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Abstract
Global gyrokinetic simulations with kinetic electrons for collisionless damping of zonal flows
in LHD and W7-X stellarators show that the helical components of the equilibrium magnetic
field responsible for helically trapped particles have significant impacts on zonal flow. Kinetic
electrons reduce zonal flow residue and increase the frequency of low frequency oscillation
(LFO). The LFO is induced by dominant helical harmonics of magnetic field strength.
Furthermore, linear toroidal coupling of multiple toroidal n-harmonics barely affects the zonal
flows, but can generate long wavelength toroidal harmonics with the same toroidal number as
the helical magnetic field.
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1. Introduction

The reduction of neoclassical transport in the W7-X stellara-
tor thanks to its quasi-isodynamic design [1] and the finding
of an optimized operation regime in the LHD stellarator [2]
have shifted research interest from neoclassical to turbulent
transport. Recent experiments in the W7-X have shown that a
significant amount of transport may be driven by microturbu-
lence [3–5]. The role of spontaneously generated zonal flows
in regulating the microturbulence has been extensively stud-
ied in axisymmetric tokamaks [6–8]. Zonal flows have also
been shown to regulate ion temperature gradient (ITG) tur-
bulence in the LHD and W7-X stellarators in recent global
simulations [9]. Therefore, it is important to understand the
dynamics of zonal flow and its impact on the microturbulence
in the stellarators.

In the past decades, the advances of both analytical the-
ory and gyrokinetic simulations have provided insights of the
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dynamics of the zonal flows, which are subjected to colli-
sionless damping by transit time magnetic pumping effects
in tokamaks. Rosenbluth–Hinton [10] showed that an ini-
tial zonal density perturbation is not fully damped, which
results in a residual level due to the neoclassical polarization
mostly contributed by toroidally-trapped ions. Xiao–Catto and
Wang–Hahm extended the Rosenbluth–Hinton calculations
by including shaping effects [11] and dependence on zonal
flow radial wavelength [12, 13]. Sugama–Watanabe showed
that a residue can survive in the optimized helical configu-
rations with reduced neoclassical transport [14, 15]. A low
frequency oscillation (LFO) of the zonal flows was found to
be induced by the radial drift of helically trapped particles
[16, 17] in the stellarators. The LFO frequency is much smaller
than the geodesic acoustic mode (GAM) [18] and has been
experimentally observed in the TJ-II stellarator [19].

After earlier work by flux-tube GKV [14] simulations of
a simplified LHD-like equilibrium, gyrokinetic simulations
of collisionless damping of zonal flows in stellarators have
been extended to more realistic equilibrium: LHD [17, 20, 21],
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W7-X [17] and TJ-II [22] using global EUTERPE and GT5D
codes and flux-tube GENE and GKV codes. Kinetic electrons
were found to have little effects on the zonal flow residual level
in the tokamaks from the global GTC simulations [23] but can
reduce the residual level in the stellarators from the CAS3D-K
calculations and GENE and GKV simulations [21, 24].

Despite this progress, important physics of the zonal flow
dynamics in the stellarators has not been well studied. First,
zonal flows in the stellarators can linearly couple with other
toroidal harmonics with n �= 0, unlike in the axisymmetric
tokamaks. What are the effects of this linear toroidal cou-
pling on the dynamics of zonal flow and other toroidal har-
monics? Secondly, the number of helically-trapped particles
could be much more than that of toroidally-trapped particles
in some stellarators such as the W7-X. What are the effects of
these helically-trapped particles on the zonal flow dynamics?
Global simulation is needed to study these unexplored physics
since helically-trapped particles may reside in different mag-
netic field lines and may drift far away across magnetic sur-
faces. While the effects of a helical magnetic field on the zonal
flow damping have been analyzed theoretically in references
[14–17], by some simulations with adiabatic electrons [17, 20,
22, 25–31] and by flux-tube simulations with kinetic electrons
[21, 24], the impact of (helically-trapped) kinetic electrons is
not yet fully understood.

