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Abstract. Turbulent transport greatly impacts the performance of stellarator
magnetic confinement devices. While significant progress has been made on the
numerical front, theoretical understanding of turbulence in stellarators is still
lacking. In particular, due to nonaxisymmetry; different field lines couple within
flux surfaces, the effects from which have yet/to be a@equately studied. In this
work, we numerically simulate the linear eléctrostatic ion-temperature-gradient
modes in stellarators using the global gyrokinetic particle-in-cell code GTC. We
find that the linear eigenmode structures are nenuniform across field lines on flux
surfaces and are localized at the downstream direction of the ion diamagnetic drift.
Based on a simple model from Zoceo et al[Phys. Plasmas 23, 082516 (2016); 27,
022507 (2020)], we show that the localization can be explained from the nonzero
imaginary part of the/binermal wavenumber. We further demonstrate that a
localized surface-global eigenmode ¢an be constructed from local gyrokinetic codes
stella and GX, only if wenfirst solve the local dispersion relation with real
wavenumbers at each field line;nand then do an analytic continuation to the
complex-wavenumber plane. These results suggest that the complex-wavenumber
spectra from surface-global effects are required to understand the linear drift-wave
eigenmode structures in stellarators.

A S



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - NF-108125.R1

1. Introduction

Turbulent transport significantly impacts the perfor-
mance of stellarator magnetic confinement devices.
For example, in the Wendelstein 7-X (W7-X) device,
the ion-temperature-gradient (ITG) turbulence is be-
lieved to limit the achievable core ion temperature
in electron-cyclotron-resonance-heated plasmas [I]. It
is well known that plasma microturbulence is highly
anisotropic in magnetic confinement devices, I > [,
where [ (I1) is the characteristic wavelength along
(across) the magnetic fields B. Therefore, fluctuat-
ing quantities such as the electrostatic potential ® can
be written as <i)(1/), a, 1)eS @)/« which consists of a
rapidly varying phase factor e'*/#+ and a slowly varying
envelope ®. Here, 1 is the flux-surface label, « is the
field-line label, [ is the distance along field lines, and
P« = pi/a is a small parameter with p; the ion gyrora-
dius at thermal velocity and a the minor radius of the
device. This motivates the local (flux-tube) approach,
which writes V.S = ky V1 + ko Va with real radial real
wavenumber k, and binormal real wavenumber k,, so
that one can focus on the structure of ® as a function
of I, while treating ¢ and « as parameters [2 [3]. In
other words, the local approach studies fluctuations in
a slender parallelogram tube along a given field line (so-
called flux tube) at given (¢, @) and ignores effects from
coupling among different field lines. Proper boundary
conditions are required to treat the two ends of the flux
tube, and the twist-and-shift boundary conditionyhas
been widely used for tokamak simulations [2]. For stelx
larator simulations, the twist-and-shift ‘boundary con-
dition could fail due to the low global magnetic shear,
and the generalized twist-and-shift boundary condition
[4] has often been used instead.

Stellarators are nonaxisymmeric andPthesdrbulent
fluctuation level generally depends on both [ and a.
(We focus on the fluctuation level within flux surfaces,
so that the dependence on . will not be discussed in
this paper.) Such dependence eould gome from either
the local effects, where/the local geometric quantities
vary with «, or the global effects, where fluctuations at
different o couple together. To fully exploit the local
effects, several flux tubes at different «, or a single flux
tube with several poloidal® turns;, are often required
for local simulations. The choice of «, however, can
be restrictive. For example, the generalized boundary
condition, which redquires that fluctuations at the two
ends of the fluxtube behave statistically the same, only
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applies to flux tubes that possess stellarator symmetry
[5]. For this reason, local simulations often choose the
a = 0 and the a = vw/Ng, flux tubes that possess
stellarator symmetry, and extend the length of them
to many poloidal turns, so that the flux tubes amply
sample the geometric inform@ation on the fluxsurfaces
[6L [7] (¢ is the rotational transformand Ny, isithe field
period of the device). In othér words;yone essentially
simulates the whole flux surface, except that turbulent
correlation only happens inthe parallel direction.

Despite the efforts/in predicting turbulent trans-
port from local simulations, there are open questions
regarding the obseryed discrepancy between local and
global simulation results on the turbulent fluctuation
level in stellarators 8,19, 10]. In fact, global gyroki-
netic simulations” foundgthat the linear ITG eigen-
modes are highly localized in «, which is a com-
mon phenomenen in quasi-isodynamic (QI) W7-X con-
figurations [L1, 125413, [14, 15, [16], as well as in
quasi-axisymmetric (QA) and quasi-helically symmet-
ric (QH) configurations [17,[18[I9]. Recent studies also
found similar localization in « for the linear trapped-
electron mod&'in QH [20] and QI [2I] configurations.
Since local simulations determine the linear eigenmode
structures in [ but not in «, the localization of lin-
ear ITG eigenmodes in « must be a global effect. For
theinonlinear stage of the ITG turbulence, it remains
unclear whether local or global effects are more impor-
tant. For example, full-flux-surface GENE simulations
of ITG turbulence in a QA configuration found that
the localization in « persists in the nonlinear stage at
a smaller p, = 1/250 but not at a larger p, = 1/125
[22]. A heuristic explanation of the difference between
local and global simulations has been given in [23].
More recently, from global GENE-3D simulations of
ITG turbulence in W7-X [I5] [16], the fluctuation level
noticeably deviates from stellarator symmetry, which
local simulation results would always obey. Besides,
turbulence can spread nonlinearly in both the poloidal
and the radial directions [19] [21]. Therefore, a careful
study on the global effects is still needed.

