
Under consideration for publication in J. Plasma Phys. 1

Collisionless zonal-flow dynamics in
quasisymmetric stellarators

Hongxuan Zhu1†, Z. Lin2, and A. Bhattacharjee1

1Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540
2Department of Physics and Astronomy, University of California, Irvine, CA 92697

(Received xx; revised xx; accepted xx)

The linear collisionless plasma response to a zonal-density perturbation in quasisymmet-
ric stellarators is studied, including the initial geodesic-acoustic-mode oscillations and
the final Rosenbluth–Hinton residual flow. While the geodesic-acoustic-mode oscillations
in quasiaxisymmetric configurations are similar to tokamaks, they become nonexistent
in quasi-helically symmetric configurations when the effective safety factor in helical-
angle coorindates is small. Compared with concentric circular tokamaks, the Rosenbluth–
Hinton residual is also found to be multiplied by a geometric factor C that arises from the
flux-surface averaged classical polarization. Using the near-axis-expansion framework, we
derive an analytic expression for C, which varies significantly among different configu-
rations. These analytic results are compared with numerical simulation results from the
global gyrokinetic particle-in-cell code GTC, and good agreement with the theoretical
Rosenbluth–Hinton residual level is achieved only when the quasisymmetry error is small
enough. Since zonal flows can be important for regulating turbulent transport, these
results suggest possible relation between the transport level and the stellarator geometric
parameters via nonlinear interactions with zonal flows.

1. Introduction
In axisymmetric magnetic confinement fusion devices, zonal flows are poloidal E ×B

flows which are toroidally symmetric but vary in the radial direction. Electrostatic zonal
flows (Lin et al. 1998; Dimits et al. 2000; Diamond et al. 2005) (and their electromagnetic
counterparts called “zonal structures” (Zonca et al. 2015; Dong et al. 2019; Zocco et al.
2023)) have been widely studied due to their role in regulating drift-wave turbulent
transport. Since the poloidal direction is not a symmetry direction in tokamaks, poloidal
flows are expected to generate geodesic acoustic modes (GAM) oscillations (Winsor et al.
1968), which are subject to collisionless Landau damping (Conway et al. 2021). However,
Rosenbluth and Hinton (RH) found that the zero-frequency branch of the zonal flow,
where the divergence of the poloidal flow is balanced by the divergence of the parallel
flow, do not experience collisionless Landau damping, so they can continuously grow
while being driven by external source terms (Rosenbluth & Hinton 1998). Supposing
the source term is axisymmetric, the zero-frequency zonal-flow response is shielded by
neoclassical polarization and reduced by a factor 1/(1+1.6q2ϵ−1/2) where q is the safety
factor and ϵ is the inverse aspect ratio. This factor is known as the RH residual-flow
level, which is important because the residual zonal flow is not subject to collisionless
damping and can fully suppress turbulence near the linear instability threshold, which
is known as the Dimits shift (Dimits et al. 2000). The RH residual flow has also been
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widely simulated to test the validity and accuracy of gyrokinetic simulations (Ye et al.
2016).

Collisionless zonal-flow dynamics have also been studied in stellarators in the context of
existing experimental devices such as LHD, W7-X, HSX, and TJ-II (Sugama & Watanabe
2006b; Mishchenko et al. 2008; Helander et al. 2011; Xanthopoulos et al. 2011; Sánchez
et al. 2013; Monreal et al. 2016, 2017; Smoniewski et al. 2021; Nicolau et al. 2021). It was
found that after the initial GAM oscillations, zonal flows also experience slowly damped
oscillations due to radially unconfined trapped particles. The RH level has been derived
using both the gyrokinetic and the drift-kinetic formulation, which is written as an
velocity-space integral. However, due to the complicated stellarator geometry, numerical
calculation is usually required to evaluate the final RH residual level.

In quasisymmetric (QS) stellarators (Boozer 1983; Nührenberg & Zille 1988; Rodriguez
et al. 2020), the magnitude of the magnetic field vector B, which lies on flux surfaces,
can be expressed as |B| = B(ψ,Mθ − Nφ), where ψ is the flux surface label (defined
as the toroidal magnetic flux divided by 2π in this paper), θ and φ are the poloidal and
toroidal angle in Boozer coordinates (Boozer 1982), and M and N are constant integers.
This includes both quasi-axisymmetric (QA) devices where N = 0 and quasi-helically
(QH) symmetric devices where N ̸= 0. (The quasi-poloidally symmetric devices with
M = 0 are not considered in this paper). Since the drift-kinetic gyrocenter motion in
QS stellarators is isomorphic to tokamaks in Boozer coorindates, the collisionless zonal-
flow dynamics are expected to be also very similar. However, zonal flows in stellarators
can still have geometry-specific properties. For example, a recent study pointed out
that due to the small effective safety factor, a high level of RH residual flow can be
achieved in QH stellarators (Plunk & Helander 2024) than tokamaks. With the progress
in stellarator optimization, QS configurations with great accuracy have been designed
(Landreman & Paul 2022), so the collisional neoclassical transport can be lowered to
a level similar to tokamaks, and turbulent transport will be the dominant mechanism
controlling confinement times (Guttenfelder et al. 2008; Beurskens et al. 2021). Since
zonal flows often play a crucial role in regulating turbulent transport, we aim to make
analytic progress in understanding zonal flows in QS stellarators, which is possible made
easier due to the isomorphic gyrocenter motion with tokamaks in Boozer coordinates.

Here, we derive an analytic theory for the explore collisionelss zonal-flow dynamics
in QS stellarators, including the GAM oscillation frequency and the RH residual-flow
level. Drift-kinetic ions are assumed The effects from gyroaveraging are not considered
in this study, since the radial wavelength of zonal flows are usually much larger than
the ion gyroradius. We also assume the adiabatic-electron model due to the QS property
(Mishchenko et al. 2008), but note that effects from kinetic electrons can be important for
non-QS stellarators (Monreal et al. 2016; Nicolau et al. 2021). It is found that while the
GAM oscillations in QA stellarators are similar to tokamaks, they become nonexistent
in QH stellarators when the effective safety factor in helical-angle coordinates is small.
Compared to concentric circular tokamaks, the RH residual is also found to be multiplied
by a geometric factor C that arises from the flux-surface averaged classical polarization〈
nimi|∇ψ|2/B2

〉
, An analytical expression of C is obtained using the near-axis-expansion

(NAE) framework (Garren & Boozer 1991a,b; Landreman et al. 2019; Landreman &
Sengupta 2019; Jorge et al. 2020; Rodriguez et al. 2022; Rodríguez et al. 2023), which
varies significantly among different configurations. Note that similar modifications in the
RH level has been found in tokamaks, which is mainly due to the flux-surface elongation
(Xiao & Catto 2006). However, the elongation is limited by the vertical stability, so that
typically C ≲ 2.5 (Humphreys et al. 2009; Lee et al. 2015). Here, a larger C (and the
RH level) can be achieved for QA stellarators, provided that they are not subject to the
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vertical stability. Meanwhile, we found that C < 1 for QH stellarators, but the RH level
is still enhanced due to the small effective safety factor (Plunk & Helander 2024).

