao, Jiaqi Wang,
Dongjian Liu, Wei Chen, Ge Dong, and Zhihong Lin, Phys. Plasmas 28,
012107 (2021).
78.
Gyrokinetic
simulation of low-frequency Alfvénic modes in DIII-D tokamak, G. J. Choi, P. Liu, X. S. Wei, J. H. Nicolau, G. Dong, W. L.
Zhang, Z. Lin, W. W. Heidbrink and T.S. Hahm, Nuclear Fusion 61,
066007 (2021).
79.
Effects
of equilibrium radial electric field on ion temperature gradient instability in
the scrape-off layer of a field-reversed configuration, W. H. Wang, J. Bao, X. S. Wei, Z. Lin, G. J. Choi, S.
Dettrick, A. Kuley, C. Lau, P. F. Liu, and T. Tajima, Plasma Phys. Contr. Fusion 63, 065001 (2021).
80.
Global gyrokinetic simulation of neoclassical
ambipolar electric field and its effects on microturbulence in W7-X stellarator, J. Y. Fu, J. H. Nicolau, P. F. Liu, X. S. Wei, Y. Xiao, and Z.
Lin, Phys. Plasmas 28, 062309 (2021).
81.
Effects of resonant magnetic perturbations on
radial electric fields in DIII-D tokamak,
Jingyuan FU, Pengfei LIU, Xishuo WEI, Zhihong LIN, Nathaniel Mandrachia FERRAR, and Raffi NAZIKIAN, Plasma Sci. Technol. 23, 105104 (2021).
82.
Quasilinear critical gradient model for Alfven eigenmode driven
energetic particle transport with intermittency, R.E. Waltz, E.M. Bass, C.S. Collins and K. Gage, Nuclear Fusion 61, 036043 (2021).
83.
Microturbulence-mediated route for energetic ion transport and Alfvénic mode amplitude oscillations in tokamaks, N.N. Gorelenkov, V.N. Duarte, Physics Letters A 386,
126944 (2021).
84.
Fully convolutional spatio-temporal
models for representation learning in plasma science, Ge Dong, Kyle Gerard Felker, Alexey Svyatkovskiy,
William Tang, Julian Kates-Harbeck, Journal
of Machine Learning for Modeling and Computing 2, 49 (2021).
85.
“Nonlinear dynamics and
transport driven by energetic particle instabilities using a gyro-Landau
closure model,” D. A. Spong, M. A. Van Zeeland, W.W. Heidbrink, X. Du, J.
Varela, L. Garcia, Y. Ghai, Nuclear Fusion (2021), https://doi.org/10.1088/1741-4326/ac2990.
86.
“Effect of plasma
shaping on energetic particle driven Alfven eigenmodes instability in DIII-D,”
Y. Ghai, D. A. Spong, J. Varela, L. Garcia, M. A. Van Zeeland, Nuclear Fusion
(2021), https://doi.org/10.1088/1741-4326/ac2bc0.
87.
Microturbulence in edge of a tokamak plasma
with medium density and steep temperature gradient, Jingchun Li, Z. Lin, Jiaqi Dong, Huasheng Xie
and Songfen Liu, Plasma Phys. Contr. Fusion 63, in press (2021).
88.
Interpretation of electromagnetic modes in the
sub-TAE frequency range in JET plasmas with elevated monotonic q-profiles, N. Fil, S.E. Sharapov, M. Fitzgerald, G.J. Choi, Z. Lin, R.A.
Tinguely, H.J.C. Oliver, K.G. McClements, P.G. Puglia, R.J. Dumont, M.
Porkolab, J. Mailloux, E. Joffirin, and JET
Contributors, Phys. Plasmas 28, in press (2021).
89.
Effects of zonal flows on ion temperature gradient instability in the
scrape-off layer of a field-reversed configuration, X.S. Wei, W.H. Wang, Z. Lin, G.J. Choi, S. Dettrick, C. Lau,
P.F. Liu, and T. Tajima, Nuclear
Fusion 61, in press (2021).
90.
Global gyrokinetic simulation with kinetic electron
for collisionless damping of zonal flow in
stellarator, Javier H. Nicolau, Gyungjin Choi, Jingyuan Fu, Pengfei Liu,
Xishuo Wei, and Zhihong Lin, Nuclear
Fusion 61, in press (2021).