In this work, we numerically simulate the linear
electrostatic ITG eigenmodes in stellarators using
the global gyrokinetic particle-in-cell code GTC, and
present a theoretical explanation for the observed mode
structures. We simulate the precise QA and precise
QH configurations reported in [24], as well as a W7-X
high-mirror configuration used in [25]. We find that
the linear eigenmode structures are nonuniform in «
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on flux surfaces and are localized at the downstream
direction of the ion diamagnetic drift. Based on a
simple model from Zocco et al [26], 27] and following
the WKB theory of Dewar and Glasser [28], we show
that the localization can be explained from the nonzero
imaginary part of k,. Focusing on the precise QA
configuration, we further demonstrate that a localized
surface-global eigenmode can be constructed from local
gyrokinetic codes stella [29] and GX [30], only if
we first solve the local dispersion relation with real
wavenumbers, and then do an analytic continuation
to the complex-wavenumber plane. These results
suggest that the complex-wavenumber spectra from
surface-global effects are required to understand the
linear drift-wave eigenmode structures in stellarators
(while existing local simulations always assume real
wavenumbers).

In the following, global GTC simulation results
of the linear ITG eigenmodes are given in section
A theoretical explanation of the mode localization
based on [26, [27] is given in section [3| Comparisons
between global and local simulation results are given
in section ] And conclusions are given in section
A systematic derivation of the mode structures across
field lines from collisionless electrostatic gyrokinetie

equations is given in

2. GTC simulation of global linear ITG
eigenmode structures

We use the global gyrokinetic particle-in-cell code
GTd{f] to simulate linear electrostatic ITGieigenmodes
in stellarators. The code utilizes Boozer coordinates,
which are suitable for the nonaxisymmetric stellarator
simulations [14], 31, 32, B33, [34]. In particular, the
code defines the poloidal and totoidal angle (6, () so
that the poloidal magnetic flux (¢, is always positive.
However, to better compare withlocal simulations, we
will use ¢ = —y /27 as the flux-surface label in the
following, where v is the teroidalfluxsfrom the VMEC
equilibrig§}] For our simulations, 4 is negative and
decreases radially, 6 increases counter-clockwise, and
¢ is in the same direction, as the cylindrical toroidal
angle. Then, magnetic fields can be represented as

B = Vi x Va =V x VO+ V% Vi, (1)

where o =40 — (1 is the field-line label and ¢(¢) is
the rotational transform. For all three configurations
the toroidal magnetic fields point in the positive-
¢ direc¢tion, so that ion diamagnetic drift, which is
proportional to B x V(n;T;), is counter-clockwise. The
ion drift frequency, which is proportional to B x VB -

fyhttps://sun.ps.uci.edu/gtc
§ https://princetonuniversity.github.io/STELLOPT/VMEC.
html
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Va, is also positive in the so-called bad-curvature
region where ITG modes are expected toreside.

We simulate gyrokinetic deuteriumdonsywith mass
m; = 2my, (mp is the proton mass) and charge humber
Z; = 1. Using spatial coordinates R{magnetic moment
= mv? /2B (vy is the pefpendicular velocity), and
energy £ = uB + mifuﬁ/2 (v is the parallel velocity)
as independent phase-space coordinates; the linearized
delta-f collisionless gyrokinétic.equation for ions is

(’UHb + ’Ud) V(Sf +vE- Vf()

aJ; (’U”b+ vq) -NV6® = 0.
Here, the gyrocenter ion dlstrlbutlon is fi = fo+6f
where fj is the equilibrium and Jf is the perturbation,
0P is the fluctuatingelectrostatic potential, b= B/B,
e is the elementary charge, vq = Q" 'bx (v VIn B/2+
va Vb) is themagnetic (grad-B and curvature) drift

with Qf= eB/m;, and vg = b x Vé®/B is the E x B
drift #from the gyroaveraged potential §®. Writing
0P _as, the Fourier series, 0® = >, dPpelk B/p« the
gyroaveraged potential can be expressed as

0B £ 00.J <’“;’;) elk-R/p- (3)
k
where Jy is the Bessel function of the first kind and &
is the perpendicular wavenumber. For our simulations,
4 _&/T
Jo = 7T3/21%e e (4)
is a local Maxwellian, where the equilibrium density
ni(¢) and temperature Tj(¢)) are flux functions, and
the thermal velocity is vy; = +/2T;/m;. Electrons are
assumed adiabatic, dne/ne = ed® /T, where ne = n;
due to quasineutrality, and T, = T; for simplicity. The
electrostatic potential d® is solved from the gyrokinetic
Poisson (quasineutrality) equation [35]:

o 7 (00~ §8) = 67; — One.

P b

(5)

Here7 5 is the second gyroaverged potential:

0B =) 6@kL, (b) e F/P-, (6)
k

with T (b) = Iy(b)e?, Iy the modified Bessel function
of the first kind, and b = (k1 a)?/2. Also, 6n; is the
gyroaveraged ion gyrocenter density perturbation.

In our simulations we adopt the two-spatial-scale
approximation that ion markers have uniform density
and temperature, while the equilibrium distribution
function has the effects from finite density and
temperature gradient [35]. This can be done as follows:
since fp is a local Maxwellian, its derivatives can be

written as
Olnny OInTi /(&€ 3
V=i | G4 L (2D v @
o fo
e T (8)
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Figure 1. The linear global ITG eigenmode structures Re 0P,
calculated from at ¢ = 0. Lengths (R, z) are normalized by
Rg of each configuration.