These analytic results are compared with numerical results from the global gyrokinetic
particle-in-cell code GTC. We simulate zonal flows in 1st-order and 2nd-order NAE
configurations, as well as the “precise QA” and “precise QH” configurations reported in
Landreman & Paul (2022). While the GAM physics is reasonably predicted by the theory,
we found that for the RH residual level, good agreement between analytical and numerical
results is achieved only when the amplitude of QS-breaking magnetic-field component is
small enough. As the next step of this research, we will study how the geometric factor C
affects the nonlinear interactions between zonal flows and turbulence in QS stellarators.

The rest of the paper is organized as follows. In section 2, we present our theory of
collisionless zonal-flow dynamics results on the RH level and the GAM frequency. In
section 3, we present numerical simulation results. Conclusions and discussions are given
in section 4. Further discussions on the GAM function relation are given in appendix ??.

2. Theory of collisionless zonal-flow dynamics
2.1. Calculation of Rosenbluth–Hinton residual flow in Boozer coorindates

Consider the time evolution of a zonal electrostatic potential Φ(ψ, t) and its associated
radial electric field Er = −∂ψΦ|∇ψ|. The RH residual flow can be understood from the
conservation of toroidal angular momentum, where “toroidal” refers to the symmetric
direction of the magnetic field (Sengupta & Hassam 2018). In an electrostatic gyrokinetic
plasma, toroidal angular momentum consists of the E ×B-flow part LE×B and the
parallel-flow part L∥ (Scott & Smirnov 2010; Brizard & Tronko 2011; Stoltzfus-Dueck &
Scott 2017; Zhu et al. 2024). The E ×B part is defined as LE×B = −ι ⟨P · ∇ψ⟩ where ι
is the rotation transform, ⟨. . .⟩ is the flux-surface average and the classical polarization
P is obtained from ∇ · P = e(Ziδni − δne). We have assumed a single gyrocenter ion
species with mass mi, charge number Zi, density ni = ni0 + δni, and temperature Ti =
Ti0, while electrons are assumed adiabatic so their density perturbation can be written
as δne = ne0e(Φ − ⟨Φ⟩)/Te where e is the elementary charge. Neglecting effects from
gyroaveraging, we obtain P = −ni0mi∇⊥Φ/eB

2 from quasineutrality (see (2.26) below),
so that

LE×B = ιΛ0∂ψΦ, Λ0 = ni0mi

〈
|∇ψ|2/B2

〉
. (2.1)

The parallel-flow part is defined as L∥ =
∫
dvfimiv∥b̂ · ∂r/∂φ, where v∥ is the parallel

velocity, b̂ = B/B, fi(r,v, t) is the gyrocenter ion distribution, and we have neglected
the electron contribution. Assuming Φ evolves in time slowly compared to the trapped-
ion motion, L∥ can be solved as the neoclassical plasma response to Er (Rosenbluth &
Hinton 1998; Xiao & Catto 2006; Mishchenko et al. 2008), and we have

L∥ = ιΛ1∂ψΦ, (2.2)

where Λ1 is given by (2.10) below. Assuming that a zonal density perturbation is applied
to the plasma at t = 0 such that Er is established without parallel flow; then, the plasma
response will lead to GAM oscillations as well as parallel-flow generation. For the linear
zonal-flow dynamics where the perturbation is small, radial momentum transport (which
is nonlinear) can be neglected, so that the toroidal angular momentum is conserved at
each flux surface, Λ0∂ψΦ(ψ, t = 0) = (Λ1 +Λ0)∂ψΦ(ψ, t = ∞), from which we obtain the
RH residual level as

Er(t = ∞)

Er(t = 0)
=

1

1 + Λ1/Λ0
. (2.3)
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Therefore, to evaluate the RH residual level in QS stellarator configurations, we need to
quantitatively calculate Λ1 and Λ0.

A general expressions for Λ1 has been derived by Mishchenko et al. (2008) using the
Boozer-coordinate representation, where the magnetic field can be written as

B = ∇ψ ×∇θ + ι∇φ×∇ψ = G∇φ+ I∇θ + δ∇ψ, (2.4)

where G, I, and δ are the covariant components of B. To study both QA and QH
configurations, we use a helical angle ϑ = θ−Nφ as the independent coordinate, so that
the magnetic-field strength depends on ϑ but not φ. Then,

B = ∇ψ ×∇ϑ+ ιN∇φ×∇ψ = GN∇φ+ I∇ϑ+ δ∇ψ, (2.5)

where ιN = ι−N and GN = G+NI. Therefore, for QH configurations with |N | ≫ |ι|, the
effective rotation transform |ιN | can be much larger than |ι| in helical-angle coordinates.
We describe charged-particle gyrocenter orbits using their energy E and pitch-angle
variable λ = µ/E where µ is the magnetic moment. In QS stellarators, gyrocenter orbits
include passing orbits E > λBmax and trapped orbits where E ⩽ λBmax, and we can
define the flux-surface average ⟨. . .⟩ and the bounce average . . . as

⟨f⟩ =
∫ 2π

0
dϑ

√
gf∫ 2π

0
dϑ

√
g
, f =

∫
dϑfB

√
g/v∥∫

dϑB
√
g/v∥

,
√
g =

GN + ιNI

B2
, (2.6)

where v∥ = ±
√
2(E − µB)/mi is the parallel velocity and √

g = (∇ψ × ∇ϑ · ∇φ)−1 is
the Jacobian. The integration in φ has been omitted for the zonal-flow dynamics for the
flux-surface average. For the bounce average, the integration is from ϑ = 0 to ϑ = 2π for
passing particles, and back and forth between bounce points for trapped particles. Then,
Mishchenko et al. (2008) obtained Λ1 as

Λ1 = 4π

∫
dvdλ

Z2
i e

2f2i0
Ti0

v3

[〈
B

|v∥|
G̃2

〉
−

〈
B

|v∥|

〉−1 〈
B

|v∥|
G̃

〉2
]
. (2.7)

Here, v =
√
2E/mi, ρi =

√
Timi/ZieB is the gyroradius at thermal velocity, fi0 is

the Maxwellian distribution function, and the integration is only over the passing-orbit
velocity space. Also, G̃ is the solution of

v∥b̂ · ∇G̃ = vd · ∇ψ, vd = ρ∥∇× (v∥b̂), ρ∥ = miv∥/ZieB. (2.8)

Note that we have simplified (2.10) compared to Mishchenko et al. (2008) assuming that
the bounce-averaged radial drift velocity is zero, vd · ∇ψ = 0.

