I.         Publications

1.          “Comprehensive magnetohydrodynamic hybrid simulations of fast ion driven instabilities in a Large Helical Device experiment,” Todo, Y.; Seki, R.; Spong, D.A.; Wang, H.; Suzuki, Y.; Yamamoto, S.; Nakajima, N.; Osakabe, M., Physics of Plasmas, 24, n 8, 2017.

2.          “Rotation and neoclassical ripple transport in ITER,” Paul, E.J.; Landreman, M.; Poli, F.M.; Spong, D.A.; Smith, H.M.; Dorland, W., Nuclear Fusion, 57, n 11, p 116044 , 2017.

3.          “Analysis of Alfven eigenmodes destabilization by energetic particles in TJ-II using a Landau closure model,” Varela, J.; Spong, D.A.; Garcia, L. Nuclear Fusion, 57, n 12, 2017.

4.          “Two species drag/diffusion model for energetic particle driven modes,” Aslanyan, V.; Sharapov, S.E.; Spong, D.A.; Porkolab, M. Physics of Plasmas, 24, n 12, p 122511, 2017.

5.          “Major results from the first plasma campaign of the Wendelstein 7-X stellarator,” Wolf, RC; Ali, A; Alonso, A; Baldzuhn, J; Beidler, C; Beurskens, M; Biedermann, C; Bosch, HS; ...; Spong, D. A., ...;Zhang, H.; Zhu, J.; Nuclear Fusion 57, 2017.

6.          “Overview of the RFX-mod fusion science activity,” Zuin, M.; Dal Bello, S.; Marrelli, L.; Puiatti, M.E.; Agostinetti, P.; Agostini, M.; Antoni, V.; Auriemma, F,… Spong, D. A., …; Nuclear Fusion 57 102012, 2017.

7.          V. N. Duarte, H. L. Berk, et al, “Theory and observation of the onset of nonlinear structures due to eigenmode destabilization by fast ions in tokamaks”, Phys. Plasmas 24, 122508 (2017).  [selected as both Editor Pick and AIP Scilight].

8.          V. N. Duarte, H. L. Berk, et al, “Prediction of Nonlinear Evolution Character of   Energetic-Particle-Driven InstabilitiesNucl. Fusion 57 054001 (2017).

9.          M. Podestà et al, Computation of Alfvén eigenmode stability and saturation through a reduced fast ion transport model in the TRANSP tokamak transport code,  Plasma Phys. Control. Fusion 59 (2017) 095008

 

10.       Simulation of toroidicity-induced Alfven eigenmode excited by energetic ions in HL-2A tokamak plasmasHongda He, Junyi Cheng, J. Q. Dong, Wenlu Zhang, Chenxi Zhang, Jinxia Zhu, Ruirui Ma, T. Xie, G. Z. Hao, A. P. Sun, G. Y. Zheng, W. Chen and Z. Lin, Nuclear Fusion 58, 126023 (2018).

11.       W. Heidbrink et al, The phase-space dependence of fast-ion interaction with tearing modes, Nucl. Fusion 58 (2018) 082027

12.       D. Liu et al, Effect of sawtooth crashes on fast ion distribution in NSTX-U, Nucl. Fusion 58 (2018) 082028

13.       “Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks,” Pace, D.C.; Austin, M.E.; Bardoczi, L.; Collins, C.S.; Crowley, B.; Davis, E.; Du, X.; Ferron, J.; Grierson, B.A.; Heidbrink, W.W.; Holcomb, C.T.; McKee, G.R.; Pawley, C.; Petty, C.C.; Podestà, M.; Rauch, J.; Scoville, J.T.; Spong, D.A.; Thome, K.E.; Van Zeeland, M.A.; Varela, J.; Victor, B., Physics of Plasmas, 25, n5, 2018.

14.       Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee, Gates, D.A.; Anderson, D.; Anderson, S.; Zarnstorff, M.; Spong, D, et al., Journal of Fusion Energy, 37, n 1, p 51-94, 2018.

15.       Analysis of Alfven eigenmode destabilization in DIII-D high poloidal β discharges using a Landau closure model, Varela, J.; Spong, D.A.; Garcia, L.; Huang, J.; Murakami, M.; Garofalo, A.M.; Qian, J.P.; Holcomb, C.T.; Hyatt, A.W.; Ferron, J.R.; Collins, C.S.; Ren, Q.L.; McClenaghan, J.; Guo, W. Nuclear Fusion, 58, n 7, 2018.

16.       “Observation of Alfvén eigenmodes driven by fast electrons during lower hybrid wave heating in EAST plasmas,” Hu, Wenhui; Li, Jiangang; Xiao, Bingjia; Heidbrink, William W.; Shi, Tonghui; Hu, Youjun; Chen, Jiale; Spong, Donald A.; Liu, Haiqing; Wang, Shouxin; Lin, Shiyao; Li, Yongliang; Yuan, Yi; Zhou, Ruijie, Nuclear Fusion, 58, n 9, 2018.

17.       V. N. Duarte, N. N. Gorelenkov, M. Schneller, E. D. Fredrickson, M. Podestà and H. L. Berk, “Study of the likelihood for Alfvénic mode bifurcation to chirping in NSTX and predictions for ITER baseline scenarios”, Nucl. Fusion 58, 082013 (2018).