Most of the previous gyrokinetic simulations of microtur-
bulence in stellarators have been local flux-tube simulations
which have provided useful insights of turbulent transport.
However, the flux-tube simulation [32] makes the usual
assumptions of the ballooning mode representation including
an axisymmetric equilibrium (i.e. every field line is equiva-
lent), a radially translational symmetry (i.e. high-n balloon-
ing mode approximation), and a finite magnetic shear (i.e.
out-going boundary condition along the magnetic field line)
[33]. These assumptions are, in general, not valid in the 3D
geometry of the stellarators. In fact, recent local and global
simulations with adiabatic electrons of zonal flow damping
in the HSX and NCSX quasi-symmetric stellarators [30] and
the W7-X and LHD optimized stellarators [31] confirm that
different flux-tubes produce different zonal flow dynamics in
general, and that only some aspects of the zonal flow dynam-
ics in a specific geometry can be recovered from some flux-
tube simulations using adequately long parallel flux-tubes.
Recently, global gyrokinetic simulations of microturbulence
using adiabatic electrons in stellarators have been performed
by the EUTERPE [34], GTC [9], XGC-S [35] and GENE-3D
[36]. Global simulations are necessary to include the effects
of the 3D magnetic field such as the secular radial drift of
helically-trapped particles, radial turbulence spreading, linear
toroidal coupling of multiple-n toroidal harmonics (i.e. local-
ization of eigenmodes to discrete magnetic field lines), and
the linear toroidal coupling between zonal flows and low-n
harmonics [9].

In this paper, we study the collisionless damping of zonal
flows in the LHD and W7-X stellarators using the global GTC
simulations with kinetic electrons. Simulation results show
that the helical components of the magnetic field responsible
for helically-trapped particles reduce the residue level [24] and

that kinetic electrons increase the LFO frequency. The LFO is
induced by the dominant helical harmonics of the equilibrium
magnetic field strength. Furthermore, linear toroidal coupling
barely affects the zonal flows, but can generate low-n toroidal
harmonics with the same toroidal number as the dominant
helical component of the equilibrium magnetic field.

The rest of the paper is organized as follows. In section 2
global GTC simulation models for the stellarators are
described. Simulation results of collisionless damping of zonal
flow are presented in section 3 for the LHD stellarator and
in section 4 for the W7-X stellarator. Finally, conclusions are
given in section 5.

2. Implementation of the global gyrokinetic
simulation model

2.1. Implementation of the model

The numerical simulations presented in this paper are per-
formed using the GTC [6], which is well-benchmarked
and extensively utilized for simulations of microturbulence,
Alfven eigenmodes, MHD instabilities and neoclassical trans-
port. The code has recently been upgraded for simulations of
Alfvén instabilities in the LHD [37], microturbulence in the
W7-X and LHD [9], neoclassical and turbulent transport in the
W7-X [38], microturbulence in the DIII-D tokamak with 3D
resonant magnetic perturbations [39] and effects of magnetic
islands on neoclassical bootstrap current [40] and microturbu-
lence [41]. GTC has also been used to simulate collisionless
and collisional damping of the zonal flows in the axisym-
metric tokamak and their effects on the turbulent transport
[6, 42, 43].

The main goal of this work is to show the effect of kinetic
electrons in the zonal flow damping. First, we will perform
simulations with ‘adiabatic’ electrons, that is, the electron
response is assumed to be zero to the zonal (flux-surface aver-
aged) component of the electrostatic potential, but adiabatic to
the non-zonal components. Then the results will be compared
with simulations with kinetic electrons solving the drift kinetic
equation [44], where the electron response to the zonal compo-
nent may not be negligible due to helically-trapped electrons.
The gyrokinetic model is described in section 2.2.

One important feature of the GTC is that the turbulence
mesh used for representing all turbulence quantities (e.g. per-
turbed density, electrostatic potential, etc) is a global field-
aligned mesh in the real space coordinates [45, 46], which
achieves the maximal numerical efficiency without making the
usual approximation in the ballooning mode coordinates. This
turbulence mesh only needs a small number of parallel grid
points to resolve drift-wave eigenmode structures, which are
elongated in the parallel direction.

The equilibria of the LHD and W7-X, taken from refer-
ences [9, 47], are calculated by the ideal MHD equilibrium
code VMEC [48]. VMEC equilibrium data (magnetic field,
metric tensor, etc) are provided by a Fourier series in poloidal
and toroidal direction on a discrete radial mesh. The equilib-
rium data are then transformed to the Boozer coordinates as a
Fourier series in the toroidal direction on a discrete 2D mesh
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on the poloidal plane. Finally, GTC uses a 3D quadratic spline
function defined on an equilibrium mesh to represent these
equilibrium quantities for better computational efficiency. Due
to the toroidal variations of equilibrium quantities in the stel-
larator, the number of toroidal grid points in the equilibrium
mesh is typically larger than that of the parallel grid points in
the turbulence mesh.