We can further carry out the calculation of Λ1 for QS magnetic fields where B does
not depend on φ, where

v∥b̂ · ∇ =
ιNv∥

B
√
g
∂ϑ, vd · ∇ψ =

GNv∥

B
√
g
∂ϑρ∥, (2.9)

so that G̃ = GNρ∥/ιN . Using the relation
〈
B/|v∥|

〉−1
= |v∥|/B for passing orbits, we

obtain

Λ1 = 4πG2
Nq

2
N

∫
dEdλ E∂Efi0

〈( |v∥|
B

)
−
( |v∥|
B

)〉
, (2.10)

where qN = ι−1
N is the effective safety factor. Since the particle motion in QS stellarators

is isomorphic to tokamaks in Boozer coordinates (Boozer 1983), the velocity-space
integration can be calculated following the existing literature (Rosenbluth & Hinton 1998;
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Xiao & Catto 2006). Writing the magnetic-field strength as B = B0[1 + ϵ cosϑ+O(ϵ2)]
where ϵ≪ 1 is a small parameter, Λ1 is given by

Λ1 =
mini0q

2
NG

2
N

B2
0

[
1.6ϵ3/2 +O(ϵ2)

]
. (2.11)

The evaluation of Λ0, however, depends on the geometry. In a large-aspect-ratio
concentric circular tokamak with major radius R0, G = B0R0 and ψ ≈ B0r

2/2 where
r = ϵR0 is the radius of the flux surface, we have Λ0 = ni0mir

2 and Λ1/Λ0 =
1.6q2ϵ−1/2 +O(ϵ0), which is the well-known RH result in tokamaks. In QS stellarators,
however, |∇ψ| varies significantly on a flux surface, so that the evaluation of Λ0 is
nontrivial and depends on the geometry. In the following, we use the NAE framework to
derive an analytic expression of Λ0.

2.2. Calculation of Λ0 from the near axis expansion theory
The NAE framework provides a systematic approach to construct QS stellarator

configurations. Given a prescribed set of parameters, QS configurations can be generated
with up to (but not exactly achieving) 2nd-order accuracy in ϵ. However, since the
RH residual is predicted accurately to the lowest order in ϵ, we focus on parameters
required to construct 1st-order QS configurations. Also, only vacuum fields are considered
in the following because I does affect B to first order in ϵ. Then, five quantities
appear in the calculation of Λ0 and the RH residual, including three from the axis
shape r0(φ), and another two quantities η̄ and σ(φ), which determine the flux-surface
shaping and rotation transform. In particular, σ(0) = 0 for configurations that possess
stellarator symmetry (provided the axis also possesses such symmetry), and σ(0) ̸= 0
for those which do not. Here, stellarator symmetry refers to a property of B that
(BR, Bz, Bϕ) → (−BR, Bz, Bϕ) under (R, z, ϕ) → (R,−z,−ϕ) with respect to a reference
point (chosen to be z = ϕ = 0) in cylindrical coordinates. Correspondingly, if (R(ϕ), z(ϕ))
is a field line then R((−ϕ),−z(−ϕ)) must also be a field line, including the axis (Dewar
& Hudson 1998).

Given a magnetic axis r0(φ), we can calculate its arc length l(φ) =
∫
|dr0/dφ|dφ,

curvature κ(φ), and torsion τ(φ). We can also define orthonormal vectors along the axis,
which are the tangent vector t̂(φ), the normal vector n̂(φ), and the binormal vector b̂(φ).
These quantities are obtained through the following relations (Mercier 1964; Landreman
& Sengupta 2019):

t̂ =
dr0
dl

, κn̂ =
dt̂

dl
, b̂ = t̂× n̂, τ n̂ = −db̂

dl
, (2.12)

where d/dl = (dl/dφ)−1d/dφ. Specifically, we obtain t̂ from the first equation (which
by definition satisfies |̂t| = 1), κ and n̂ from the second equation assuming κ > 0 and
|n̂| = 1, b̂ from the third equation, and τ from the last equation. This procedure can
be carried out when κ does not vanish anywhere, which applies to the QA and QH
configurations (Landreman & Sengupta 2018). For 1st-order vacuum QS configurations,
the magnetic fields are given by

B = G0∇φ, G0 = B0R0, R0 = l(φ = 2π)/2π, (2.13)

where B0 is the value of the magnetic field on the axis and 2πR0 measures the total
length of the axis. Also, the Boozer toroidal angle φ is defined such that dl/dφ is a
constant, namely,

φ = l/R0. (2.14)



6 H. Zhu, Z. Lin, and A. Bhattacharjee

The corresponding equilibria are represented as

r(ψ, ϑ, φ) = r0(φ) + ϵ

[
1

κ
cosϑn̂(φ) +

κ

η̄2
(sinϑ+ σ cosϑ)b̂(φ)

]
+O(ϵ2). (2.15)

Here, ϵ = η̄
√
2ψ/B0 where η̄ is a constant in the model that describes the variation of

B along the flux surface; σ = σ(φ) is the solution of the Riccati equation

dσ

dφ
+ (ι0 −N)

(
1 + σ2 +

η̄4

κ4

)
+

2G0η̄
2τ

B0κ2
= 0, (2.16)

where the on-axis rotation transform ι0 is found together with the solution σ(φ) that
satisfies the periodic boundary condition in φ. From (2.15), flux-surfaces with constant
ψ are rotating ellipses, which are characterized by their elongation tan ζ and tilt angle
Θ with respect to n̂. These two quantities can be obtained from (Rodríguez 2023)

sin(2ζ) =
2η̄2/κ2

1 + σ2 + η̄4/κ4
, tan(2Θ) =

−2ση̄2/κ2

1 + σ2 − η̄4/κ4
. (2.17)

(Note that Θ is a geometric poloidal angle measured in configuration space, which is not
the same as ϑ.) Therefore, the flux-surface shape is determined by both η̄ and σ(φ), and
σ(0) = 0 for configurations that also possess stellarator symmetry.