We assume constant n; and 7; when evaluating fo
and Ogfo, but also assume nonzero Jylnn; and
Oy InTi when evaluating V fo. Consistent with the
convention in local simulations, we define the local
density and temperature gradient scale lengths L
(aBaOyInn;) ™t and Ly = (aB,0y InT})™!, and
to a/L, and a/Lt as the local gradients. Here, a
obtained from the quantity Aminor_p of the VME

equilibria and B, = 1, /(ma?), where v, is
r/a—04
L P A
LT(T) 2 LTO < an Ar +tag ﬁ
where r = \/1v/(7B,), Ar = 0.0 d we
a/Lto = 2. Meanwhile, the marker temperature itself
ote onuniform

is assumed constant, T; = Tjp.
density and temperature sed in GTC
ts and that, in the

temperature gradient has the followi
a 1 a

simulations of actual ex
current study, even with a ion of constant

d he geometry remains
C simulation results
& mulation results.

global, so we do not e
to be identical to
Since differe

7-X. Therefore, we use Ty =
000 eV for the three configurations,
at p. ~ 0.01. We also choose n; =
does not affect the linear eigenmode

d he linear ITG eigenmode structures Re §®.,,
Y in field-line following coordinates («, 6) at
h amax = tm/Ng,. (e-g) The normalized magnetic-
B/B, versus («,0) at r/a = 0.5. Note that the
ge in the colorbar is different from (a-d).

quire 6® = 0 at the radial boundaries. We simulate
toroidal planes spanning one field period of the
devices, —m /Ny, < ¢ < 7/Nyp,, where Ny, = 2 for
the QA, Ng, = 4 for the QH, and Ny, = 5 for WT7-
X. Approximately 100 ions are simulated for each grid
point in the 3D domain, and the simulation time step
size is dt = 0.01Ry/vy; with Ry the toroidally averaged
major radius of the magnetic axis. These numerical
resolutions have been chosen after careful numerical
convergence studies [14] [T9].

We initialize the simulations with random noise in
the ion weights, and observe the most unstable ITG
eigenmodes emerge. We assume global eigenmode of
the from d® o e”'“! and calculate the linear growth
rate v = Imw from the mode amplitude:

|6®% x 7. (10)

Then, we obtain the Fourier spectrum with respect to
the real frequency w, = Rew:

5., (R) = / SO(R, )L, (11)

The eigenmode is identified where |0®,,, | is maximized.
We obtain the most unstable eigenmode frequencies
wa/vy; = 0.266 + 0.108i for the QA, 0.183 + 0.078i
for the QH, and 0.287 4+ 0.069i for W7-X. The
corresponding eigenmode structures at ( 0 are
plotted in figure[I}] The modes rotate counter-clockwise
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in the direction of ion diamagnetic drift, while their
amplitudes increase exponentially in time. Due to
stellarator symmetry, the configurations are up-down
symmetric at ( = 0. However, the mode structures are
up-down asymmetric, and are localized at the upper
part of the plane, which is the downstream direction of
the ion diamagnetic drift.

The up-down asymmetry of the mode structures
is a result of the localization in «. Figure 2| shows the
mode structures as well as B in the field-line following
coordinates («, 6) on the r/a = 0.5 flux surface, where
we use the poloidal angle 8 instead of the distance along
field lines [ as the parallel coordinate. The rotational
transform at this radial location is ¢ = 0.42 for the QA,
t = —1.24 for the QH, and ¢ = 0.88 for W7-X. Two
features arise due to the nonaxisymmetric stellarator
geometries. First, for mode structures along field lines,
they are not centered at the bad-curvature regions.
For example, the bad-curvature region coincides with
the minimum of B at # = 0 for QA, but the mode
structure does not peak at § = 0 except at a = 0.
This feature is also verified from local simulations in
section (For W7-X, however, the minimum of B
does not necessarily coincide with the bad-curvature
region.) Second, for mode structures across field lines,
they do not obey stellarator symmetry, which states
that geometric quantities are the same at («,6) and
(—a, —0). Instead, the modes are localized at o > 0,
which results in the up-down asymmetry seen from
figure [I} We also found that the localization becomes
more pronounced at smaller p,, as can be seen from
figure 2b), where we did another simulation of the
ITG mode in QA at Tip = 16 eV so that p, & 0.005.
(The corresponding normalized eigenmode frequency
for this case is wa/vy; = 0.246 +.0.106i, which is
very close to the case with pd = 0\01) Similar
behaviors at smaller p, are found dor the QH and
QI, which are not shown here. This behayior will be
explained in section [3] below, where we conclude that
the localization increases_exponentially with p; L.

3. Theoretical explanation from a simple
model

Zocco et al proposed a simple model to study the
mode structures,across field lines [26] 27]. The model
considers the limit of large temperature gradient,
a/Ly > 1] so that the ITG mode is concentrated at
the bad-eurvature region along field lines and the 6-
dependence of the mode structure is not considered.
Then, the model becomes a 1D equation in « which
describes 'the global eigenmode structures as well as
their frequencies. Consider eigenmode structures of
the form.6® = ®(a)e !, where ®(a) = (a)e!S(@)/ P+
condists of a quickly varying phase factor €'/« and a
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slowly varying envelope d. For easier comparisons with
numerical results, time and frequency are normalized
quantities, ¢ = tpnystii/a and w = wphysa/vti. To
the lowest order in p., we have 0,00 ~ ipglk,0®
with ko, = 0,5. (The model also assumes the linear
growth rate peaks at ky, = 0, but as will'be_.shown in
section [4 below this is not always tfue.) Thenythe ITG
eigenmode structures can belsolved along each” field
line, which yields the local dispersion relation. In the
fluid (w > ta/Ry) and longswavelength (ak,|Va| < 1)
limit, the local dispersion relation,is |36}, 37, B8] [39]:

w? — bwrw + wawr =0: (12)

Here, wr = kowro/pedWith wro = pi/(2L7) the
ion diamagnetic:driftifrequency, wq = kowdo/p« with
wao = piadyB theésion driff frequency, and b = k2by
with by = |aVa|?/2 representing the finite Larmor
radius (FLR)»stabilizing effects from gyroaveraging.
The ITGamode is unstable at the bad-curvature region
where wawr > (bwr)? /4.