18.       R. B. White, N. N. Gorelenkov, V. N. Duarte and H. L. Berk, “Resonances between high energy particles and ideal magnetohydrodynamic modes in tokamaksPhys. Plasmas 25, 102504 (2018).

19.       B. J. Q. Woods, V. N. Duarte, A. De-Gol, N. N. Gorelenkov and R. G. L. Vann, “Stochastic effects on phase-space holes and clumps in systems near marginal stability”, Nucl. Fusion 58, 082015 (2018).

20.       N. N. Gorelenkov, V. N. Duarte, M. Podestà and H. L. Berk, “Resonance broadened quasi-linear (RBQ) model for fast ion distribution relaxation due to Alfvénic eigenmodes”, Nucl. Fusion 58, 082016 (2018).

21.       G. Meng, N. N. Gorelenkov, V. N. Duarte, H. L. Berk, R. B. White and X. Wang, “Resonance frequency broadening of wave-particle interaction in tokamaks due to Alfvénic eigenmodes”, Nucl. Fusion 58, 082017 (2018).

 

22.       Heterogeneous Programming and Optimization of Gyrokinetic Toroidal Code Using Directives, Wenlu Zhang, Wayne Joubert, Peng Wang, Matthew Niemerg, Bei Wang, William Tang, Sam Taimourzadeh, Lei Shi, Jian Bao, Zhihong Lin, Lecture Notes in Computer Science 11381, 3–21 (2019). (WACCPD 2018 Workshop, Dallas).

23.       Gyrokinetic simulations of Toroidal Alfven Eigenmodes excited by energetic ions and external antennas on the Joint European Torus, V. Aslanyan, S. Taimourzadeh, L. Shi, Z. Lin, G. Dong, P. Puglia, M. Porkolab, R. Dumont, S. E. Sharapov, J. Mailloux, M. Tsalas, M. Maslov, A. Whitehead, R. Scannell, S. Gerasimov, S. Dorling, S. Dowson, H. K. Sheikh, T. Blackman, G. Jones, A. Goodyear, K. K. Kirov, P. Blanchard, A. Fasoli, D. Testa, and JET Contributors, Nuclear Fusion 59, 026008 (2019).

24.       Nonlinear Saturation of Kinetic Ballooning Modes by Zonal Fields in Toroidal Plasmas, G. Dong, J. Bao, A. Bhattacharjee, and Z. Lin, Phys. Plasmas 26, 010701 (2019).

25.       Effects of RMP-Induced Changes of Radial Electric Fields on Microturbulence in DIII-D Pedestal Top, S. Taimourzadeh, L. Shi, Z. Lin, R. Nazikian, I. Holod, D. Spong, Nuclear Fusion59, 046005 (2019).

26.       Global simulation of ion temperature gradient instabilities in a field-reversed configuration, J. Bao, C. K. Lau, Z. Lin, H. Y. Wang, D. P. Fulton, S. Dettrick, and T. Tajima, Phys. Plasmas26, 042506 (2019).

27.       Verification and validation of integrated simulation of energetic particles in fusion plasmas, S. Taimourzadeh, E. M. Bass, Y. Chen, C. Collins, N. N. Gorelenkov, A. Konies, Z. X. Lu, D. A. Spong, Y. Todo, M. E. Austin, J. Bao, A. Biancalani, M. Borchardt, A. Bottino, W. W. Heidbrink, Z. Lin, R. Kleiber, A. Mishchenko, L. Shi, J. Varela, R. E. Waltz, G. Yu, W. L. Zhang, and Y. Zhu, Nuclear Fusion 59, 066006 (2019).

28.       Global gyrokinetic simulation of microturbulence with kinetic electrons in the presence of magnetic island in tokamak, K. S. Fang and Z. Lin, Phys. Plasmas 26, 052510 (2019).

29.       Kinetic particle simulations in a global toroidal geometry, S. De, T. Singh, A. Kuley, J. Bao, Z. Lin, G. Y. Sun, S. Sharma, and A. Sen, Phys. Plasmas 26, 082507 (2019).

30.       Gyrokinetic simulations of nonlinear interactions between magnetic islands and microturbulence, Kaisheng Fang, Jian Bao, and Zhihong Lin, Plasma Sci. Technol. 21, 115102 (2019).

31.       Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. IV. Drift-tearing mode, Hao Shi, Wenlu Zhang, Hongying Feng, Zhihong Lin, Chao Dong, Jian Bao, and Ding Li, Phys. Plasmas 26, 092512 (2019).

32.       Verification of an energetic-electron-driven b-induced Alfven eigenmode in the HL-2A tokamak, Yang Chen, Wenlu Zhang, Junyi Cheng, Zhihong Lin, Chao Dong, and Ding Li, Phys. Plasmas 26, 102507 (2019).

33.       L. Bardóczi et al, Quantitative modeling of neoclassical tearing mode driven fast ion transport in integrated TRANSP simulations, Plasma Phys. Control. Fusion 61 (2019) 055012

34.       D. Kim et al., Investigation of fast particle redistribution induced by sawtooth instability in NSTX-U, Nucl. Fusion 59 (2019) 086007

35.       “Modelling of beam-driven Alfven modes in TJ-II plasmas,” Rakha, A.; Mantsinen, M.J.; Melnikov, A.V.; Sharapov, S.E.; Spong, D.A.; Lopez-Fraguas, A.; Castejo´n, F.; Gutierrez-Milla´, A.; de Pablos, J.L.; Sa´ez, X., Nuclear Fusion, v 59, 056002, May 2019.