91.
Verification and validation of gyrokinetic and
kinetic-MHD simulations for internal kink instability in DIII-D tokamak, G. Brochard, J. Bao,
C. Liu, N. Gorelenkov, G. Choi, G. Dong, P. Liu, J. Mc.Clenaghan, J. H. Nicolau, F. Wang, W. H. Wang, X.
Wei, W. L. Zhang, W. Heidbrink, J. P. Graves, Z. Lin, H. Lutjens, submitted to Nuclear
Fusion, 2021.
92.
Regulation of Alfven eigenmodes by microturbulence in
fusion plasmas, P. Liu, X. Wei, Z. Lin, G. Brochard, G.J. Choi, W.W. Heidbrink,
J.H. Nicolau, and G. R. McKee, submitted to Phys. Rev. Lett.,
2021.
93.
M. Van Zeeland et al, Beam modulation and bump-on-tail
effects on Alfvén eigenmode stability in DIII-D, Nucl. Fusion 61
(2021) 066028
94.
J. Yang et al, Synergy of coupled kink and tearing
modes in fast ion transport, Plasma Phys.
Control. Fusion 63 (2021) 045003
95.
A. Teplukhina et al, Fast ion transport by sawtooth
instability in the presence of ICRF–NBI synergy in JET plasmas, Nucl. Fusion 61 (2021) 116056
96.
M. Podestà
et al, Development
of a reduced model for energetic particle transport by sawteeth
in tokamaks, Plasma Phys. Control. Fusion
2021 (submitted)
97.
M. Vallar
et al, Modelling
of sawtooth-induced fast ion transport in positive and negative triangularity
in TCV, Nucl.
Fusion 2021 (submitted)
98.
J. Kim et al, Suppression of Toroidal Alfvén Eigenmodes by the Electron Cyclotron Current
Drive in KSTAR Plasmas, Nucl. Fusion 2021 (submitted)
99.
“Study of the Alfven eigenmodes
stability in CFQS plasma using a Landau closure model, Varela, J.; Shimizu, A.;
Spong, D.A.; Garcia, L.; Ghai, Y., Nuclear Fusion, v 61, n 2, February 2021.
100.
“Characteristics of neutron emission
profile from neutral beam heated plasmas of the Large Helical Device at various
magnetic field strengths,” Ogawa, K.; Isobe, M.;
Sugiyama, S.; Spong, D.A.; Sangaroon, S.; Seki, R.; Nuga, H.; Yamaguchi, H.; Kamio,
S.; Fujiwara, Y.; Kobayashi, M.I.; Jo, J.; Osakabe, M., Plasma Physics and
Controlled Fusion, v 63, n 6, June 2021.
101.
“Stability analysis of TJ-II
stellarator NBI driven Alfven eigenmodes in ECRH and ECCD experiments, Cappa, A.; Varela,” J.; Lopez Bruna, D.; Ascasibar, E.; Liniers, M.; Eliseev, L.G.; Fontdecaba, J.M.;
Garcia-Regana, J.M.; Gonzalez-Jerez, A.; Kharchev, N.K.; Medina, F.; Melnikov, A.V.; Mulas, S.; Ochando, M.; Spong,
D.; Velasco, J.L., Nuclear Fusion, v 61, n 6, June 2021.
102.
“Stability of beta-induced Alfven
eigenmodes (BAE) in DIII-D,” Heidbrink, W.W.; Van Zeeland, M.A.; Austin, M.E.;
Crocker, N.A.; Du, X.D.; McKee, G.R.; Spong, D.A., Nuclear Fusion, v 61, n 6,
June 2021.
103.
“Experimental observation of the
geodesic acoustic frequency limit for the NBI-driven Alfven eigenmodes in
TJ-II,” Eliseev, L.G.; Melnikov, A.V.; Ascasibar, E.; Cappa, A.; Drabinskiy, M.; Hidalgo, C.; Khabanov,
P.O.; Kharchev, N.K.; Kozachek,
A.S.; Liniers, M.; Lysenko, S.E.; Ochando,
M.; Pablos, J. L. De; Pastor, I.; Sharapov, S.E.;
Spong, D.A.; Breizman, B.N.; Varela, J., Physics of
Plasmas, v 28, n 7, July 1, 2021.