In the following, we use a rescaled field-line label
y = Ngpa/v.s0 that y € [—m,7]. The mode structure
i§ then ®(y) = d(y)e!*®/r- To describe ®(y), Zocco
et al/made the substitution k, — —ip.d,, so that
can be replaced by
(w® —iplgwd] — plf02) B(y) =0, (13)
with'g = (¢/Ngp)3bowro and f = (1/Ngp)?waowro. The
rationale is that to the lowest order in p., we have
0y — ip;lky, so that reduces to (12)). However,
there are alternative forms of that also reduce
to at the lowest order. We present a systematic
derivation of an integro-differential equation for ® in
which is slightly different from .
Nevertheless, the difference is not important because as
will be shown below, only the lowest order dispersion
relation is required to explain the mode localization.
Also, is a very crude approximation and generally
do not agree with numerical results from gyrokinetic
simulations, but still correctly captures the mode
localization in y (figure 3| below), suggesting that such
a feature must be universal.

Equation can be solved numerically, where w
and ® are found as the eigenvalues and eigenvectors of
a square matrix ) that satisfies

02— GO+ F=0, (14)

with G and F the matrix representations of ip3gd;
and — f@i . Since matrices 2 and G do not commute,

the eigenvalues of Q4 = (G £ VG? — 4F)/2 are not
the eigenvalues of 2. Nevertheless, for each eigenvalue
w of 2, we can use the corresponding eigenvalue of
Q4 as the initial guess, and then iteratively solve for
w as the eigenvalue of G — F/w. An example of
the solution is shown in figure a) with p, = 0.05,
f=1,9g=1-0.2cosy, and the most unstable global
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. Here, ®(a) is the numerical solution, S(«) and S(«) are

Figure 3. Comparison of numerical and analytical solqtions of
| .
analytical results and , and &(a) = Pe 15/,

eigenmode corresponds to w = 0.66 + 0.89i. Here,
we are mimicking a QS stellarator where f does not
depends on y but g does. In particular, g is smaller at
y = 0 than y = 7, and the mode is localized around y =
/2. Zocco et al obtained a similar localized solution
with a different set of parameters more relevant to W7-
X, again suggesting that the localization is a universal
feature; however, a comprehensive understanding of
this feature is still missing.

In the following, we study the mode structure
from a WKB analysis similar to Dewar and Glasser
[28]. Since ®(y) = P(y)e!S®)/P- we replace 8, with
i0yS/p« + 0y, where 9, no longer acts on the phase
factor. To the lowest order in p,, becomes

w? = gkiw + [k, =0, ky(y) = 0,5, (15)
which is nothing but the local dispersion relation (12)):

To the next order in p,, we obtain an equation for,the
envelope ®:

9, 9k, 3gkyw—f

) ky 3gkyw—2f

Therefore, the global solution is ® = aSelS/ P+ with
Yy
S(y) = / by (s)ds, (17)
0

) - [ o) QUIINGLAE, 1
o ky(s) 3g(s)by(®w —2f(5)

As shown in figure [3] the numerical solution of & is

well approximated by (the phase factor e/P«. The

numerically calculated envelope ® also agrees well with

(16)

the next-order result'eS. However, the variation in |®|
is insignificant compared teoitherexponentially varying
phase factor. Therefore, we focus on the phase factor
in the following.

To understand the localization of e'/7+ at y > 0,
we solve for S, from and . Since w is constant
while f and ¢ vary in y (though f is constant for
the example shown here), k, must vary with y too.
Namely,we solye for k,(y,w) at given w. The solution
is shown in figure a) and (b). The imaginary part of
kgpis.nonzero, Im k, ~ —0.05cosy. Consequently, the
phase factor has a nonuniform amplitude,
|eiS/p*| ~ e(0.05 siny)//u7 (19)

6
1o Re ky(y,w) Re @i(ky, )
' @ 2f—=y=o )
oy =m 1/
global /
1.1 1 4
1 0 ==
Im ky (y,w) Im wi(ky, y)
0.05 ®) y=0 (d)
W y=n
© global -
0 PN
0.5
-0.05 \\
~0 \
1 0.5 0 0.5 1 0 0.5 1 1.5
y/7 ky

Figure 4. (a) and (b): thereal and imaginary part of the global
wavenumber yersus y at w = 0.66 + 0.89i. (c) and (d): the local
frequency and growth rate versus real ky at y = 0 and y = 7.
The global eigenvalue wris indicated by the yellow circle.

which. is lecalized around y = 7w/2. Therefore, the
localization ispdue to the negative Imk, at y = 0 and
increases exponentially with p; L.

To better understand why k, is complex, and
why Tmk, < 0 at y = 0, we solve for the local
dispersion relation wi(k,,y) at different y from
and the results are shown in figure [{c) and (d). At
given ky, the local growth rate Im w, is largest at y = 0
and smallest at y = w. This is a common situation for
ITG modes in stellarators, where the y = 0 flux tube
gives the largest grow rate. Also shown in figure (c)
and (d) are the global eigenmode frequency w, which
is somewhere between the local results. When we solve
for ky, = ky(y,w) from wi(ky,y) = w, the solution
cannot be found on the real-k, axis, and hence k, must
be complex and can be approximately obtained from
the first-order Taylor expansion:

6w1 -t
ky ~ kyo + ((’91@) Aw, Aw=w—w, (20)
Yy

with Ow/0k, evaluated at k, = kyo. We choose ko =
1.1 as the averaged Re k,, from figure[4f(a), but its exact
value is not important as long as it is close to k,, so that
is valid. Since we are looking at the most unstable
eigenmode where d(Imw)/dk, ~ 0, the sign of Imk,
is determined by the sign of [O(Rew)/0k,] ' Im Aw.
Therefore, we identify two reasons that lead to the
negative Imk, at y = 0: (i) the global eigenmode
growth rate is smaller than the local growth rate at
y =0, ImAw < 0; and (ii) the ion diamagnetic drift
is defined to be in the positive-y direction, so that
O0(Rew)/0k, > 0. In other words, if the y = 0 flux
tube gives the largest local ITG growth rate, then
the localization of the ITG modes will occur at the
downstream side of the ion diamagnetic drift.
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The fact that the global growth rate is smaller
than the local growth rate at y = 0 has already been
mathematically proved in [26] 27], but our approach
here provides a more transparent explanation. Since
the solution must be periodic in y, we require
fj—: dyky,/p« = 27n with an integer n. For the real
part, this requirement can always be satisfied because
px can be arbitrarily chosen. For the imaginary part,
this requires fj: dyIm Aw = 0, so that the global
growth rate must be somewhere between the local
values at y = 0 and y = w. A physical interpretation
is also given in [23] that the wave experiences different
growth rates (assuming real k,) as it propagates across
field lines, so the overall growth rate is flux-surface
averaged. Our interpretation is different in that w
(hence the growth rate) remains the same across field
lines, i.e., an eigenvalue of a global mode, but k, is
allowed to be complex.