36.       “Shear Alfven wave continuum spectrum with bifurcated helical core equilibria,” Rakha, A.; Lauber, P.; Mantsinen, M.J.; Spong, D.A., Nuclear Fusion, v 59, 106042,Oct. 2019.

37.       “Study of Alfven eigenmodes stability in plasma with multiple NBI driven energetic particle species,” Varela, J.; Spong, D.A.; Garcia, L.; Todo, Y.; Huang, J.; Murakami, M., https://doi.org/10.1063/1.5098347 ,Physics of Plasmas, v 26, 062502, June 2019.

38.       “Subdominant modes and optimization trends of DIII-D reverse magnetic shear configurations,” Varela, J.; Spong, D.A.; Murakami, M.; Garcia, L.; D'Azevedo, E.; Van Zeeland, M.A.; Munaretto, S., Nuclear Fusion, v 59, 046017, April 2019.

39.       “Modification of the Alfven wave spectrum by pellet injection,” Oliver, H.J.C.; Sharapov, S.E.; Breizman, B.N.; Fontanilla, A.K.; Spong, D.A.; Terranova, D., Nuclear Fusion, v 59, 106031, Oct. 2019.

40.        “Observation of a beam-driven low-frequency mode in Heliotron J,” Zang, L.G.; Yamamoto, S.; Spong, D.A.; Nagasaki, K.; Ohshima, S.; Kobayashi, S.; Minami, T; et al., Nuclear Fusion, v 59, 056001, May, 2019.

41.       “Analysis of Alfven eigenmode destabilization in ITER using a Landau closure model,” Varela, J.; Spong, D.A.; Garcia, L., Nuclear Fusion, v 59, 076036, July, 2019.

42.       “Fast ion transport in the quasi-single helical reversed-field pinch,” Bonofiglo, P.J.; Anderson, J.K.; Gobbin, M.; Spong, D.A.; Boguski, J.; Parke, E.; Kim, J.; Egedal, J., Physics of Plasmas, v 26, 022502,Feb., 2019.

43.       “Fast Ion Transport in the Three-Dimensional Reversed-Field Pinch,” Bonofiglo, P.J.; Anderson, J.K.; Boguski, J.; Kim, J.; Egedal, J.; Gobbin, M.; Spong, D.A.; Parke, E., 10.1103/PhysRevLett.123.055001, Physical Review Letters, v 123, 055001, 2 Aug. 2019.

44.       “Comprehensive magnetohydrodynamic hybrid simulations of Alfven eigenmode bursts and fast-ion losses in the Large Helical Device,” Seki, R.; Todo, Y.; Suzuki, Y.; Spong, D.A.; Ogawa, K.; Isobe, M.; Osakabe, M., Nuclear Fusion, v 59, 096018, Sept. 2019.

45.       “Analysis of the MHD stability and energetic particles effects on EIC events in LHD plasma using a Landau-closure model,” Varela, J.; Spong, D.A.; Garcia, L.; Ohdachi, S.; Watanabe, K.Y.; Seki, R., Nuclear Fusion, v 59, 046008, April 2019.

46.       V. N. Duarte, H. L. Berk, N. N. Gorelenkov and R. B. White; “Collisional resonance function in discrete-resonance quasilinear plasma systemsPhys. Plasmas 26, 120701 (2019).

47.       V. N. Duarte and N. N. Gorelenkov; Analytical nonlinear dynamics of near-threshold eigenmodes Nucl. Fusion 59, 044003 (2019).

48.       R. B. White; V. N. Duarte, N. N. Gorelenkov.; G. Meng.; Collisional enhancement of energetic particle Alfvénic resonance width in tokamaks, Phys. Plasmas 26, 032508 (2019).

49.       R. B. White, V. N. Duarte, N. N. Gorelenkov, E. D. Fredrickson, M. Podestà and H. L. Berk, Modeling of chirping toroidal Alfvén eigenmodes in NSTX, Phys. Plasmas 26, 092103 (2019).

50.       R. B. White and V. N. Duarte; A simple model for kinetic perturbative resonances in tokamaks, Phys. Plasmas 26, 042512 (2019).

51.       N. N. Gorelenkov, V. N. Duarte, C. Collins, M. Podestà and R. B. White, “Verification and applications of resonance broadened quasi-linear model for fast ion relaxation in the presence of Alfvénic instabilitiesPhys. Plasmas 26, 072507 (2019);

52.       M. A Van Zeeland, C.S. Collins, W.W. Heidbrink, M.E. Austin, X.D. Du, V.N. Duarte et al, Alfvén Eigenmodes and Fast Ion Transport in Negative Triangularity DIII-D Plasmas, Nucl. Fusion 59 086028 (2019).

53.       M. Podestà N. N. Gorelenkov, W. W. Heidbrink, L. Bardoczi, C. S. Collins, V. N. Duarte et al, “Reduced Energetic Particle Transport models enable comprehensive time-dependent tokamak simulationsNucl. Fusion, 59 106013 (2019).

 

54.       Gyrokinetic particle simulations of interactions between energetic particles and magnetic islands induced by neoclassical tearing modes, X. Tang, Z. Lin, W. W. Heidbrink, J. Bao, C. Xiao, Z. Li and J. Li, Phys. Plasmas 27, 032508 (2020).