When simulating the collisionless damping of the zonal
flow in this work, equilibrium density and temperature profiles
for both ions and electrons are assumed to be uniform with
Te = T i to avoid complications of pressure gradients. Simula-
tions are performed in a narrow radial domain so the rotational
transform and aspect ratio have little variations within the sim-
ulation domain. An initial ion gyrocenter density perturbation
is imposed as a sinusoidal function with only radial variations.
Zonal flows with various radial wavenumber kr are simulated.
To avoid undesirable effects from the radial boundaries, the
perturbation amplitude is enclosed within a Gaussian func-
tion so the perturbation is maximum in the center of the radial
domain and weak near the boundaries. We analyze the tempo-
ral evolution and relaxation of the zonal flows in the simula-
tions. In particular we focus on the zonal electrostatic potential
〈φ〉 where the brackets indicate a flux-surface average. In all
the simulations presented in this paper, time is given in units of
R0/cs where R0 is the major radius, cs =

√
Te/mi, and mi the

ion mass. In the LHD, the magnetic axis is always located in
the same location in the poloidal plane for any toroidal angle
so R0 is a constant. However, in the W7-X the location of the
magnetic axis varies along the toroidal direction so we take an
‘averaged’ R0.

2.2. Gyrokinetic simulation model

We perform GTC linear electrostatic simulations to study colli-
sionless damping of zonal flows in the stellarators. Ion dynam-
ics is described by the collisionless gyrokinetic equation
[49, 50]

d
dt

f
(
X,μ, v‖, t

)
=

[
∂

∂t
+ Ẋ · ∇+ v̇‖

∂

∂v‖

]
f = 0, (1)

where
Ẋ = v‖b + vE + vd

and

v̇‖ = − 1
m

B∗

B
· (μ∇B + Z∇φ) .

The f
(
X,μ, v‖, t

)
is the distribution function with X the

gyrocenter, μ the magnetic moment and v‖ the parallel veloc-

ity. B is the equilibrium magnetic field, B∗ = B +
Bv‖
Ω ∇× b,

b = B/B and vE and vd are the E × B drift velocity and mag-
netic drift velocity, respectively.φ is the perturbed electrostatic
potential, Z is the ion charge and m its mass. The perturbed
potential is decomposed into zonal and non-zonal components
φ = 〈φ〉 + δφ, where 〈φ〉 is the flux-surface averaged zonal
mode.

In this work, in order to reduce particle nose, we use the
δ f method [51] for the ion species. The ion gyrocenter distri-
bution function f = f0 + δ f is separated into an equilibrium

part f0 and a perturbed part δ f . Equation (1) may be writ-
ten as L f = 0 and the propagator L can be decomposed into
equilibrium L0 and perturbed δL parts. So

L0 =
∂

∂t
+
(
v‖b + vd

)
· ∇ − 1

m
B∗

B
· (μ∇B)

∂

∂v‖
(2)

and

δL = vE · ∇ − 1
m

B∗

B
· (Z∇φ)

∂

∂v‖
. (3)

The equilibrium distribution function satisfies L0 f0 = 0 so
f0 is the neoclassical solution (however f0 is approximated
to a local Maxwellian in our simulations). This way the per-
turbed distribution function can be calculated as (L0 + δL)
δ f = −δL f 0. We define the particle weight as w = δ f / f , so

d
dt
w = (1 − w)

[
−vE · ∇ f0

f0
+

Z
m f 0

B∗

B
· ∇φ

∂ f 0

∂v‖

]
. (4)

We use the electrostatic hybrid model [44] for the elec-
tron species. The electron drift kinetic equation can be writ-
ten as L f e = 0 where the electron distribution function can be
described as the sum

fe = f0e + δ f (0)
e + δhe.

The equilibrium distribution satisfies L0 f0e = 0. The low-
est order perturbed distribution is adiabatic response δ f (0)

e =

f0e
eδφ(0)

Te
and the higher order perturbed distribution is non-

adiabatic response δhe. The non-zonal potential δφ can also be
expanded order by order δφ = δφ(0) + δφ(1). The gyrokinetic
Poisson equation for the non-zonal component in the lowest
order δφ(0) becomes

(τ + 1) eδφ(0)

Te
− τeδφ̃(0)

Te
=

δn̄i − 〈δn̄i〉
n0

, (5)

where τ = Te/T i, n0 is the equilibrium electron density, tilde
represent double-gyroaveraging and δni =

∫
δ f d3v.