Finally, we note that the above conclusions are
different from the results from Dewar and Glasser
[28, 40] who studied the global ballooning mode
structures using ideal magneto-hydrodynamic (MHD)
equations. Since the ideal MHD is self-adjoint, &,
must be purely real or purely imaginary from the local
dispersion relation, so that the phase factor caunot
lead to localization in y, and the next-order envelope
equation must be considered to capture the spatial
distribution of the mode structure.

4. Construction of a surface-global solution
from local gyrokinetic simulation results

Based on the results from section [3] #ve comstruct a
surface-global solution from local gyrokinetic simula-
tions, and compare the results with the GTC solution.
In particular, we focus on the precise (QA configura-
tion here. First, we obtain the local dispersion relation
w = wi(k, ) with real k = kVr+ k,Va. Then, we
calculate the complex k from first-order Taylor expan-
sion, and construct a surface-global selution using the
complex k. Finally, we/compare,the constructed solu-
tions with the GTC gelutions. Following the conven-
tion in local simulatiens, we use normalized eigenmode
frequencies wa/vg with vy =../27i/m;, and normal-
ized radial and binormal wavenumbers k, = k.a and
ky = kqa/r. Note that the'definition of k, here differs
from section[3| by a factor of (v/Ng,)(a/r).

We use local gyrokinetic codes stella [29] and GX
[30] to obtain wy(k,&) at the r/a = 0.5 flux surface.
Here, fwe compare the results from the two codes so
that we can evaluate the effects from parallel boundary
conditionsy(figure [5). The two codes use different sign
conventions: B = VY xVain GX but B = VaxV in
stellaw Therefore, assuming the same 1, the field line
« id GX corresponds to the field line —« in stella, and

7
Rew(k,a = 0) Rewi(kga =wr /Nyg,)
——stella, zero
0.4 0.4y stella, periodic
GX, periodie
0.2 , 0.2 //
/ g a / b
oL @ ®)
0 0.5 1 1.5 0 0.5 1 1.5
Imw(k,a =0) Imw (k, o = var [Ny, )
/‘/\
0.1 s 0.1
/ N
0.05 / Vs / \\
/ c o d
L @ L (@
0 0.5 1 1.5 0 0.5 1 1.5
k, ~ k,

Figure 5. The locablinear eigenmode real frequencies (a,b) and
growth rates (c,d) versusik, atik; = 0 at two different field lines:
a =0 and a = v7/Ng,. Shown are results from stella using the
zero-incoming boundary condition, and from both stella and
GX using the periodic boundary condition.

the real frequencies of ITG modes Rew are positive in
GX butinegative in stella. To be consistent with the
sign convention in section [2] and section [3] we will flip
the gsigns of «, k,, and Rew; for the stella results
presented in this section. For each field line «, we
choose the flux tube to span one poloidal turn. The flux
tubes in GX are centered at § = 0 so that 0 € (—=,m),
while the flux tubes in stella are centered at { = 0 so
that 0 € (—7 + «, 7 + ). For the local simulations, Jf
is decomposed into Fourier components:

5f = 0fu(k, 0,1, &, 0,t; )™ B/ P, (21)
k

where 0 = v /|y | and « is treated as a parameter. For

electrostatic collisionless simulations, local codes solve

the same linear gyrokinetic equation as , but with

the eikonal assumption V — ik/p. + V||, so that

Vof = (ik/ps + kyOo)dfwe /e, (22)
k

where ky = (81/00)~*. Therefore, local codes solve dfy,
from an ordinary differential equation in 6 for each k.
The potential 6P is also decomposed into the Fourier
basis, and is solved from the same quasineutrality
condition (5)). The local eigenmode frequency wi(k, a)
is then found by fitting &fx to e “!*. Since the
eikonal assumption is valid to the lowest order in p,,
global simulations can be interpreted as solving the
ordinary differential equations along field lines for each
k at this order. However, due to nonaxisymmetry,
k can be complex in this interpretation, although
global simulations do not actually implement the
decomposition in k. In contrast, local simulations
assume periodic boundary conditions perpendicular to
field lines, so that k must always be real.
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Figure 6. Comparison between results from local stella simulations and global,GTC simulations. First row: the local growth
rates Im w versus (kz, ky) at different o, with amax = L7I‘/pr. The blue crosses indicate the most unstable local solution at k = kg
(26). Second row: the eigenmode amplitudes |§®| versus 6, which are normalizedito theirsmaxima at each . The stella results
are at k = ko and the GTC results are from figure Ekb) The results at a/amax = £1 are identical due to periodicity of the system,
where [§®| from GTC has two peaks and appears to be a superposition of'two local solutions.