55.       GTC simulation of linear stability of tearing mode and a model magnetic island stabilization by ECCD in toroidal plasma, Jingchun Li, Chijie Xiao, Zhihong Lin, Dongjian Liu, Xiaoquan Ji, and Xiaogang Wang, Phys. Plasmas 27, 042507 (2020).

56.       Temperature Gradient, Toroidal and Ion FLR Effects on Drift-Tearing Modes, Hao Shi, Wenlu Zhang, Chao Dong, Jian Bao, Zhihong Lin, Jintao Cao, and Ding Li, Chin. Phys. Lett. 37, 085201 (2020).

57.       Global Gyrokinetic Particle Simulations of Microturbulence in W7-X and LHD Stellarators, H. Y. Wang, I. Holod, Z. Lin, J. Bao, J. Y. Fu, P. F. Liu, J. H. Nicolau, D. Spong, Y. Xiao, Phys. Plasmas 27, 082305 (2020).

58.       Electrostatic quasi-neutral formulation of global cross-separatrix particle simulation in field-reversed configuration geometry, C. K. Lau, D. P. Fulton, J. Bao, Z. Lin, S. Dettrick, M. Binderbauer, T. Tajima, and L. Schmitz, Phys. Plasmas 27, 082504 (2020).

59.       Verification of Energetic-Particle-Induced Geodesic Acoustic Mode in Gyrokinetic Particle Simulations, Yang Chen, Wenlu Zhang, Jian Bao, Zhihong Lin, Chao Dong, Jintao Cao, and Ding Li, Chin. Phys. Lett. 37, 095201 (2020).

60.       Verification of local electrostatic gyrokinetic simulation of driftwave instability in field-reversed configuration, Shuying Sun, Xishuo Wei, Zhihong Lin, Pengfei Liu, Wenhao Wang, and Huasheng Xie, Phys. Plasmas 27, 112504 (2020).

61.       “MHD stability of JT-60SA operation scenarios driven by passing energetic particles for a hot Maxwellian model,” Varela, J.; Watanabe, K.Y.; Shinohara, et al., Nuclear Fusion, v 60, n 9, September 2020.

62.       “Progress in extending high poloidal beta scenarios on DIII-D towards a steady-state fusion reactor and impact of energetic particles: Huang, J.; Garofalo, A.M.; Qian, J.P.; et al., Nuclear Fusion, v 60, n 12, December, 2020.

63.       “Theoretical analysis of energetic-ion-driven resistive interchange mode stabilization strategies using a Landau closure model,” Varela, J.; Ohdachi, S.; Watanabe, K.Y.; Spong, D.A.; Garcia, L.; Seki, R., Nuclear Fusion, v 60, n 4, 2020.

64.       “Modeling of the ECCD injection effect on the Heliotron J and LHD plasma stability,” Varela, J.; Nagasaki, K.; Nagaoka, K.; Yamamoto, S.; Watanabe, K.Y.; Spong, D.A.; Garcia, L.; Cappa, A.; Azegami, A., Nuclear Fusion, v 60, n 11, November 2020.

65.       “Energetic particle transport and loss induced by helically-trapped energetic-ion-driven resistive interchange modes in the Large Helical Device,” Ogawa, K.; Isobe, M.; Sugiyama, S.; Matsuura, H.; Spong, D.A.; Nuga, H.; Seki, R.; Kamio, S.; Fujiwara, Y.; Yamaguchi, H.; Osakabe, M., Nuclear Fusion, v 60, n 11, p 112011, Nov. 2020.

66.       “Effect of the tangential NBI current drive on the stability of pressure and energetic particle driven MHD modes in LHD plasma,” Varela, J.; Cooper, W.A.; Nagaoka, K.; Watanabe, K.Y.; Spong, D.A.; Garcia, L.; Cappa, A.; Azegami, A., Nuclear Fusion, v 60, n 2, p 026016,  Feb. 2020.

67.       B. Madsen et al, Tomography of the positive-pitch fast-ion velocity distribution in DIII-D plasmas with Alfvén eigenmodes and neoclassical tearing modes, Nucl. Fusion 60 (2020) 066024

68.       D. Liu et al, Cause and impact of low-frequency chirping modes in DIII-D hybrid discharges, Nucl. Fusion 60 (2020) 112009

69.       J. Kang et al, Role of fast-ion transport manipulating safety factor profile in KSTAR early diverting discharges, Nucl. Fusion 60 (2020) 126023

70.       “Hybrid simulation of NBI fast-ion losses due to the Alfven eigenmode bursts in the Large Helical Device and the comparison with the fast-ion loss detector measurements,” Seki, R.; Todo, Y.; Suzuki, Y.; Ogawa, K.; Isobe, M.; Osakabe, M.; Spong, D., Journal of Plasma Physics, v 86, n 5, p 815860502, Oct. 2020.

71.       R. B. White, V. N. Duarte, N. N. Gorelenkov, E. D. Fredrickson and M. Podestà, “Phase-space dynamics of Alfven Mode Chirping”, Phys. Plasmas 27, 052108 (2020).

72.       B. J. Q. Woods; V. N. Duarte; E. Fredrickson; N. N. Gorelenkov; M. Podestà; R. Vann; Machine-learning-driven correlations of Alfvénic and sub-Alfvénic chirping in NSTX, IEEE Trans. Plasma Sci. 48, 71 (2020).