The non-adiabatic electron particle weight is defined as
we = δhe/ fe, which is governed by

dwe

dt
=

(
1 − δ f (0)

e

f0e
− we

)[
−vE · ∇ ln f 0e|v⊥ − ∂

∂t

(
eδφ(0)

Te

)

− (vd + δvE) · ∇
(

eφ
Te

)]
. (6)

The non-zonal potential with the first order correction
becomes

eeδφ/Te = eeδφ(0)/Te − δne − 〈δne〉
n0

(7)

with δne =
∫
δhe d3v. Equations (6) and (7) can be repeated to

reach higher order in the expansion. After a converge test, we
found that a second order expansion is sufficient for this work.
Finally, the zonal component of the potential is calculated from

τe
(
〈φ〉 − 〈φ̃〉

)
Te

=
〈δni〉 − 〈δne〉

n0
. (8)
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3. Collisionless damping of zonal flow in LHD

3.1. Zonal flow damping in LHD with adiabatic electrons

First, we analyze the zonal flow damping in the LHD, which is
a heliotron with a helical pole number of l = 2. Its main helical
field has the m = 2 poloidal and n = 10 toroidal number. The
flux surface shapes also vary along the toroidal direction. The
model equilibrium used in the present simulations corresponds
to the outward-shifted configuration.

The LHD has a number of field periods Nfp = 10, i.e. all
equilibrium quantities including magnetic field and metric ten-
sors are symmetric under a 0.2π rotation in the toroidal direc-
tion. That periodicity allows us to simulate one-tenth of the
torus to capture the dynamics of the zonal flows. Full torus
simulations give similar results at a higher computational cost.
To ensure the toroidal periodicity in a global field-aligned
mesh, we shift the grid points in the poloidal direction by
an angle Δθ = 2π/

(
qNfp

)
after a toroidal circuit when only

one field period is simulated. The LHD equilibrium quantities
are represented on the equilibrium mesh in GTC, where the
radial, poloidal, and toroidal grid numbers are, respectively,
200, 799, and 27 over one field period (i.e. one-tenth of the
torus).

The radial domain in the current simulations is restricted
fromψ = 0.13ψx toψ = 0.23ψx (whereψx is the poloidal flux
at the last closed flux surface) and the diagnostics are done on
the ψ = 0.18ψx flux surface where the rotational transform is
ι = 0.42 and the local inverse aspect ratio is ε = r/R0 ≈ 0.05.
All m poloidal and n toroidal harmonics of the equilibrium
are included in the simulations unless it is explicitly stated.
Based on convergence studies, we simulate 60 particles per
cell in the turbulence mesh with 120 radial grid points, 270
poloidal grid points and 9 parallel grid points over one-tenth
of the torus. Only n = 0 harmonic is retained in these simu-
lations in sections 3.1–3.3. The toroidal coupling with n �= 0
harmonics is analyzed in section 3.4.

Figure 1 shows the time evolution of flux-surface average
electrostatic potential 〈φ〉 (normalized by its initial value) after
an initial zonal gyrocenter density perturbation is imposed in
GTC simulations with adiabatic electrons for different krρi

values where ρi is the ion gyroradius. The zonal potential
oscillates with a GAM frequency, which is damped by col-
lisionless magnetic pumping effects on a fast time scale in
the order of ion transit time. The zonal flow residue then
reaches a quasi-steady state level, which could be further
damped on a much longer time scale by toroidal or poloidal
viscosity.

In figure 2 we show the frequency spectrum of the zonal
potential from Fourier transform of the time history data shown
in figure 1. The vertical red dashed line in figure 2 indi-
cates the theoretical GAM frequency [15]. The zonal flow
with a long wavelength (krρi = 0.07) exhibits two distinct fre-
quencies: a larger and wider peak of the GAM frequency at
ω ≈ 2.5cs/R0, and a smaller and narrower peak with a lower
frequency ω ≈ 0.3cs/R0. The LFO has been predicted by
analytic theory and observed in earlier simulations by the
EUTERPE and GENE codes [17]. GAM is observed in all

Figure 1. Time history of zonal potential in LHD for various radial
wavenumbers krρi.

Figure 2. Time frequency spectrum of zonal flows shown in
figure 1. Vertical red dashed line indicates theoretical GAM
frequency.

cases but LFO is only visible for long wavelength modes
(krρi � 0.12).