The choice of the parallel boundary condition
requires further considerations. The generalized twist-
and-shift boundary condition [4] connects Fourier
modes with different k, together, so they have the
same w), which is not physical because the two ends
of the flux tubes are not physically connectédsWhen
the temperature gradient is large, Ro/Lr >0l and
when k,/:? is not too small, the ITG mode belongs
to the toroidal branch and is coné¢entrated in the
bad-curvature region [38] [39]. Since we have chosen
a/Lr = 2 in section 2 and Ry/a ~ 6for theyprecise
QA configuration, the criterion Ry/Lg > 1'is well
satisfied. Also, as will be shown in ﬁggre |§|, ky ~ 1
for the fastest growth ITG eigenmodes, so that they
belong to the toroidal branch land{decay to almost
zero at the good-curvatutre gegions § =(+m, as can
be verified from figure 2(a)nand (b). Then, the
zero-incoming boundary condition'is more appropriate,
which requires zero incoming perturbed distribution at
the parallel boundariés [41]:

5fie(0 = Ommin, 0 = W' =6fr (@=0r0x, 0 = —1) = 0.(23)

To verify that the results are insensitive to boundary
conditions whete,the modeamplitudes are close to zero,
we also test/the self-periodic boundary condition:

5fk:(9 == 0min) ~ 6fk:(9 - 0max)~ (24)

Simulation results from stella and GX with the two
boundary conditions are shown in figure For both
codes, ‘the resolution is 48 in 6, 8 in u, and 16 in
vy, and the simulation time step is dt = 0.05a/vy;.
Thetwo_boundary conditions produce qualitatively
the/same results, and the results from stella with
zero-incoming boundary condition will be presented in

the following¥ There are also quantitative differences
between stella and GX in the growth rates, possibly
because-the ranges in 6 of the flux tubes are not
identical, but the eigenmode structures look the same.
Onencould also try to avoid the issue from parallel
boundary conditions by extending the flux tubes to
multiple poloidal turns. However, since the modes
are concentrated at the bad-curvature region and
the simulated stellarator configurations have very low
global magnetic shear, the results will be the same as
the simulations of multiple flux tubes, each spanning
one poloidal turn.

After obtaining the local dispersion relation
with real k, we look for complex k(a) such that
wi(k(), a) = w is constant. Similar to section [3] this
is done from first-order Taylor expansion:

—1
k(o) = ko(a) + (85;:) Aw, Aw=w-—-w. (25)

Here, ko = (kyo,kyo) is real, w is the surface-global
eigenmode frequency to be determined in the following,
and w; and Jrw; are evaluated at k = kg. The exact
value of kg is not important as long as it is close to k
so that is valid. Note that both k and Ogw; are 2D
vectors and numerically we look for Ak = k — kg that
minimizes |Ak - Opw) — Aw|. In other words, although
local simulations only provide the information on the
real-k plane, we can still obtain the information on the
complex-k plane from analytic continuation.

For the choice of kg, we search for the most
unstable local eigenmodes at each a. The local growth
rates Imw versus (kg, ky) from stella are plotted in
the first row of figure [6] which shows that the fastest
growing modes correspond to nonzero k, (in contrast
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Figure 7. (a) and (b): the real and imaginary parts of w; versus
a at k = ko from stella (blue solid curves) and the calculated
surface-global eigenmode frequency w (black dashed line). (c)
and (d): solution of ky from first-order Taylor expansion .

to section [3{ where only k, has been considered). The
most unstable modes are marked by the blue crosses
in the figure, and are approximately given by

kyo = 1.13—0.175(ct/ atmax )* (26)

The mode amplitudes [0P(0)| at ko are shown in the
second row of figure [6] where we also plot the GTC
results. Due to stellarator symmetry, the localiresults
are symmetric with respect to the coordinate change
(o, 0, k) = (—a, =0, —k,). Asshown in the figure; the
local eigenmode structures qualitatively, resemble the
GTC results. In particular, local results confirm the
observation from figure b) that the mode structures
are not centered at # = 0. Note that the GTC solution
is periodic in «, but the local solution 1S not,
which transitions from kyo = 0.5 atl &/amax = —1
to ko = —0.5 at a/amax = 1. In fact, the GTC
solution of |0®| has twolpeaks atwo/dmax = =1,
which appears to be a superposition of the two local
solutions at k,9 = +0.5.«Therefore;. the local solution
lives on an extended of space, ane (—o0,00), and the
periodicity of the global solution can be recovered from
a superposition of the local'solutions.

The local eigenmode real frequencies and growth
rates at k = ko ar€ plotted in figure [fj(a) and (b).
To determinerthe surfacesglobal eigenmode frequency
w, we assume that the corresponding solution k from
satisfies\[ daImk, = 0. Such constraint comes
from the periodicity requirement in section but
here the local gelution is not periodic in . In fact,
from figure [0} /the two peaks in the GTC solution
of |0®| at @f@max = £1 have different amplitudes,
so..the periodicity constraint is not entirely true.
Nevertheless, we use this constraint due to the lack
of & better choice to determine w, and we found that

kzo = —0.50/ max,

QA, p. =0.01

QA, pp=0:005

-1
0.5 1 -1

1 05 0
0/m

-0.5 0.5 1

0
0

Figure 8. The constructed!surface-global solution from
local stella solutions with (a) p« = 0.01 and (b) p« = 0.005.

w = 0.326 + 0.1171. The ca‘responding solutions for
k, are shown in figute [7(c) and (d). In particular,
figure El(d) shows that Imkj is nonzero and is negative
at a = 0, which leads to,the localization at o > 0.