73.       R. B. White, V. N. Duarte, N. N. Gorelenkov, E. D. Fredrickson and M. Podestà, Simulation of Alfvénic avalanche onset in NSTX, Phys. Plasmas 27, 022117 (2020).

74.       Prediction of Alfvén eigenmode energetic particle transport in ITER scenarios with a critical gradient model, E.M. Bass and R.E. Waltz, Nucl. Fusion 60 (2020) 016032.  IAEA-FEC 2018 oral.

 

75.       Linear gyrokinetic simulations of reversed shear Alfvén eigenmodes and ion temperature gradient modes in DIII-D tokamak, Hongyu Wang, Pengfei Liu, Zhihong Lin, and Wenlu Zhang, Plasma Sci. Technol. 23, 015101 (2021).

76.       ‘BAAE’ instabilities observed without fast ion drive, W. W. Heidbrink, M. A. Van Zeeland, M. E. Austin, A. Bierwage, Liu Chen, G. J. Choi, P. Lauber, Z. Lin, G. R. McKee and D.A. Spong, Nuclear Fusion 61, 016029 (2021).

77.       Linear simulation of kinetic electromagnetic instabilities in a tokamak plasma with weak magnetic shearYunchuan Zhao, Jiaqi Wang, Dongjian Liu, Wei Chen, Ge Dong, and Zhihong Lin, Phys. Plasmas 28, 012107 (2021).

78.       Gyrokinetic simulation of low-frequency Alfvénic modes in DIII-D tokamak, G. J. Choi, P. Liu, X. S. Wei, J. H. Nicolau, G. Dong, W. L. Zhang, Z. Lin, W. W. Heidbrink and T.S. Hahm, Nuclear Fusion 61, 066007 (2021).

79.       Effects of equilibrium radial electric field on ion temperature gradient instability in the scrape-off layer of a field-reversed configuration, W. H. Wang, J. Bao, X. S. Wei, Z. Lin, G. J. Choi, S. Dettrick, A. Kuley, C. Lau, P. F. Liu, and T. Tajima, Plasma Phys. Contr. Fusion 63, 065001 (2021).

80.       Global gyrokinetic simulation of neoclassical ambipolar electric field and its effects on microturbulence in W7-X stellarator, J. Y. Fu, J. H. Nicolau, P. F. Liu, X. S. Wei, Y. Xiao, and Z. Lin, Phys. Plasmas 28, 062309 (2021).

81.       Effects of resonant magnetic perturbations on radial electric fields in DIII-D tokamak, Jingyuan FU, Pengfei LIU, Xishuo WEI, Zhihong LIN, Nathaniel Mandrachia FERRAR, and Raffi NAZIKIAN, Plasma Sci. Technol23, 105104 (2021).

82.       Quasilinear critical gradient model for Alfven eigenmode driven energetic particle transport with intermittency, R.E. Waltz, E.M. Bass, C.S. Collins and K. Gage, Nuclear Fusion 61, 036043 (2021).

83.       Microturbulence-mediated route for energetic ion transport and Alfvénic mode amplitude oscillations in tokamaks, N.N. Gorelenkov, V.N. Duarte, Physics Letters A 386, 126944 (2021).

84.       Fully convolutional spatio-temporal models for representation learning in plasma science, Ge Dong, Kyle Gerard Felker, Alexey Svyatkovskiy, William Tang, Julian Kates-Harbeck, Journal of Machine Learning for Modeling and Computing 2, 49 (2021).

85.       “Nonlinear dynamics and transport driven by energetic particle instabilities using a gyro-Landau closure model,” D. A. Spong, M. A. Van Zeeland, W.W. Heidbrink, X. Du, J. Varela, L. Garcia, Y. Ghai, Nuclear Fusion (2021), https://doi.org/10.1088/1741-4326/ac2990.

86.       “Effect of plasma shaping on energetic particle driven Alfven eigenmodes instability in DIII-D,” Y. Ghai, D. A. Spong, J. Varela, L. Garcia, M. A. Van Zeeland, Nuclear Fusion (2021), https://doi.org/10.1088/1741-4326/ac2bc0.

87.       Microturbulence in edge of a tokamak plasma with medium density and steep temperature gradient, Jingchun Li, Z. Lin, Jiaqi Dong, Huasheng Xie and Songfen Liu, Plasma Phys. Contr. Fusion 63, in press (2021).

88.       Interpretation of electromagnetic modes in the sub-TAE frequency range in JET plasmas with elevated monotonic q-profiles, N. Fil, S.E. Sharapov, M. Fitzgerald, G.J. Choi, Z. Lin, R.A. Tinguely, H.J.C. Oliver, K.G. McClements, P.G. Puglia, R.J. Dumont, M. Porkolab, J. Mailloux, E. Joffirin, and JET Contributors, Phys. Plasmas 28, in press (2021).

89.       Effects of zonal flows on ion temperature gradient instability in the scrape-off layer of a field-reversed configuration, X.S. Wei, W.H. Wang, Z. Lin, G.J. Choi, S. Dettrick, C. Lau, P.F. Liu, and T. Tajima, Nuclear Fusion 61, in press (2021).

90.       Global gyrokinetic simulation with kinetic electron for collisionless damping of zonal flow in stellarator, Javier H. Nicolau, Gyungjin Choi, Jingyuan Fu, Pengfei Liu, Xishuo Wei, and Zhihong Lin, Nuclear Fusion 61, in press (2021).