3.2. Effects of kinetic electrons

To study kinetic electron effects on the collisionless damping
of zonal flows, we perform a series of GTC simulations with
kinetic electrons. Figure 3 shows a comparison between a sim-
ulation with adiabatic electrons (red dashed line) and kinetic
electrons (green solid line) for a long wavelength krρi = 0.08.
The time evolution of the zonal potential shows a quite similar
behavior. The frequency spectrum of the zonal potential (inset
plot in figure 3) shows that the GAM frequency is the same
but the LFO increases from ∼0.3cs/R0 to ∼ 0.45cs/R0 by the
kinetic electrons. Furthermore, the kinetic electrons enhance
the damping of the GAM and LFO.

Kinetic electrons also affect the quasi-steady state residual
level of the zonal electrostatic potential. In figure 4 we plot
the residual level from simulations with adiabatic or kinetic
electrons for various krρi values. The analytical expression by
Wang–Hahm [13] for the residual level for the axisymmetric
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Figure 3. Time history of zonal electrostatic potential with initial
krρi = 0.08 for simulations with adiabatic electrons (red dashed
line) and kinetic electrons (solid green line). Inset plot: frequency
spectrum of zonal potential.

Figure 4. Residual level of zonal potential as a function of radial
wavenumber krρi.

tokamak is also plotted as a reference. The simulated resid-
ual levels are obtained by a temporal average over a time long
enough

(
Δt = 30R0/cs

)
once the GAM oscillation amplitude

diminishes. The error bars correspond to one standard devia-
tion of that temporal average. The results show that the residual
level increases as krρi increases [15, 17, 20]. Finally, simula-
tions with kinetic electrons show that electron kinetic effects
significantly reduce the residual level [21].

3.3. Effects of the helical components of the 3D magnetic
field

The zonal flows in the stellarators exhibit, not only the GAM
frequency (as in the tokamaks), but also a characteristic LFO,
which has been predicted theoretically [17] to be induced
by helically trapped particles. In the LHD model equilib-
rium used in this work, the main helical magnetic field is the
B(m=2,n=10) component which is comparable to the B1,0 com-
ponent responsible for the GAM oscillation in both tokamaks
and stellarators.

To verify that the main helical magnetic field component
causes the LFO, we perform several controlled simulations
with adiabatic electrons by selectively including various 3D

Figure 5. Time history of zonal potential from simulations with
various magnetic field and metric tensor components. Subscript of B
and g represents the toroidal harmonic n. Inset figure indicates
residual levels for all simulations.

equilibrium effects. The equilibrium magnetic field and metric
tensor can be represented as a summation of the toroidal har-
monic n. Therefore, the equilibrium in GTC simulations can
include some or all of the n harmonics for either the magnetic
field or the metric tensor. Because of the stellarator symme-
try of the LHD (Nfp = 10), we focus on the effect of the
dominant n = 10 harmonics, which are responsible for the
helically-trapped particles.

We perform four simulations by selectively including vari-
ous helical components besides the axisymmetric (n= 0) com-
ponent of the equilibrium: (a) the full 3D equilibrium including
all toroidal harmonics n, (b) only the n = 10 harmonics in the
magnetic field, (c) only the n = 10 harmonic in the metric ten-
sor g, and (d) no 3D effects, i.e. only the axisymmetric (n = 0)
harmonic in both magnetic field and metric tensor. Note that
the equilibria (b) and (c) may not be self-consistent because
the Jacobian depends on magnetic field strength in the Boozer
coordinates. All m poloidal harmonics of the perturbed elec-
trostatic potential were kept in the simulation. Figure 5 shows
that including the n = 0 and 10 harmonics in the B field but
only the n = 0 harmonic of the metric tensor recovers a similar
result as the full equilibrium simulation. The frequency spec-
trum (not shown here) shows that the LFO is only visible if
the n = 10 magnetic field B10 is included in the simulation. On
the other hand, the GAM frequency is clearly visible in all the
four simulations. This means that the main helical component
B10 of the magnetic field generates the LFO, but not the GAM
which is induced by the n = 0 axisymmetric component B0.
Furthermore, both the B10 and the g10 components enhance the
damping of the GAM oscillation, as predicted by analytic the-
ory [15]. Finally, the main helical component B10 of the mag-
netic field reduces the residual level as shown in the inset panel
of figure 5. The residual levels for the axisymmetric magnetic
field (c) and (d) show a value above the Rosenbluth–Hinton
residual level which is roughly ∼0.02. Such high value could
be caused by the equilibrium shape [11].