Finally,  with the complex k, we construct a
surface-global solutien as

0P, (6, a) = 601(0; a,ko)eis(a)/p*,
Sz /da ky(a)r/a,

wheré §®;is the normalized eigenmode structure from
stella at'k = kg for each «. The results are shown in
figure [8fwith p, = 0.01 and p, = 0.005, which are not
periodic in « because we only consider one period in
« for 'the local solution. Nevertheless, the constructed
solutions look similar to the GTC results in figure
The increasing level of localization with decreasing p.
is also reproduced as a direct consequence from the
phase factor in . Quantitative differences do exist
from the GTC results: for the constructed solution
here the eigenmode frequency is w = 0.326 + 0.117i
and the averaged binormal wavenumber is k, = 1.1.
In comparison, for the GTC solution at p, = 0.01
shown in figure a), the eigenmode frequency is w =
0.266 + 0.108i and the mode structure is dominated
by k, = 0.95. While the growth rates are similar, the
GTC solution has a lower k,, and hence lower real
frequency. From figure c) it is seen that the growth
rate peaks at a smaller k, in GX compared to stella.
Therefore, if we construct the surface-global solution
from GX instead, the resulting w will be closer to GTC.
The above analysis has also been carried out for
the W7-X configuration using stella. As « varies,
the local growth rates change similarly to the precise
QA shown in figure [6] and the most unstable local
eigenmodes kg are approximately given by

kzo = —0.570/Omax, kyo = 1.16—0.04(v/ cmax)*.(29)
The local eigenmode real frequencies and growth rates
at k = ko are plotted in figure [Jfa) and (b). The
surface-global eigenmode frequency w is determined

from the same procedure as above and we found that
w = 0.257 4+ 0.070i, which is close to the GTC result

(27)
(28)
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Figure 9. Same as figure [§ but for the W7-X.

0.287 + 0.069i. The complex k is obtained from first-
order Taylor expansion and the real and imaginary
parts of k, are plotted in figure [Jfc) and (d). Finally,
the constructed surface-global solution is shown in
figure [10fa). Note that the constructed solution only
includes one period in o and hence cannot describe
the entire mode structure on the surface in figure d),
but it does reproduce the dominant structure around
0 = 0. Also, for the W7-X there are multiple bad-
curvature regions within one poloidal turnjwand the
mode is not completely localized within one. bad-
curvature region. This is illustrated in figure b),
where we plot the quantity arB, 'Bix k - Va with
k = b- Vb the curvature vector of the magnetic field
line. This quantity is commonly named “cvdrift” in
local codes, and for the o = 0 field line it has five peaks
at 0 € (—m,m), corresponding tosfivesbad-cutvature
regions. (In comparison, cvdrift i§ proportional to cos 6
for the precise QA configuration, corresponding to only
one bad-curvature regiont), /Nevertheless, the mode
amplitudes still quickly decay as |0 increases, so that
factors such as the parallel’lboundary ¢ondition and the
number of poloidal turns do not play a significant role.

We conclude that, for the linear ITG mode
structures in thesstellarator <«configurations, many
features of the global GT'C solution can be reproduced
from the constructedSurface-global solution, if we first
solve the localddispersion rélation with real k, and then
do an analytic continuation to the complex k.

5. Conclusions'and discussions

We numerically simulate the linear electrostatic ITG
eigenmodesiinfstellarators using the global gyrokinetic
particle-in-cell code GTC, and present a theoretical
explanation for the observed mode structures. We find
that the linear eigenmode structures are localized at

10

————— cvdrift ‘

W7-X, p, = 0.01

0.5 1

-1 -0.5

0
0

Figure 10. (a) The construéted surface-global solution for the
W7-X at p« = 0.01. (b) The eigenmodéamplitudes [§P| versus
0 at « = 0 from stella and GT'C simulations. Also shown is the
quantity cvdrift:arBalB X Kk Va along the field line, which is
positive in the bad-cutvatureségions.

the downstream direetiof’of the ion diamagnetic drift.
Based on a simple modebfrom Zocco et al [26, 27] and
following the WKB theory of Dewar and Glasser [2§],
we show that the localization can be explained from the
nonzero imaginary, part of k.. Focusing on the precise
QA configuration, we further demonstrate that a
localized, surface-global eigenmode can be constructed
from local gy¥okinetic codes stella and GX, only if
we first solve the local dispersion relation with real
wavenumbers, and then do an analytic continuation
to the complex-wavenumber plane. These results
suggest that the complex-wavenumber spectra from
surface-global effects are required to understand the
linear drift-wave eigenmode structures in stellarators
(while existing local simulations always assume real
wavenumbers).

While the above conclusions are limited to the
linear instabilities, they could be useful in interpreting
the nonlinear results. For example, the nonlinear
fluctuation level of ITG turbulence in W7-X deviates
from stellarator symmetry [15] [16] and its localization
is consistent with (although not as pronounced as) the
linear results. The linear and nonlinear thresholds for
the ITG turbulence in a QA stellarator appears to lie
above that of the most unstable flux tube [22], which
is also consistent with the conclusion that the global
eigenmode growth rate is below the most unstable flux
tube. Quantitative studies of these effects will be the
subject of future work.
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Appendix A. Derivation of an envelope
equation for the linear electrostatic ITG
eigenmode

Here, we follow the WKB theory of Dewar and Glasser
[28] and present a derivation of the envelope equation
in « for the linear electrostatic ITG eigenmodes. The
general idea goes as follows. The linear collisionless
gyrokinetic equation can be written as

L(w, &, u,0,R,V)If =0, (A1)

where £ is a linear operator and we have replaced 0;
with —iw. Let us write 6f = §feS/P+, so that

LSf = (Lodf + peLa1df)e'™/ P+ =0, (A.2)
where
Lo=L(V —ik/p.+V)), k=VS, (A.3)

and L:l is the remaining parts in L that involve V.
Let of = 0fy + p«df1, the lowest-order term in 1D i

Lodfo =0, (A.4)

which is a first-order differential equation alongnfield
lines that gives the local dispersion relation. The next-

order terms in (A.2)) are

[:()5]31 + [:15]% =0. (A.5)
We would like to get rid of 5f1 and obtain an equation
that only involves dfy (the “solubility constraint” [28]).
To do so, we look for an inner/ product (¢ .) and an
adjoint operator ﬁg such that

(£.£09) = (9.£51). (A.6)
If such inner product and adjoint operator exist, then
we can look for a solution 5f(;r which satisfies £]f! = 0.