91.       Verification and validation of gyrokinetic and kinetic-MHD simulations for internal kink instability in DIII-D tokamak, G. Brochard, J. Bao, C. Liu, N. Gorelenkov, G. Choi, G. Dong, P. Liu, J. Mc.Clenaghan, J. H. Nicolau, F. Wang, W. H. Wang, X. Wei, W. L. Zhang, W. Heidbrink, J. P. Graves, Z. Lin, H. Lutjens, submitted to Nuclear Fusion, 2021.

92.       Regulation of Alfven eigenmodes by microturbulence in fusion plasmas, P. Liu, X. Wei, Z. Lin, G. Brochard, G.J. Choi, W.W. Heidbrink, J.H. Nicolau, and G. R. McKee, submitted to Phys. Rev. Lett., 2021.

93.       M. Van Zeeland et al, Beam modulation and bump-on-tail effects on Alfvén eigenmode stability in DIII-D, Nucl. Fusion 61 (2021) 066028

94.       J. Yang et al, Synergy of coupled kink and tearing modes in fast ion transport, Plasma Phys. Control. Fusion 63 (2021) 045003

95.       A. Teplukhina et al, Fast ion transport by sawtooth instability in the presence of ICRF–NBI synergy in JET plasmas, Nucl. Fusion 61 (2021) 116056

96.       M. Podestà et al, Development of a reduced model for energetic particle transport by sawteeth in tokamaks, Plasma Phys. Control. Fusion 2021 (submitted)

97.       M. Vallar et al, Modelling of sawtooth-induced fast ion transport in positive and negative triangularity in TCV, Nucl. Fusion 2021 (submitted)

98.       J. Kim et al, Suppression of Toroidal Alfvén Eigenmodes by the Electron Cyclotron Current Drive in KSTAR Plasmas, Nucl. Fusion 2021 (submitted)

99.       “Study of the Alfven eigenmodes stability in CFQS plasma using a Landau closure model, Varela, J.; Shimizu, A.; Spong, D.A.; Garcia, L.; Ghai, Y., Nuclear Fusion, v 61, n 2, February 2021.

100.    “Characteristics of neutron emission profile from neutral beam heated plasmas of the Large Helical Device at various magnetic field strengths,” Ogawa, K.; Isobe, M.; Sugiyama, S.; Spong, D.A.; Sangaroon, S.; Seki, R.; Nuga, H.; Yamaguchi, H.; Kamio, S.; Fujiwara, Y.; Kobayashi, M.I.; Jo, J.; Osakabe, M., Plasma Physics and Controlled Fusion, v 63, n 6, June 2021.

101.    “Stability analysis of TJ-II stellarator NBI driven Alfven eigenmodes in ECRH and ECCD experiments, Cappa, A.; Varela,” J.; Lopez Bruna, D.; Ascasibar, E.; Liniers, M.; Eliseev, L.G.; Fontdecaba, J.M.; Garcia-Regana, J.M.; Gonzalez-Jerez, A.; Kharchev, N.K.; Medina, F.; Melnikov, A.V.; Mulas, S.; Ochando, M.; Spong, D.; Velasco, J.L., Nuclear Fusion, v 61, n 6, June 2021.

102.    “Stability of beta-induced Alfven eigenmodes (BAE) in DIII-D,” Heidbrink, W.W.; Van Zeeland, M.A.; Austin, M.E.; Crocker, N.A.; Du, X.D.; McKee, G.R.; Spong, D.A., Nuclear Fusion, v 61, n 6, June 2021.

103.    “Experimental observation of the geodesic acoustic frequency limit for the NBI-driven Alfven eigenmodes in TJ-II,” Eliseev, L.G.; Melnikov, A.V.; Ascasibar, E.; Cappa, A.; Drabinskiy, M.; Hidalgo, C.; Khabanov, P.O.; Kharchev, N.K.; Kozachek, A.S.; Liniers, M.; Lysenko, S.E.; Ochando, M.; Pablos, J. L. De; Pastor, I.; Sharapov, S.E.; Spong, D.A.; Breizman, B.N.; Varela, J., Physics of Plasmas, v 28, n 7, July 1, 2021.

104.     “`BAAE' instabilities observed without fast ion drive,” Heidbrink, W.W.; Van Zeeland, M.A.; Austin, M.E.; Bierwage, A.; Liu Chen; Choi, G.J.; Lauber, P.; Lin, Z.; McKee, G.R.; Spong, D.A., Nuclear Fusion, v 61, n 1, p 016029, Jan. 2021.

105.    Robert Falgout, Ruipeng Li, Bjorn Sjogreen, Ulrike Meier Yang, and Lu Wang. Porting hypre to heterogeneous computer architectures: Strategies and experiences. Parallel Computing, 108, 2021. ISSN 0167-8191. doi: 10.1016/j.parco.2021.102840. LLNL-JRNL-816235.

106.    V. N. Duarte, J. B. Lestz, N. N. Gorelenkov and R. B. White, “Shifting and splitting of resonance lines due to dynamical friction in quasilinear theory”, (submitted, 2021).

107.    A. Bierwage, R. B. White and V. N. Duarte, “On the effect of Beating during Nonlinear Frequency Chirping”, Plasma Fusion Res. 16, 1403087 (2021).

108.    N. N. Gorelenkov, V. N. Duarte, “Microturbulence-mediated route for energetic ion transport and Alfvénic mode intermittency in tokamaks”, Phys. Lett. A 386, 126944 (2021).