Given a NAE configuration described above, we calculate Λ0 as follows. Using the
relation,

∇ψ =
1
√
g

∂r

∂ϑ
× ∂r

∂φ
, (2.18)

and
∂r

∂ϑ
= − ϵ

κ
sinϑn̂+

ϵκ

η̄2
(cosϑ− σ sinϑ)b̂+O(ϵ2),

∂r

∂φ
= R0t̂+O(ϵ), (2.19)

we have (to the lowest order in ϵ) (Jorge & Landreman 2021)

|∇ψ|2

B2
=

1

B2

∣∣∣∣ 1
√
g

∂r

∂ϑ
× ∂r

∂φ

∣∣∣∣2 =
ϵ2

η̄2

[
η̄2

κ2
sin2 ϑ+

κ2

η̄2
(cosϑ− σ sinϑ)2

]
(2.20)

and obtain

Λ0 = mini

〈
|∇ψ|2

B2

〉
=
miniϵ

2

η̄2

∫
1

2

[
η̄2

κ2
+
κ2

η̄2
(1 + σ2)

]
dφ

2π
. (2.21)

The RH residual is then calculated as
1

1 + Λ1/Λ0
=

1

1 + 1.6q2N ϵ
−1/2/C +O(ϵ0)

. (2.22)

Compared to concentric circular tokamaks with the same ϵ and q, the RH residual in QS
stellarators is modified by a geometric factor C, which is given by

C =
1

(η̄R0)2

∫ 2π

0

1

2

[
η̄2

κ2
+
κ2

η̄2
(1 + σ2)

]
dφ

2π
. (2.23)

The expected result C = 1 for concentric circular tokamaks can be recovered with
η̄ = κ = R−1

0 and σ = 0. (Note that for tokamaks a nonzero on-axis current density
should be included in the 1st-order NAE equations in order to have nonzero rotation
transform.) For stellarator configurations with η̄ ̸= κ and σ ̸= 0, we have η̄2/κ2 +
κ2(1 + σ2)/η̄2 > 2

√
1 + σ2 > 2 so that the integral is always larger than one, leading



Collisionless zonal-flow dynamics in quasisymmetric stellarators 7

to possible enhancement of the RH residual. Such enhancement is due to both the
elongation and the rotation of the flux surfaces, which are jointly determined by η̄ and
σ (equation (2.17)). The denominator (η̄R0)

2, however, depends on the configurations.
Although η̄ is a free parameter in the NAE theory, it is often chosen to maximize ι0 while
approximately minimizing the flux-surface elongation at the same time (Rodríguez et al.
2023). For the precise QA configuration studied in section 3, we found that (η̄R0)

2 < 1
and C > 1, leading to enhanced RH residual. For precise QH configuration, (η̄R0)

2 > 1
and C < 1, but the RH residual is still much larger due to the small effective safety factor
|qN | = |ι0 − N |−1 (Plunk & Helander 2024). Also note that σ(0) is often chosen to be
zero so that the configuration possesses stellarator symmetry. From equation (2.23), it
appears that non-stellarator symmetric configurations with nonzero σ(0) could lead to
larger (1 + σ2) and hence larger RH residual. However, equation (2.16) indicates that
(ι0 −N) scales inversely with (1+σ2) at large σ due to the periodic boundary condition
in φ, so that the residual level does not necessarily increase with increasing σ(0).

2.3. Geodesic acoustic modes in quasisymmetric stellarators
For numerical verification of the RH residual flow in a gyrokinetic code, one often

initiates the simulation with a radially sinusoidal ion gyrocenter density perturbation
and observe the time evolution of the corresponding radial electric field Er. For these
simulations, Er exhibits damped GAM oscillations at the beginning and reaches the
stationary RH residual at the end. Since GAM oscillations are always present, it is also
of interest to understand the GAM frequencies and damping rates. In tokamaks, the
elongation is found to affect both the RH residual level (Xiao & Catto 2006) and the GAM
frequency (Gao 2010). Here, for QS stellarators, we expect the geometric factor C to play
a similar role. In the drift-kinetic regime, a comprehensive analytic derivation of the GAM
frequency in circular tokamak geometry has been given by Sugama & Watanabe (2006a,
2008); Gao et al. (2008); Dorf et al. (2013). Here, we present an outline of the derivations
from Sugama & Watanabe (2006a), which are slightly modified due to the QS stellarator
geometry, as well as simplified assuming Φ = ⟨Φ⟩ for reasons discussed below. Under
the radially local approximation, we write the ion gyrocenter distribution function as
fi0+Re(δfeikψψ) and the potential as Re(Φeikψψ). Neglecting the gyroaveraging operator,
the linearized gyrokinetic equation for ions is written as(

∂

∂t
+ v∥b̂ · ∇+ iωd

)
δf = −(v∥b̂ · ∇+ iωd)fi0

eΦ

Ti0
, (2.24)

where ωd = kψvd · ∇ψ is the drift frequency and b̂ = B/B. Note that here µ and v∥
are treated as the independent velocity-space variables, namely, v∥ no longer depends on
spatial variables. This simplification is made assuming the GAM frequency ∼ vti/R0 is
larger than the ion transit frequency ∼ vti/qR0 (Dorf et al. 2013). This assumption is
justified for tokamaks with q > 1, where the existing GAM theories have been developed
and tested. For QS stellarators, this criterion will be replaced by qN/

√
C > 1 as discussed

below. For vacuum fields, √g = GN/B
2, GN = G0 = B0R0, and B = B0[1 + ϵ cosϑ +

O(ϵ2)], we have

v∥b̂ · ∇ ≈
v∥

R0qN
∂ϑ, ωd ≈

v∥

R0qN
kψδψ sinϑ, (2.25)

where δψ = ϵB0R0qN (ρ∥ + µ/Ziev∥) represents the neoclassical finite-orbit-width effects
and the toroidal derivative ∂φ has been omitted for the zonal-flow dynamics. The
potential Φ is solved from the long-wavelength limit of the gyrokinetic Poisson equation
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(quasineutrality condition):

∇⊥ ·
(ni0mi

eB2
∇⊥Φ

)
= −(δn̄i − δne), δne =

e(Φ− ⟨Φ⟩)
Te0

. (2.26)

Here, δn̄i is a gyroaveraged version of δni and will be approximated by the latter in
the following. For concentric circular tokamaks, one can Fourier decompose in ϑ, δf =∑
m δfmeimϑ and Φ =

∑
m Φmeimϑ, and obtain the following results:

δn0
ni0

=
〈
(kψρψ)