3.4. Effects of linear toroidal coupling

In our previous simulations [9], a linear toroidal coupling of
zonal flows with n > 0 harmonics was suggested to explain
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Figure 6. Time history of zonal electrostatic potential from
simulations keeping only zonal mode (green solid line) or both
zonal mode and n = 10 toroidal harmonic (red dashed line).

the effects of the zonal flows on the nonlinear spectrum of the
ITG turbulence. The effect is caused by the toroidal variation
of the magnetic field in the stellarators, which is dominated
by the n = 10 harmonic in the LHD. Here, we carry out linear
simulations with adiabatic electrons of the zonal flow damping
in the LHD to analyze that mechanism.

Figure 6 shows the time history of the zonal electrostatic
potential from two simulations of an initial zonal mode with a
radial wavenumber krρi = 0.07. The electrostatic potential has
been filtered to allow only the n= 0 harmonic or both the n= 0
and n = 10 harmonics. The zonal mode (dominated by the
n = 0 harmonic) can linearly couple to the n = 10 harmonic of
the perturbed electrostatic potential due to the dominant helical
component (n = 10) of the equilibrium magnetic field in the
LHD. The simulation results show that linear toroidal coupling
of the zonal mode to the n > 0 harmonics has little effects on
the collisionless damping of the long wavelength zonal flow.

However, the zonal mode can generate low-n harmonics
by the linear toroidal coupling. Figure 7 shows the time evo-
lution of the amplitudes of various non-zonal components of
the electrostatic potential normalized by the initial zonal mode
amplitude. Besides the flux-surface averaged zonal mode,
the axisymmetric component φm=1,n=0 is the largest compo-
nent followed by the second harmonic φ2,0. The largest non-
axisymmetric components, n = 10, are much smaller than the
axisymmetric n = 0 components. These results are compared
with the components of the equilibrium magnetic field that
induces these linear couplings. In the flux-surface of interest,
the main harmonics of the magnetic field strength are

B0,0 > B1,0 > B2,10 > B1,10 > B3,10 > B2,0.

The largest harmonic after the B0,0 is the B1,0. Similarly, the
electrostatic potential φ1,0 is also the largest harmonic after the
zonal mode φ0,0. This characteristic is also typical in axisym-
metric tokamaks where there is a strong coupling between φ0,0

and φ1,0 due to the B1,0. Similarly, the φ2,0 is generated mostly
due to the B2,0 component.

The helical components with n �= 0, for example, φ2,10 and
φ1,10, of the electrostatic potential are also generated due to the
n = 10 harmonics of the magnetic field (B2,10, B1,10). However,

Figure 7. Time history of various non-zonal components of
perturbed electrostatic potential φ.

the ordering of the magnitudes for these potential harmonics
does not exactly match the ordering of the magnitudes for the
magnetic field harmonics. The toroidal coupling seems to be
relatively weaker than the poloidal coupling. In spite of the fact
that the amplitudes of these φ2,10 and φ1,10 helical harmonics
are much smaller than the axisymmetric harmonics φ1,0 and
φ2,0, the low-n harmonics can act as quasi-modes to enhance
the inverse cascade of the toroidal spectrum from the high-n
unstable harmonics to the low-n damped harmonics [9].

4. Collisionless damping of zonal flows in W7-X

4.1. Zonal flow damping in W7-X with adiabatic electrons

A similar analysis of the collisionless damping of zonal flow is
performed now for the W7-X stellarator. The magnetic field in
the W7-X exhibits a strong variation along the toroidal direc-
tion peaking at the inner corners of the pentagon. In each field
period the poloidal cross section shape considerably changes
so the magnetic axis shows a helical structure. The rotational
transform has little variation along the radial direction, i.e. the
magnetic shear is weak. In this work, we use the high mir-
ror magnetic configuration equilibrium which leads to a higher
fraction of trapped particles than other configurations.

The W7-X has Nfp = 5 field periods so equilibrium quan-
tities are symmetric after a 0.4π rotation in the toroidal direc-
tion. In a similar way as we did in section 3, the dynamics
of zonal flows can be simulated using one-fifth of the torus
taking advantage of that symmetry. The equilibrium quanti-
ties are represented on the equilibrium mesh, where the radial,
poloidal, and toroidal grid numbers are, respectively, 200, 799,
and 27 over one field period (i.e. one-fifth of the torus).

Radial simulation domain is restricted from ψ = 0.44ψx to
ψ = 0.54ψx and the diagnostics presented here are done on
the ψ = 0.50ψx flux surface where the rotational transform
is ι = 0.90 and the inverse aspect ratio is ε ≈ 0.06. Based
on convergency studies, we simulate 80 particles per cell in
the turbulence mesh with 120 radial grid points, 300 poloidal
grid points and 9 grid points in the parallel direction. Only the
n = 0 harmonic is retained in the simulations in

6
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Figure 8. Time history of zonal electrostatic potential (normalized
to its initial value) in W7-X from GTC simulations for various radial
wavenumbers krρi.