109.    Improving fast-ion confinement and performance by reducing Alfven eigenmodes in the q-min >2 steady experiment scenario, C.S.Collins, C.T. Holcomb, M.A. Van Zeeland, E.M. Bass, Nucl. Fusion paper in progress , IAEA-FEC May 2021  oral.

110.    Validation of the TGLF-EP+Alpha model in DIII-D scenarios for ITER, E.M. Bass, M. A. Van Zeeland, and, R. E. Waltz, Nucl. Fusion paper submitted.

111.    William Tang, et al., Implementation of AI/Deep Learning Disruption Predictor into a Plasma Control System, in Proceedings of the International Atomic Energy Agency (IAEA) Fusion Energy Conference, Oral Paper TH-7, Virtual Conference, Nice, France (2021);

112.    Ge Dong, et al., SGTC Paper:  arXiv link: https://arxiv.org/abs/2106.10849, Deep Learning Based Surrogate Model for First-Principles Global Simulations of Fusion Plasmas   to be published, Nuclear Fusion (2021)

113.    Ge Dong, Kyle Gerard Felker, Alexey Svyatkovskiy, William Tang, and Julian Kates-Harbeck. Fully Convolutional Spatio-temporal Models for Representation Learning in Plasma Science. arXiv preprint arXiv:2007.10468, 2020; Journal of Machine Learning for Modeling and Computing, 2(1):49–64 (2021).

114.    Global gyrokinetic simulation with kinetic electron for collisionless damping of zonal flow in stellarator, Javier H. Nicolau, Gyungjin Choi, Jingyuan Fu, Pengfei Liu, Xishuo Wei, and Zhihong Lin, Nuclear Fusion 61, in press (2021).

115.    Verification and validation of gyrokinetic and kinetic-MHD simulations for internal kink instability in DIII-D tokamak, G. Brochard, J. Bao, C. Liu, N. Gorelenkov, G. Choi, G. Dong, P. Liu, J. Mc.Clenaghan, J. H. Nicolau, F. Wang, W. H. Wang, X. Wei, W. L. Zhang, W. Heidbrink, J. P. Graves, Z. Lin, H. Lutjens, submitted to Nuclear Fusion, 2021.

 

 

    II.     Invited talks

 

1.          E.M. Bass, IAEA-FEC oral, 2018.

2.          Z. Lin, Transport Task Force Workshop, San Diego, 2018.

3.          Z. Lin, DOE SciDAC-4 Principal Investigator Meeting, Washington DC, 2018.

4.          Z. Lin, US-Japan JIFT Exascale Computing Workshop, Princeton, 2018.

5.          D. A. Spong, “Energetic particle confinement/stability analysis for stellarators and tokamaks,” invited presentation at the 23rd Workshop on MHD Stability Control – A US-Japan Workshop, UCLA, Nov 12 - Nov 16, 2018.

6.          D. A. Spong, “Energetic particle physics and optimization methods for stellarators,” US-Japan JIFT Workshop on "Progress on advanced optimization concept and modeling in stellarator-heliotrons", March 22 – 23, 2018, Kyoto University, Kyoto, Japan. (oral-invited).

7.          Podestà et al, IAEA-FEC 2018

8.          Bardóczi et al, TTF 2018

9.          N.N.Gorelenkov et al., TTF 2018 “A Quasi-linear modeling of fast ion relaxation due to Alfvénic instabilities”.

10.       N.N.Gorelenkov et al., APS 2018 “Quasi-linear resonance broadened model for fast ion relaxation in the presence of Alfvénic instabilities” invited talk.

11.       Z. Lin, 7th Annual Workshop on Fusion Simulation, Wuhan, China, 2019.

12.       Z. Lin, 11th International Conference on Computational Physics (ICCP11), Hangzhou, China, 2019.

13.       Z. Lin, DOE SciDAC-4 Principal Investigator Meeting, Washington DC, 2019.

14.       S. Klasky, 10th International Conference on Computational Methods (ICCM2019), Singapore, 2019.

15.       Z. Lin, 61st Annual Meeting of APS Division of Plasma Physics, Mini-Conference on Building Bridge to Exascale Computing: Applications and Opportunities for Plasma Science, Fort Lauderdale, 2019.

16.       Z. Lin, US-Japan Compact Torus Workshop (CT2019), Toki, Japan, 2019.

17.       Z. Lin, Annual Meeting of Asia-Pacific Physical Society (AAPPS-DPP), Hefei, China, 2019.

18.       D. A. Spong, M. Salewski, Simon Pinches, invited oral presentation at ITPA Coordinating Committee Meeting, December 10 – 12, 2019ITPA-Coordinating Committee Meeting “Energetic Particle (EP) Topical Group Report of Activities for 2019.”

19.       D. A. Spong, “Interaction of runaway electrons with whistler and Alfvén waves in the presence of impurity injection,” oral presentation at the 7th Annual Theory and Simulation of Disruptions Workshop, Princeton Plasma Physics Laboratory, August 5 - 7, 2019.

20.       D. A. Spong, “Energetic Particle Physics Issues for Stellarators and Possibilities for Optimization,” invited oral at the US/Japan Stellarator Workshop, Auburn, Alabama, Feb. 25 – 27, 2019.

21.       D. A. Spong, “Energetic Particle (EP) Topical Group Report of Activities for 2018,” invited oral presentation at ITPA Coordinating Committee Meeting 1/1/2019.