104.
“`BAAE' instabilities observed without fast
ion drive,” Heidbrink, W.W.; Van Zeeland, M.A.; Austin, M.E.; Bierwage, A.; Liu
Chen; Choi, G.J.; Lauber, P.; Lin, Z.; McKee, G.R.; Spong, D.A., Nuclear
Fusion, v 61, n 1, p 016029, Jan. 2021.
105.
Robert
Falgout, Ruipeng Li, Bjorn Sjogreen,
Ulrike Meier Yang, and Lu Wang. Porting hypre to
heterogeneous computer architectures: Strategies and experiences. Parallel Computing, 108, 2021. ISSN
0167-8191. doi: 10.1016/j.parco.2021.102840.
LLNL-JRNL-816235.
106.
V. N. Duarte, J. B. Lestz, N. N. Gorelenkov and
R. B. White, “Shifting and splitting of resonance lines due to dynamical friction
in quasilinear theory”, (submitted, 2021).
107.
A. Bierwage, R. B. White and V. N. Duarte, “On the effect
of Beating during Nonlinear Frequency Chirping”, Plasma Fusion Res. 16, 1403087 (2021).
108.
N. N. Gorelenkov, V. N. Duarte,
“Microturbulence-mediated route for energetic ion transport and Alfvénic mode intermittency in tokamaks”, Phys. Lett. A 386, 126944 (2021).
109.
Improving fast-ion confinement
and performance by reducing Alfven eigenmodes in the q-min >2 steady
experiment scenario, C.S.Collins,
C.T. Holcomb, M.A. Van Zeeland, E.M. Bass, Nucl.
Fusion paper in progress , IAEA-FEC May 2021 oral.
110.
Validation of the TGLF-EP+Alpha model in DIII-D scenarios for ITER,
E.M. Bass, M. A. Van Zeeland, and, R. E. Waltz, Nucl.
Fusion paper submitted.
111.
William Tang, et al.,
Implementation of AI/Deep Learning Disruption Predictor into a Plasma Control
System, in Proceedings of the International Atomic Energy Agency (IAEA) Fusion
Energy Conference, Oral Paper TH-7, Virtual Conference, Nice, France (2021);
112.
Ge Dong, et al., SGTC
Paper: arXiv
link: https://arxiv.org/abs/2106.10849, Deep Learning Based Surrogate Model for First-Principles Global
Simulations of Fusion Plasmas to be
published, Nuclear Fusion (2021)
113.
Ge Dong, Kyle Gerard
Felker, Alexey Svyatkovskiy, William Tang, and Julian
Kates-Harbeck. Fully Convolutional Spatio-temporal
Models for Representation Learning in Plasma Science. arXiv
preprint arXiv:2007.10468, 2020; Journal of Machine Learning for Modeling and
Computing, 2(1):49–64 (2021).
114.
Global gyrokinetic
simulation with kinetic electron for collisionless
damping of zonal flow in stellarator, Javier
H. Nicolau, Gyungjin Choi, Jingyuan Fu, Pengfei Liu, Xishuo Wei, and Zhihong
Lin, Nuclear Fusion 61, in press (2021).
115.
Verification and
validation of gyrokinetic and kinetic-MHD simulations for internal kink
instability in DIII-D tokamak, G. Brochard,
J. Bao, C. Liu, N. Gorelenkov, G. Choi, G. Dong, P. Liu, J. Mc.Clenaghan, J. H. Nicolau, F.
Wang, W. H. Wang, X. Wei, W. L. Zhang, W. Heidbrink, J. P. Graves, Z. Lin,
H. Lutjens, submitted to Nuclear Fusion, 2021.
1.
E.M. Bass, IAEA-FEC
oral, 2018.
2.
Z. Lin, Transport Task
Force Workshop, San Diego, 2018.
3.
Z. Lin, DOE SciDAC-4
Principal Investigator Meeting, Washington DC, 2018.
4.
Z. Lin, US-Japan JIFT
Exascale Computing Workshop, Princeton, 2018.