2
〉 eΦ0

Ti0
,

δnm
ni0

=
eΦm
Te0

for m ̸= 0, (2.27)

where δnm =
∫
d3vδfm and ρψ = ρi|∇ψ| with ρi =

√
miTi0/ZieB the ion gyroradius. For

QS stellarators, however, |∇ψ|2/B2 varies significantly with ϑ and φ (equation (2.20)),
so that different poloidal and toroidal Fourier harmonics are coupled. While the solution
for the zonal part ⟨Φ⟩ is still given by Φ0 in (2.27) with only a small O(k2ψρ

2
ψ) correction,

the solution for the nonzonal part Φ − ⟨Φ⟩ can be significantly different from Φm ̸=0 in
(2.27), and solving them correctly can be a nontrivial task. For simplicity, we assume
Φ = ⟨Φ⟩ and neglect the contribution from the nonzonal potential in the following.
This is also consistent with the RH analysis where Φ = ⟨Φ⟩ has been assumed for the
calculation of LE×B (equation (2.1)), and can be achieved within the adiabatic-electron
model assuming Te0 ≪ Ti0.

With the assumption that Φ = ⟨Φ⟩, the gyrokinetic equation (2.24) does not depend
on φ, so that the Fourier components δfm and Φm are well defined (assuming Φm ̸=0 = 0).
To solve δfm and Φm as a function of t, we apply Laplace transform in time, δfm,ω =∫
dt eiωtδfm and Φm,ω =

∫
dt eiωtΦm. The m = 0 component of (2.24) is

−iωδf0,ω − δf0(t = 0) =
ikψδψ
2R0qN

v∥ (δf−1,ω − δf1,ω) . (2.28)

To obtain δf±1,ω as a function of Φm,ω, we write (2.24) as(
∂

∂t
+

v∥

R0qN

∂

∂ϑ

)(
eikψδψ cosϑδf

)
= −

v∥

R0qN

∂

∂ϑ

(
eikψδψ cosϑ efi0

Ti0
Φ

)
. (2.29)

From the relation eikψδψ cosϑ =
∑
n i
nJn(kψδψ)e

inθ where Jn are the Bessel functions, we
can solve for δfm,ω as (Sugama & Watanabe 2006a)

δfm,ω
fi0

=
∑
l,l′

il
′−lJl(kψδψ)Jl′(kψδψ)

ω − (m+ l)v∥/R0qN

[
(m+ l)

R0qN/v∥

eΦm+l−l′,ω

Ti0
+ i

δfm+l−l′(t = 0)

fi0

]
. (2.30)

The above expression can be simplified assuming |kψδψ| ≪ 1. Since we only consider the
contribution from Φ0, we obtain δf1,ω as

δf1,ω
fi0

=

(
kψδψ
2

)
v∥/R0qN

ω − v∥/R0qN

eΦ0,ω

Ti0
+

(
kψδψ
2

)3 2(v∥/R0qN )

ω − 2(v∥/R0qN )

eΦ0,ω

2Ti0
+ δI1, (2.31)

and similarly for δf−1,ω. Here, δI1 is from δfm(t = 0) and higher-order terms such
as the term involving ω = 3(v∥/R0qN ) have been neglected. Note that the gyrokinetic
Poisson equation (2.27) shows that δf0/fi0 is smaller than eΦ0/Ti0 by a factor (kψρψ)

2.
Therefore, δI1 can be neglected in (2.31) when the initial condition only consists of the
m = 0 component δf0(t = 0), as is the common situation for numerical simulations.

Integrating (2.28) over (µ, v∥), together with (2.27) and (2.31), one obtains

Φ0,ω = (R0qN/vti)Φ0(t = 0)/K(ω), (2.32)
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with the GAM dispersion function

K(ω) = −iω̂ − i
q2N
2C

[
2ω̂3 + 3ω̂ + (2ω̂4 + 2ω̂2 + 1)Z(ω̂) + JFOW

]
. (2.33)

Here, ω̂ = ωR0qN/vti, vti =
√

2Ti0/mi, and Z(ω̂) is the plasma dispersion function. Also,

JFOW = i

√
π

2
(kψδψ)

2e−ω̂
2
r /4

(
ω̂6
r

128
+
ω̂4
r

16
+

3ω̂2
r

8
+

3

2
+

3

ω̂2
r

− ω̂r

2

)
, (2.34)

is from the resonance condition at ω = 2v∥/R0qN , which was shown to significantly
enhance the GAM damping rates. Compared to Sugama & Watanabe (2006a, 2008), two
modifications are made for the QS stellarator geometry. First, the radial wavenumber
number in the flux coordinates kψ is used instead of the radial wavenumber in the
configuration space kr, the latter varies spatially due to the non-circular flux surfaces.
Second, the geometric factor C appears in the ratio between δ2ψ and ρ2ψ:〈

(kψδψ)
2
〉

⟨(kψρψ)2⟩
≈ ϵ2R2

0q
2
N

(⟨|∇ψ|/B)2⟩
=
q2N
C
. (2.35)

Therefore, compared to the tokamak results, here for QS stellarators we replace q with
qN/

√
C except for the definition of ω̂.

The evolution of Φ with t is obtained through Φ(t) =
∫
dωe−iωtΦ0,ω/2π where the

integration is from −∞+ iγ0 to +∞+ iγ0 with any positive real γ0. Letting ω = ωr + iγ
and ω̂ = ω̂r + iγ̂, the GAM frequencies are found from K(ω) = 0 in the lower complex
plane. Analytic results can be obtained using the asymptotic expansion of Z(ω̂) assuming
|ω̂| ≫ 1 and |γ| ≪ |ωr|, resulting in (Sugama & Watanabe 2006a, 2008)

ωr =

√
7 + 4τe
2

qN√
C

(
vti

R0qN

)(
1 +

46

49q2N/C

)1/2

,

γ = −
√
π

2

q2N
C

(
vti

R0|qN |

)(
1 +

46

49q2N/C

)−1 [
e−ω̂

2
r
(
ω̂4
r + ω̂2

r

)
+

1

4
(kψδψ)

2
e−ω̂

2
r /4

(
ω̂6
r

128
+

1

16
ω̂4
r +

3

8
ω̂2
r

)]
. (2.36)

Therefore, ωrqNR0/vti ∼ qN/
√
C and |γ/ωr| ∼ (qN/

√
C) exp(−q2N/C), so that GAM

oscillations are expected to be heavily damped in QH configurations with small q2N/C.
Note, however, that the ratio between the GAM frequency and the transit frequency
is qN/

√
C, which should be larger than one in order for the above GAM theory to be

valid. While such criterion is generally satisfied for QA configurations studied in section 3
below, it is not satisfied for QH configurations where qN/

√
C < 1, so that the above GAM

theory may not quantitatively describe the heavy GAM damping in QH configurations.
Note that while a larger C leads to a smaller ωr, it could actually leads to a larger |γ|.
This is because γ depends more sensitively on the exponential factors e−ω̂

2
r and e−ω̂

2
r /4,

the latter coming from JFOW. Since ω2
r ∝ q2N/C, larger qN (and smaller C) will result in

smaller |γ|, which is a well-known result in the tokamak literature.