Figure 9. Frequency spectrum of zonal potential shown in figure 8.
Vertical dashed line indicates GAM frequency.

sections 4.1–4.3. The toroidal coupling with n �= 0 harmonics
is analyzed in section 4.4.

Figure 8 shows the results from GTC simulations of the col-
lisionless damping of the zonal electrostatic potential in the
W7-X with adiabatic electrons for different values of initial
wavenumber kr. An oscillatory response is clearly observed for
low values of kr, but for values krρi > 0.15 such oscillations
are mostly damped. Frequency spectrum of these oscillations
is shown in figure 9. The LFO frequency around 0.18cs/R0

is very prominent for low values of kr but not visible for krρi

� 0.15. The GAM oscillation is not visible due to the strong
Landau damping for the low safety factor q = 1/ι ∼ 1.1 [15,
17]. This large GAM damping was also observed in EUTERPE
simulations of the TJ-II and W7-X stellarators [17, 22]. LFO
frequency obtained by GTC (∼0.18cs/R0) agrees reasonably
with the value ∼0.15cs/R0 obtained by Monreal et al (see
figure 12 in reference [29]) using CAS3D-K and EUTERPE.

4.2. Effects of kinetic electrons

To study the kinetic electron effects on the zonal flow damp-
ing, a set of GTC simulations of with kinetic electrons are

Figure 10. Time history of zonal potential (normalized to its initial
value) in W7-X from GTC simulations with adiabatic electrons
(dashed lines) and kinetic electrons (solid lines) for different values
of krρi.

carried out. Figure 10 shows the time history of the normal-
ized flux-surface averaged electrostatic potential for a short
(blue) and long (red) wavelengths with adiabatic (dashed lines)
and kinetic (solid lines) electrons. For long wavelength zonal
modes, the LFO is observed in both simulations but the elec-
tron kinetic effects increase the frequency from ∼0.18cs/R0

to ∼0.25cs/R0. For shorter wavelength zonal modes, the LFO
is completely damped but the residual level of the simulation
with kinetic electrons is lower.

The slow damping of the LFO in the W7-X for long wave-
length zonal modes requires a much longer simulation time
to determine its residual level, which is a quasi-steady state
due to the weaker toroidal viscosity on a longer time scale. To
obtain the residual level, we fit the zonal mode amplitude to
the following time-dependent function

c0 + c1e−c2t cos(c3t + c4),

where c0 is the residual value. Figure 11 shows the residual
level from simulations with adiabatic and kinetic electrons for
different values of krρi. As a reference, a dashed line illus-
trates the analytical expression by Wang–Hahm [13] assum-
ing an axisymmetric device with the inverse aspect ratio of
|B0,5|/|B0,0|. We use the ratio of |B0,5|/|B0,0| as the effective
inverse aspect ratio in figure 11 because it determines the varia-
tions of the magnetic field. In tokamaks, the ratio of |B1,0|/|B0,0|
corresponds to the aspect ratio. Similar to the LHD, the resid-
ual value increases for shorter radial wavelength zonal mode.
Kinetic electrons significantly reduce the residual level. The
residual values and scaling from GTC simulations agree qual-
itatively with previously results by Monreal et al (see figure 9
in reference [24]), which used a different W7-X configuration.

4.3. Effects of the helical components of the 3D magnetic
field

To verify that the helically-trapped particles induce the LFO,
we now analyze the effects of the three dimensional equilib-
rium on the collisionless damping of the zonal flow in the
W7-X stellarator. The main components of the magnetic field
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Figure 11. Zonal flow residual level as a function of radial
wavenumber krρi.

strength in the W7-X equilibrium used in this work are the B0,5,
B1,5 and the (much weaker) axisymmetric B1,0

B0,0 > B0,5 > B1,5 � B1,0.