5.
D. A. Spong, “Energetic particle
confinement/stability analysis for stellarators and tokamaks,” invited
presentation at the 23rd Workshop on MHD Stability Control – A US-Japan
Workshop, UCLA, Nov 12 - Nov 16, 2018.
6.
D. A. Spong, “Energetic particle
physics and optimization methods for stellarators,” US-Japan JIFT Workshop on
"Progress on advanced optimization concept and modeling in stellarator-heliotrons", March 22 – 23, 2018, Kyoto University,
Kyoto, Japan. (oral-invited).
7.
Podestà
et al, IAEA-FEC 2018
8.
Bardóczi
et al, TTF 2018
9.
N.N.Gorelenkov et al., TTF 2018 “A Quasi-linear
modeling of fast ion relaxation due to Alfvénic
instabilities”.
10. N.N.Gorelenkov
et al., APS 2018 “Quasi-linear resonance broadened model for fast ion
relaxation in the presence of Alfvénic instabilities”
invited talk.
11.
Z. Lin, 7th
Annual Workshop on Fusion Simulation, Wuhan, China, 2019.
12.
Z. Lin, 11th
International Conference on Computational Physics (ICCP11), Hangzhou, China,
2019.
13.
Z. Lin, DOE SciDAC-4
Principal Investigator Meeting, Washington DC, 2019.
14.
S. Klasky, 10th
International Conference on Computational Methods (ICCM2019), Singapore, 2019.
15.
Z. Lin, 61st
Annual Meeting of APS Division of Plasma Physics, Mini-Conference on Building
Bridge to Exascale Computing: Applications and Opportunities for Plasma
Science, Fort Lauderdale, 2019.
16.
Z. Lin, US-Japan Compact
Torus Workshop (CT2019), Toki, Japan, 2019.
17.
Z. Lin, Annual Meeting
of Asia-Pacific Physical Society (AAPPS-DPP), Hefei, China, 2019.
18. D.
A. Spong, M. Salewski, Simon Pinches, invited oral presentation at ITPA
Coordinating Committee Meeting, December 10 – 12, 2019ITPA-Coordinating
Committee Meeting “Energetic Particle (EP) Topical Group Report of Activities
for 2019.”
19.
D. A. Spong, “Interaction of runaway
electrons with whistler and Alfvén waves in the
presence of impurity injection,” oral presentation at the 7th Annual Theory and
Simulation of Disruptions Workshop, Princeton Plasma Physics Laboratory, August
5 - 7, 2019.
20.
D. A. Spong, “Energetic Particle
Physics Issues for Stellarators and Possibilities for Optimization,” invited
oral at the US/Japan Stellarator Workshop, Auburn, Alabama, Feb. 25 – 27, 2019.
21.
D. A. Spong, “Energetic Particle
(EP) Topical Group Report of Activities for 2018,” invited oral presentation at
ITPA Coordinating Committee Meeting 1/1/2019.
22.
W. Tang, “Deep Learning Acceleration
of Progress Toward Delivery of Fusion Energy, ”
Invited Seminar, Microsoft, Corporation Headquarters, Redmond, WA (Nov. 2019);
23.
W. Tang, “AI/Deep Learning
Acceleration of Progress Toward Delivery of Fusion Energy,” Invited Talk, International
Supercomputing Conference (SC’19), Denver, CO (Nov. 2019);
24. W.
Tang,"Implementation of an AI-enabled Deep
Learning Disruption Predictor into a Tokamak Plasma Control System,"
Invited Seminar, UC Irvine, Dept. of Physics & Astronomy, Irvine, CA (Dec.
2019).
25.
Z. Lin, Annual Meeting
of Asia-Pacific Physical Society (AAPPS-DPP) (remote), 2020.
26.
C.S. Collins, IAEA-FEC
oral, 2020.
27.
D. A. Spong, M. Salewski, S.
Pinches, invited oral presentation at 2020 ITPA-Coordinating Committee Meeting,
December, 2020 “Energetic Particle (EP) Topical Group
Report of Activities for 2020.”
28. D.
A. Spong, Simons Team Meeting, Virtual Zoom meeting, August 3 – 6, 2020,
invited oral presentation “Optimizing stellarators for energetic particle
instability suppression/control.”