2.4. Application beyond the near-axis expansion
Although the NAE description allowed us to derive an analytical expression of C

(2.23), it is not required for the theoretical description of the RH residual and the GAM
oscillations. Here, we examine the assumptions behind these theories and their validity
for general QS stellarators beyond the NAE description.
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The RH residual flow is a result of the toroidal angular momentum conservation, which
is a general result in QS configurations, and the expressions (2.1) and (2.10) for Λ0 and
Λ1 are also general. Therefore, as long as the magnetic-field strenght satisfies

B = B0[1 + ϵ cosϑ+O(ϵ2)], (2.37)

we will have Λ0 ∝ ϵ2 and Λ1 ∝ 1.6q2N ϵ
3/2, and then the RH residual can still be written as

(1+1.6q2N ϵ
−1/2/C) with a small parameter ϵ and a factor C. While C can be estimated from

the axis shape using the NAE result (2.23), it can also be more accurately calculated from
direct numerical evaluation of Λ0. Suppose the relation (2.37) holds and C is obtained
from either the NAE or direct numerical evaluation, the theory of GAM oscillations in
section 2.3 can also be carried out without assuming the NAE.

The relation (2.37) holds for any QS stellarators near the axis where the NAE descrip-
tion is valid, where ϵ = η̄r is proportional to the inverse aspect ratio and characterises
the variation of B along field lines. As shown in section 3.5, this relation also holds very
well for the precise QA and precise QH configurations, even if they are not obtained from
the NAE approach. In fact, a recent work has shown that a large class of QS magnetic
fields can described by the cnoidal solutions of the Korteweg-de Vries (KdV) equation,
which are dominated by the cosϑ component even far away from the axis (Sengupta
et al. 2023). Therefore, we expect our theory of the collisionless zonal-flow dynamics to
be applicable to a large class of QS stellarators beyond the NAE.

3. Numerical simulations
3.1. Simulation setup

We use the global gyrokinetic particle-in-cell code GTC† to simulate collisionless zonal-
flow dynamics. The code utilizes global field-aligned mesh in Boozer coordinates and has
been verified for the simulation of microturbulence and zonal flows in the stellarator
geometry (Wang et al. 2020; Fu et al. 2021; Nicolau et al. 2021; Singh et al. 2023).We
choose a global code because for the non-axisymmetric stellarator geometry different
radially local flux tubes could lead to different results, so that a global code provides
a simpler setup for studying zonal flows. Note that previous studies also showed that
flux-tube simulations give reasonable approximations to the global simulation results of
the RH residual when the parallel extent of the flux tube is sufficiently long, but the flux-
tube length required for convergence is configuration-dependent, for example, 4 poloidal
turns for HSX (Smoniewski et al. 2021), 2 poloidal turns for LHD, and at least 6 poloidal
turns for W7-X (Sánchez et al. 2021).

We use single-species deuterium ions with mi = 2mp, Zi = 1, and uniform ni0 and Ti0.
At t = 0, we choose a radial location ψ0 and apply a radially sinusoidal perturbation in
the ion weights in a narrow range ψ ∈ [ψ0 −∆ψ/2, ψ0 +∆ψ/2] so that

δf(t = 0)

fi0
= −w sin

(
2π
ψ − ψ0

∆ψ

)
, w ≪ 1. (3.1)

In other words, we apply a zonal-density perturbation with wavenumber kψ = 2π/∆ψ at
the flux surface ψ0, similar to the flux-tube simulations. We can apply the perturbation
at different radial locations with varying ψ0 and study the dependence of the RH residual
on ϵ = η̄r with r =

√
2ψ0/B0. We also choose ∆ψ = 0.2

√
ψ0ψw where ψw is the value

of ψ at the outermost flux surface of the equilibrium, so that the zonal-flow wavelength
∆r ≈ 0.1a is always 1/10 of the minor radius at the boundary a =

√
2ψw/B0, and

† https://sun.ps.uci.edu/gtc

https://sun.ps.uci.edu/gtc


Collisionless zonal-flow dynamics in quasisymmetric stellarators 11

kψρψ and kψδψ (and hence the GAM frequencies) become independent from ψ0. For
each configuration, we choose 8 different values of ψ0 corresponding to r = 0.2a, 0.3a,
..., 0.9a, which are evenly spaced and away from the inner and outer radial boundary
ψin = 0.01ψw and ψout = ψw used in the simulations. We note that as r decreases the
zonal-flow wavelength ∆r becomes comparable to r, so that ϵ becomes less well defined
and the simulation results are expected to deviate from the theory. For this reason, the
radial location r = 0.1a is not included, even though it is still away from the inner
boundary. At t > 0, the ion weights are evolved from the delta-f gyrokinetic equation

(L̂0 + δL̂)δf = −δL̂fi0, (3.2)

with

L̂0 =
∂

∂t
+ (v∥b̂+ vd) · ∇ − µB∗ · ∇B

miB

∂

∂v∥
, δL̂ = vE · ∇ − ZieB

∗ · ∇Ĵ0Φ
miB

∂

∂v∥
. (3.3)

Here, vE = b̂ × ∇(Ĵ0Φ)/B is the E ×B-drift velocity, Ĵ0 denotes gyroaverage on Φ,
B∗ = B(1+ρ∥∇×b̂), and fi0 is chosen to be Maxwellian. With the assumption Te0 ≪ Ti0,
the potential Φ = ⟨Φ⟩ is obtained from the gyrokinetic Poisson equation (2.26).