Several GTC simulations with adiabatic electrons are per-
formed by including various 3D equilibrium effects besides the
axisymmetric (n = 0) component. Four cases are simulated by
incorporating various non-axisymmetric components: (a) the
full equilibrium including all toroidal harmonics n (b) only the
n= 5 harmonic of the B (c) only the n= 5 harmonic of the met-
ric tensor g and (d) only the n = 0 axisymmetric equilibrium
(i.e. no 3D effects). All m poloidal harmonics of the perturbed
electrostatic potential were kept in the simulation. Figure 12
shows the time history of zonal potential (normalized to its ini-
tial value) using these four equilibria. The simulation results
show that when the n = 5 harmonics of the magnetic field
B5 is included, the LFO can be observed. These harmonics
include the B0,5 and B1,5, which are the main non-axisymmetric
components. On the other hand, in the simulation with only
the axisymmetric equilibrium (in the magnetic field and met-
ric tensor) there is no LFO or GAM oscillations. The effect
of the n = 5 harmonics in the metric tensor is not impor-
tant for the LFO and GAM and only modifies the residual
level of the zonal flow. Note that the GAM is always strongly
damped in W7-X due to the rotational transform being close
to unity. The residual level appears to be larger in the simula-
tions without the n = 5 components in the magnetic field (the
Rosenbluth–Hinton theoretical value is approximately 0.14)
probably due to the shaping effect [11]. In further simulations
with kinetic electrons, without the main helical component in
the equilibrium, the electrons are no longer helically-trapped
and their response is negligible as in the tokamak case. Hence,
the axisymmetric case (d) in figure 12 shows same response
with either adiabatic or kinetic electrons.

4.4. Effects of linear toroidal coupling

Figure 13 shows the time history of two different simulations
with adiabatic electrons with the same initial zonal mode in
the W7-X for a low krρi. The electrostatic potential has been
filtered to allow only the n = 0 harmonic or both the n = 0

Figure 12. Time history of zonal potentials from GTC simulations
incorporating various non-axisymmetric components of magnetic
field and metric tensor in W7-X.

Figure 13. Time history of zonal electrostatic potentials
(normalized by their initial values) in the W7-X from simulations
filtering out all n harmonics except for the n = 0 (green solid line) or
the n = 0 and n = 5 (red dashed line) harmonics.

Figure 14. Time evolution of different non-zonal components of
electrostatic potentials φm,n (normalized by the initial value of the
zonal potential) from W7-X simulations.

and n = 5 harmonics. Due to the dominant non-axisymmetric
n = 5 harmonics in the magnetic field of the W7-X, the n = 0
zonal mode can linearly couple with the n = 5 components
of the electrostatic potential. The simulation results show little

8



Nucl. Fusion 61 (2021) 126041 J.H. Nicolau et al

effect of the linear toroidal coupling of the zonal mode to the
non-zonal harmonic on the zonal flow dynamics.

On the other hand, the linear toroidal coupling has a signif-
icant impact on the generation of low-n harmonics. Figure 14
shows the time evolution of various non-zonal components
normalized to the initial zonal potential. The axisymmetric
component φ1,0 is the most dominant non-zonal component
generated by the coupling despite the fact that the B1,0 com-
ponent is much smaller than the non-axisymmetric B0,5 and
B1,5 components. The non-axisymmetric φ0,5 and φ1,5, gen-
erated due to the n = 5 harmonics of the magnetic field, are
significantly smaller than the axisymmetric n = 0 component.
Note that these low-n harmonics can enhance the inverse cas-
cade of the toroidal spectrum from high to low n harmonics in
turbulence simulations [9].

5. Conclusions

Global GTC simulations with kinetic electrons of collision-
less damping of zonal flows in the LHD and W7-X stellara-
tors have been carried out. The kinetic electrons reduce the
zonal flow residue [24] and increase the frequency of the LFO.
Simulation results show that the main non-axisymmetric har-
monics of the magnetic field strength (n = 10 in the LHD and
n = 5 in the W7-X) induce the LFO. The LFO is strongly
damped, and becomes invisible, for large zonal flow wavenum-
bers, e.g. krρi � 0.12 in the LHD and krρi � 0.15 in the
W7-X.

Furthermore, the linear toroidal coupling of multiple
toroidal n-harmonics has been analyzed. Zonal flows appear
to be not affected by coupling with n > 0 non-zonal compo-
nents. On the other hand, a coupling between zonal flows and
the non-zonal n �= 0 components of the magnetic field gen-
erates low-n harmonics in the electrostatic potential, which is
a new physics absent in the tokamaks. These low-n harmon-
ics can act as quasi-modes, which enhance the inverse cascade
from high-n unstable harmonics to low-n harmonics [9].

In the future, we plan to perform global gyrokinetic
simulations of collisional damping of zonal flows in the
W7-X and LHD. The collisions could increase the zonal
flow damping and lead to an increase in turbulent transport
[42, 43].
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