29.
V.N.Duarte “First-principles formulation of resonance
broadened quasilinear theory near an instability threshold“, AAPPS, 2020.
30.
V.N.Duarte “Integrated
two-dimensional quasilinear modeling of fast ion relaxation in tokamaks“, APS invited talk, 2020.
31.
W. Tang, “Features of a Possible NSF
Roadmap Supporting Science Applications,”, NSF Invitation-Only Smart
Cyberinfrastructure Workshop, Crystal City, VA (Feb.,
2020);
32. W.
Tang “Applications and Techniques for Fast Machine Learning in Science: Plasma Physics/Fusion Energy Science,”
Invited Talk, Southern Methodist University, Virtual Conference, Dec., 2020)
33.
P. Liu, Transport Task
Force Workshop (remote) (plenary), 2021.
34.
J. Nicolau, Transport
Task Force Workshop (remote) (plenary), 2021.
35.
Z. Lin, International
Tokamak Physics Activities (ITPA) (remote), 2021
36.
Z. Lin, 10th
US-PRC Magnetic Fusion Collaboration Workshop (remote), 2021.
37.
D. A. Spong, MagNetUS
meeting, August 2 – 4, 2021, University of Wisconsin, “Runaway electron driven
whistler instabilities in tokamak plasmas.”
38.
Yashika Ghai, “Instabilities driven
by fast ions in DIII-D plasmas with a negative triangularity,” Transport Task
Force Workshop (remote) invited oral talk, 2021.
39.
Yang
et al, TTF 2021
40.
Yang
et al, AAPPS 2021
41.
Bonofiglo
et al, TTF 2021
42.
Bonofiglo
et al, AAPPS 2021
43.
V.
Magri, SIAM Conference on Computational Science and Engineering, 2021.
44.
G. Dong, ”Advances
In Deep-Learning-Based Prediction & Control of Plasma Instabilities and
Disruptions in Tokamaks,”
Invited Talk, IAEA-PPPL Workshop on Theory and Simulation of
Disruptions, July 19-23, 2021.
45.
W.Tang,
“Deep Learning Acceleration of Progress in Fusion Energy Research,” Invited
Seminar, DOE ECP ExaLearn Virtual Meeting, July, 2021
III. Postdocs
1.
Guillaume Brochard (UCI,
2/2020-present)
2.
Gyung Jin Choi (UCI, 5/2019-5/2021)
3.
Javier Nicolau (UCI, 4/2019-present)
4.
Xishuo Wei (UCI,
2/2019-present)
5.
Pengfei Liu (UCI,
1/2019-present)
6.
Jian Bao (UCI,
7/2016-12/2018)
7.
Lei Shi (UCI,
10/2016-7/2018)
8.
Ge Dong (PPPL,
1/2019-present)
9.
Bei Wang (PU)
10. Jacobo Varela (ORNL 2017-2018 - now
researcher at Universidad Carlos III, Madrid, Spain)
11. Yashika
Ghai (ORNL 11/2019-7/2021 - now ORNL theory group member)
12. V.N.
Duarte (PPPL 05/2018-09/2020 - now PPPL research stuff)
13. Victor
Magri (LLNL, 5/2019-present)
14. Protonu Basu
(LBNL, 2017-2018)
IV. Students
1.
Wenhao Wang (UCI
graduate, 2018-present)
2.
Sam Taimourzadeh (PhD,
UCI, 2018; Employer, Toyota Motor)
3.
Calvin Lau (PhD, UCI,
2017; Employer, TAE Technologies Inc.)
4.
Matt Leinhauser
(University of Delaware graduate student, LBNL summer intern, 2021-present)
5.
Kevin Gill (UCI
undergraduate, 2021-present)
6.
Fukun Yun (UCI
undergraduate, 2021-present)
7.
Christian Sims (ORNL summer intern
2021 worked with Y. Ghai and D. Spong on gyrofluid closures - Georgia Tech
undergraduate)
8.
Justin Blanchard (ORISE supported
Oak Ridge High School math thesis student worked in 2019 with D. Spong and
Diego del-Castillo-Negrete on stochastic particle orbit and magnetic field line
maps)