In the following, we present simulation results for several 1st-order and 2nd-order
vacuum QA and QH configurations obtained from the NAE approach (Landreman
et al. 2019; Landreman & Sengupta 2019), as well as the “precise QA” and “precise
QH” configurations obtained from global optimization (Landreman & Paul 2022). These
configurations are generated by VMEC†. For the NAE configurations, the VMEC input
files are generated by pyQsc‡, which prescribes their fixed outermost flux surfaces at
a =

√
2ψw/B0 = 0.1m with B0 = 1T. In other words, while their boundary are

described by the NAE, these VMEC equilibria are still global and are not identical
to the NAE inside the boundary (Landreman & Sengupta 2019). For the precise QA
and precise QH configurations, the corresponding VMEC equilibria are readily available
from Landreman (2021), and the outermost flux surfaces correspond to a = 0.16m and
a = 0.11m, respectively. With the VMEC equilibria, the geometry and the magnetic fields
are then converted to Boozer coordinates using BOOZ_XFORM¶, which are used for the
GTC simulations. Several geometric parameters of these configurations are summarized
in table 1, and all these configurations possess stellarator symmetry. For the numerical
details, we choose ni0 = 1019m−3 in our simulations, which does not enter our results
on the RH residuals and GAM frequencies. The choice of Ti0, however, requires further
justifications. The RH analysis assumed a small but finite |kψδψ| ∼ |kψρψqN/

√
C|, so

that Ti0 cannot be too large. Since the stellarator configurations presented here have
relatively small radius r ≈ 0.1m and weak magnetic field B0 ≈ 1T, we choose Ti0 = 1eV
for the QA configurations and Ti0 = 5eV for the QH configurations, which correspond
to |kψδψ| ≈ 0.15 for the precise QA and precise QH configurations in section 3.5 below.
Note that for QH configurations presented here, |qN/

√
C| < 1, so that |kψδψ| is actually

smaller than |kψρψ|; in other words, gyrokinetic effects cannot be completely neglected
in the simulation for the QH configurations. The mesh grids have a radial resolution of
a/200 ≈ 0.5mm (20 grids per zonal-flow wavelength) and a poloidal resolution of 1mm
(about 5ρi). In the toroidal direction, we simulate one field period of the configurations
with Np(Ne + 1) planes. Here, Np planes are used where δni is calculated for solving
Φ, and an additional Ne planes are inserted between each neighboring two of the Np

† https://princetonuniversity.github.io/STELLOPT/VMEC.html
‡ https://landreman.github.io/pyQSC

¶ https://hiddensymmetries.github.io/booz_xform

https://princetonuniversity.github.io/STELLOPT/VMEC.html
https://landreman.github.io/pyQSC
https://hiddensymmetries.github.io/booz_xform
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Configurations Nfp N R0 qN η̄ C RH residual ωana
r ωnum

r γana γnum

1st-order QA, a 3 0 1.02 -2.92 0.60 5.11 0.11 0.82 0.79 -0.09 -0.11
1st-order QA, b 3 0 1.02 -2.56 0.70 3.15 0.09 0.96 0.96 -0.06 -0.06
1st-order QA, c 3 0 1.02 -2.44 0.80 2.18 0.07 1.09 1.10 -0.05 -0.05
2nd-order QA 2 0 1.06 2.44 0.63 4.28 0.12 0.92 0.86 -0.12 -0.12
2nd-order QH 4 4 1.20 -0.35 1.57 0.45 0.46 4.56 N/A -2.30 N/A
Precise QA 2 0 1.07 2.36 0.68 3.54 0.11 0.96 0.94 -0.09 -0.09
Precise QH 4 -4 1.27 0.36 1.50 0.42 0.46 4.50 N/A -2.07 N/A

Table 1. Summary of the configurations studied in this paper. Nfp is the field period. The
value of qN is taken at the axis. The RH residuals are theoretically calculated at ϵ = 0.1. The
GAM frequencies and damping rates are normalized to vt/R0 and are independent from ϵ since
kψδψ does not depend on ϵ in our simulations. Here, ωana

r +iγana is the solution of the dispersion
function (2.33) and ωnum

r +iγnum is obtained from numerical fitting of the simulation data for QA
configurations. Numerical fitting is not applicable to QH configurations where GAM oscillations
do not exist.

planes where magnetic fields are interpolated for pushing particles (Wang et al. 2020).
We use Ne = 2, and note that GTC prefers Np(Ne + 1) + 1 to be even for the periodic
cubice spline, so we choose Np = 15 for the QA configurations, and Np = 31 for the
QH configurations. Approximately 100 marker particles per mesh node are used, and the
simulation time step is 0.02R0/vti. The simulation results are well converged for these
choices of parameters.

3.2. Concentric-circular tokamak configurations
Before presenting the results in QS stellarators, we first show results in several

concentric-circular tokamak configurations with different q. Although the theoretical
and numerical results have been well established for tokamaks, the results shown
here will help give an overall picture on the zonal-flow behaviors, in particular the
unusual behaviors at small and large q. These tokamak configurations can be described
analytically in GTC with major radius R0 = 1m and minor radius at the outer boundary
a = 0.1m. The magnetic field is given by B = G0∇φ + q−1∇φ × ∇ψ with G0 = B0R0

and B0 = 1T, and the Boozer toroidal angle φ is minus the cylindrical toroidal angle,
i.e., φ = −ϕ. We simulate 1/24 of the torus with 4 planes, and the other simulation
parameters are similar to those described above.

Figure 1(a) shows the results at q = 1.0, 1.4, and 1.8. At q = 1.4 the zonal flow
behaves in the most expected way, namely, damped GAM oscillations followed by the
RH residual flow. At q = 1.0 the GAM is quickly damped, followed by a slow relaxation
to the RH residual flow. At q = 1.8, however, GAM oscillations become persistent and do
not damp to zero, even though the theory in section 2.3 still predicts a finite γ < 0. These
undamped GAM oscillations occur around q ≈ 1.6, and they have also been observed in
GTC simulations in the past (Lin et al. 2000) as well as from another global gyrokinetic
code COGENT (Dorf et al. 2013).

Figure 1(b) shows the results at q = 0.9, 0.7, and 0.5. As q decreases, the GAM
oscillations are heavily damped and eventually become nonexistent at q = 0.5, when the
initial perturbation relaxes to the residual flow through a slower oscillation. These slower
oscillations cannot be described by the GAM theory in section 2.3, since q < 1 is outside
its applicable range.

Finally, figure 1(c) shows the RH residual level at different q, and theory and simulation
results agree well (within a 10% difference). This is expected as the RH flow is a result
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Figure 1. Simulation results for concentric-circular tokamaks. (a): the radial electric field Er(t)
at ϵ = 0.05 normalized to its initial value with increasing q. At q = 1.8, GAM oscillations become
persistent and do not damp to zero. (b): same as (a) but with decreasing q. The GAM oscillations
are heavily damped and become nonexistent as indicated by the text arrow. (c): Comparison
between analytical (curves) and numerical (markers) results for the RH level.

of the toroidal angular momentum conservation regardless of the GAM behaviors. Also
note that the theory and simulation results start to deviate at the smallest ϵ, where the
zonal-flow wavelength becomes comparable to the minor radius so that ϵ itself becomes
less well defined.