Then, we apply theinner product of 6fg with ll and
apply the relatiod (A.6), obtaining

<5fg ,ﬁ15f0> — 0. (A7)

Equation is theé envelope equation for (5fo, which
describes_the mode structures across field lines. More
discusgions on the inner product and the adjoint
operator for electromagnetic gyrokinetic systems can
be foundin [45].

In thefollowing, we apply the above procedure to
theweollisionless electrostatic gyrokinetic equation with
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adiabatic electrons. We separate df into‘adiabatic and
nonadiabatic parts (assuming Z; = 1):

of = —@fo+h, (A'R)
where ¢ = ed®/T; is obtained from quasineutrality :
ni(l1+7)p = /dv Joh, (A.9)

and ¢ = jocp. Here, 7 = T3 /T, Jo is the gyroaverage
operator, and dv = Y __ (27 Bjm?|v|)dpudE. Then,
letting h = (h, @), we can write as

Lh = (iv)0 + w — &g)h = folw —@.)p =0,  (A.10)

where wq = —ivg - NV, w, ==iv, - V, and
_Ti Ofo

Write h = fho + p.h1)&/? with hy = (ho, $) and
h; = (hy,@1)snthe corresponding local gyrokinetic
equation is
ﬁoho = (iv”al +w— wd)ilo — fo(w — w*)tﬁo =0, (A.12)
where wg = k:-v4/p. and w, = k-v./p,. In particular,
&y only depeilds on k, and &:
ki [0lnn; OWnT; /€ 3

. =X ———]]. A.13

“ p*e{3w+8w<ﬂ 2” (4.13)

Themnext-order term £; are the parts in L that linearly
involve the V| operator:

p*ﬁlho = —L:JdiLo + fod}*(ﬁo. (A14)

Let us define the inner product as

(f,9) :/dzdu]wfgw), (A.15)
and define f = (f,¢¢) and g = (g, ¢g4), so that
<fa ﬁ09>
_ /dl do [iv|falg + (w—wa)fyg _ f@g:|
folw —w.)

) (A.16)
~ [aav {—wm@zfﬂw—wd)gf B }
B fO(w _w*) g(pf
= <g’ ﬁ$f> :

Here, we have applied an integration by part in [ for the
term iv) f0;g, which can be done because v is canceled
by the factor 1/|v)| in dv and both fy o< exp(—E&/1T})
and w, do no depend on [. The boundary terms in
l are assumed to vanish, which is justified for passing
particles if perturbations vanish in the good-curvature
regions, and for trapped particles where the boundary
terms cancel each other. In deriving we also
used the relation

/d'ufcpg = /dva, (A.17)
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which can be easily seen from (A.9)). Therefore, we find
the adjoint operator and its solution to be
ﬁg = ﬁo(U” — —’U”), h:g =

]Alo(U” — —’U”). (A.18)

Finally, the envelope equation is <ﬁ$,ﬁ1ho> = 0,
which from (A.14)) can be written as

/dl av 1 [”d Vho _
(W —wy) Jo
Equation is an integro-differential equation and
depends quadratically on ho. In order to proceed and
obtain further analytic insights, certain assumptions

are needed to simplify this equation.

In the following, we simplify the above derivations
by considering the fluid limit |w| > |v0;| and compare
the results with section [3| In the fluid limit we ignore
v 0; in L. Then, from , we obtain

w—w
ho—fo -
—wq

which togethcr with (A.9) yields the local dispersion
relation

ni(1+7) = /dvfo

To carry out the veloc1ty—space integration, we{use
normalized velocity = v /vy, so that Jy = Jo(x 1 v/2b)
with b = |kqeaVal?/2, wg = kowao(z% /2 +xﬁ)/p*, and
Wi = kqwio[l+n(2? —3/2)]/ps with n = 0 In@y/dln n;.
We also assume a large temperature gradient, wp=> wq,
so that w ~ /w,wq and

W — Wy Wy Wil
N-—+1l-—5
W — Wy w w

Also, in the long-wavelength limit, b < 1, we have
J2(x1V2b) ~ (A.23)

The integration can be carried out with the following
relations:

v*-V@o] =0. (A.19)

®0, (A.20)

2w Wi

. (A.21)
— wq

(A.22)

1— b .

1
]
2 3 1
a? (2= §) 0
dz e 2 4 1
x _
/W 7¢+xﬁ =11 |.(A24)
x> 3 1
R e 3
a2 2
A ) 3
z2 3
fﬁ(*"‘ \|)(51C —5)
obtaining from the simple model:
bk, k2
47RO | FaldoT0 (A.25)
Paw piw?
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Here, wrg = nw., and we assumed?zero density
gradient so that w.o — 0 but n — co and wpg_is still
finite. To the next order in p, we still have

ﬁlho + ﬁohl =0, (A26)

Since the &; term has beendignored for, Lo, we can
obtain the envelope equation in@much simpler way:
J "
CLohp= 0,
%)

/d’u ﬁlhoz—/dv
W — Wq w —

where the second equality comes, from (A.9) and
(A.21)). Using (A.20)), this leads t0

/d”fojo [vﬁ‘@a (” _w*@) » vf@a%} =0, (A.28)

w — wq w — wg

(A.27)

where v§ = vg- Va = wyp(z? /2 + xﬁ) and v{ =

« Va = wyll +m(z2=3/2)]. After carrying out
the velocitysspace integral, becomes an linear
differential equation in « that describes the structure
of Yy across field lines. To compare with the results in
Sectionl, we assume w* > w>wy,n>1,and b=0
so that Jyp.= 1. At O(n), m ) becomes

A7 ORGo) + Fadato] = 0, (A.29)

Wthh leads to 04 In P9 = —04 Inky /2, consistent with
(16) athg'= 0. We can also assume b # 0 but wgg = 0,

in which case 1) results in
WZ}“O (baagoo + (p()a b)

From (A.25)) we have b o< k!, and hence (A.30) leads
to OuIn@g = 94 1nk, /2, which is somehow different

from at f=0.

(A.30)
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