22.       W. Tang, “Deep Learning Acceleration of Progress Toward Delivery of Fusion Energy, ” Invited Seminar, Microsoft, Corporation Headquarters, Redmond, WA (Nov. 2019);

23.       W. Tang, “AI/Deep Learning Acceleration of Progress Toward Delivery of Fusion Energy,”  Invited Talk, International Supercomputing Conference (SC’19), Denver, CO (Nov. 2019);

24.       W. Tang,"Implementation of an AI-enabled Deep Learning Disruption Predictor into a Tokamak Plasma Control System," Invited Seminar, UC Irvine, Dept. of Physics & Astronomy, Irvine, CA (Dec. 2019).

25.       Z. Lin, Annual Meeting of Asia-Pacific Physical Society (AAPPS-DPP) (remote), 2020.

26.       C.S. Collins, IAEA-FEC oral, 2020.

27.       D. A. Spong, M. Salewski, S. Pinches, invited oral presentation at 2020 ITPA-Coordinating Committee Meeting, December, 2020 “Energetic Particle (EP) Topical Group Report of Activities for 2020.”

28.       D. A. Spong, Simons Team Meeting, Virtual Zoom meeting, August 3 – 6, 2020, invited oral presentation “Optimizing stellarators for energetic particle instability suppression/control.”

29.       V.N.DuarteFirst-principles formulation of resonance broadened quasilinear theory near an instability threshold“, AAPPS, 2020.

30.       V.N.DuarteIntegrated two-dimensional quasilinear modeling of fast ion relaxation in tokamaks“, APS invited talk, 2020.

31.       W. Tang, “Features of a Possible NSF Roadmap Supporting Science Applications,”, NSF Invitation-Only Smart Cyberinfrastructure Workshop, Crystal City, VA (Feb., 2020);

32.       W. Tang “Applications and Techniques for Fast Machine Learning in Science:  Plasma Physics/Fusion Energy Science,” Invited Talk, Southern Methodist University, Virtual Conference, Dec., 2020)

33.       P. Liu, Transport Task Force Workshop (remote) (plenary), 2021.

34.       J. Nicolau, Transport Task Force Workshop (remote) (plenary), 2021.

35.       Z. Lin, International Tokamak Physics Activities (ITPA) (remote), 2021

36.       Z. Lin, 10th US-PRC Magnetic Fusion Collaboration Workshop (remote), 2021.

37.       D. A. Spong, MagNetUS meeting, August 2 – 4, 2021, University of Wisconsin, “Runaway electron driven whistler instabilities in tokamak plasmas.”

38.       Yashika Ghai, “Instabilities driven by fast ions in DIII-D plasmas with a negative triangularity,” Transport Task Force Workshop (remote) invited oral talk, 2021.

39.       Yang et al,  TTF 2021

40.       Yang et al, AAPPS 2021

41.       Bonofiglo et al, TTF 2021

42.       Bonofiglo et al, AAPPS 2021

43.       V. Magri, SIAM Conference on Computational Science and Engineering, 2021.

44.       G. Dong, ”Advances In Deep-Learning-Based Prediction & Control of Plasma Instabilities and Disruptions in Tokamaks,” Invited Talk, IAEA-PPPL Workshop on Theory and Simulation of Disruptions, July 19-23, 2021.

45.       W.Tang, “Deep Learning Acceleration of Progress in Fusion Energy Research,” Invited Seminar, DOE ECP ExaLearn Virtual Meeting, July, 2021

 

 

   III.     Postdocs

 

1.     Guillaume Brochard (UCI, 2/2020-present)

2.     Gyung Jin Choi (UCI, 5/2019-5/2021)

3.     Javier Nicolau (UCI, 4/2019-present)

4.     Xishuo Wei (UCI, 2/2019-present)

5.     Pengfei Liu (UCI, 1/2019-present)

6.     Jian Bao (UCI, 7/2016-12/2018)

7.     Lei Shi (UCI, 10/2016-7/2018)

8.     Ge Dong (PPPL, 1/2019-present)

9.     Bei Wang (PU)

10.  Jacobo Varela (ORNL 2017-2018 - now researcher at Universidad Carlos III, Madrid, Spain)

11.  Yashika Ghai (ORNL 11/2019-7/2021 - now ORNL theory group member)

12.  V.N. Duarte (PPPL 05/2018-09/2020 - now PPPL research stuff)

13.  Victor Magri (LLNL, 5/2019-present)

14.  Protonu Basu (LBNL, 2017-2018)

 

 

  IV.     Students

 

1.          Wenhao Wang (UCI graduate, 2018-present)

2.          Sam Taimourzadeh (PhD, UCI, 2018; Employer, Toyota Motor)

3.          Calvin Lau (PhD, UCI, 2017; Employer, TAE Technologies Inc.)

4.          Matt Leinhauser (University of Delaware graduate student, LBNL summer intern, 2021-present)

5.          Kevin Gill (UCI undergraduate, 2021-present)

6.          Fukun Yun (UCI undergraduate, 2021-present)

7.          Christian Sims (ORNL summer intern 2021 worked with Y. Ghai and D. Spong on gyrofluid closures - Georgia Tech undergraduate)

8.          Justin Blanchard (ORISE supported Oak Ridge High School math thesis student worked in 2019 with D. Spong and Diego del-Castillo-Negrete on stochastic particle orbit and magnetic field line maps)