3.3. 1st-order NAE configurations
For 1st-order NAE configurations, we follow the examples presented in Landreman

et al. (2019). For QA configurations, the axis shape is chosen to be

r0(ϕ) = (1 + 0.045 cos 3ϕ)eR − 0.045 sin 3ϕez, (3.4)

where ϕ is the cylindrical (not Boozer) toroidal angle. To see the effects from η̄, we
compare three different configurations with η̄ = 0.6, 0.7, and 0.8, which are labeled by
“a”, “b”, “c” in table 1, respectively. For these configurations, the magnetic-field strenth
can be written as B =

∑
BMN cos(Mϑ −Nφ), where BMN is the Fourier spectrum in

Boozer coordinates calculated from BOOZ_XFORM, and only the cosine components
are included due to stellarator symmetry. Figure 2 shows the amplitude of the N = 0
components, which are QS, and the amplitude of the N ̸= 0 components, which are QS-
breaking. It is seen that B is dominated by the (M,N) = (1, 0) QS component, but the
N ̸= 0 QS-breaking components are also significant; in particular, they remain finite near
the axis, which seemingly contradicts with the NAE description. As mentioned above,
while their boundary is prescribed by the NAE, these VMEC equilibria are global and
not indentical to the NAE inside the boundary. Landreman & Sengupta (2019) showed
that if we prescribe the boundary at r = a from the 1st-order NAE theory, the axes of
the resulting VMEC equilibria will slightly differ from the original axes assumed by the
NAE, resulting in a O((a/R0)

2) QS error even at the axes. Therefore, we do not expect
these configurations to be close to QS even near the axis.

The GAM oscillations nevertheless behave as expected, which are insensitive to the
QS property. As shown in figures 3(a) and (b), C decreases with increasing η̄ so that the
GAM frequency increases. Meanwhile, the GAM damping rate also decreases due to the
increasing q2N/C. To compare with the analytic results, the simulation results are often
fitted with the following formula (Sugama & Watanabe 2006a):

Er(t)

Er(0)
= RH+ (1− RH) cos(ωnum

r t)eγ
numt, (3.5)

where RH is the residual level. However, we found it difficult to achieve a globally good fit,
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Figure 2. The Fourier spectrum of B for the 1st-order NAE QA configurations. Shown are√∑
B2
MN where the summation is over the range in (M,N) indicated by the legends.

Figure 3. Simulation results for the 1st-order NAE QA configurations. (a) and (b): the radial
electric field Er(t) at ϵ = 0.05 normalized to its initial value. The initial GAM oscillations and
the final RH levels are separated into two figures for a clearer view. (c): Comparison between
analytical (curves) and numerical (markers) results for the RH level. The configurations have
the same range in r but different range in ϵ = η̄r due to their different η̄.

because the initial GAM damping rate is much larger than the late-time damping rate as
Er approaches the RH residual. The reason is that as with the typical Landau-damping
process, the initial perturbation is not a GAM eigenstate, which only emerges at large
t after the initial fast damping due to phase mixing. Therefore, we ignore the initially
large GAM damping rates, and numerically find (ωnum

r , γnum) that matches Er as it
approaches the RH level. Comparison with solutions of the dispersion function (2.33) are
shown in table 1, and both ωr and γ agree well with the theoretical prediction. Also note
that the GAM oscillations do not completely damp to at η̄ = 0.8 where |qN |/

√
C = 1.65,

consistent with the observation in figure 1.
For the RH level, however, numerical results do not agree with the theoretical predic-

tions. As shown in figure 3(c), theory and simulation results do not show any agreement.
Further, as ϵ increases, the numerical RH level actually decreases, in contrast to the
theory. This is not a surprise considering the large QS breaking components shown in
figure 2. In fact, Helander et al. (2011) studied the effects of radially unconfined trapped
particles and found the long-time residual level to be

Er(∞)

Er(0)
=

[
1 +

αq2√
ϵ
+

β
√
ϵ

(kψρψ)2

]−1

, (3.6)

where the factor β comes from the unconfined particles. At small |kψρψ|, β/(kψρψ)2 can
be large and hence can provide a possible explanation for the observed decrease in the
RH level at large ϵ.

For the 1st-order QH configurations, the example presented in Landreman & Sengupta
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Figure 4. The Fourier spectrum of B in helical angle (ϑ, φ) for the 2st-order NAE QA and QH
configurations. Shown are

√∑
B2
MN where the summation is over the range in (M,N) indicated

by the legends.

Figure 5. Simulation results for the 2nd-order NAE QA and QH configurations. (a) and (b):
Er(t) at ϵ = 0.05 for QA and QH. The black dashed curve is from the numerical fit (3.5). (b):
Comparison between analytical (curves) and numerical (markers) results for the RH level. The
QH configuration has the same range in r as the QA configuration, but a larger range in ϵ = η̄r
due to its larger η̄.

(2019) has a = 0.025m, so it is 4 times thinner than the 1st-order QA configurations. The
reason is that due to the strongly shaped axis, the 1st-order QH configuration achieves
the same level of QS-breaking components in B at a 4 times smaller r compared to the
1st-order QA configuration. Therefore, we expect even more significant QS errors for the
1st-order QH configuration at larger radius a ∼ 0.1m, so we skip this configuration and
proceed to 2nd-order NAE configurations below.

3.4. 2nd-order NAE configurations
We have seen that for the 1st-order NAE configurations, the QS-breaking components

of B are significant, resulting in disagreement in theory and simulation result on the
RH level. To see if such deviation can be reduced with reduced QS error, we test the
2nd-order NAE QA and QH configurations from Landreman & Sengupta (2019). For the
2nd-order QA configuration, the axis is chosen to be

r0(ϕ) = (1 + 0.173 cos 2ϕ+ 0.0168 cos 4ϕ+ 0.00101 cos 6ϕ) eR

+ (0.159 sin 2ϕ+ 0.0165 sin 4ϕ+ 0.000985 sin 6ϕ) ez, (3.7)

with η̄ = 0.632. For the 2nd-order QH configuration, the axis is

r0(ϕ) = (1 + 0.17 cos 4ϕ+ 0.01804 cos 8ϕ+ 0.001409 cos 12ϕ+ 0.00005877 cos 16ϕ) eR

+ (0.1583 sin 4ϕ+ 0.0182 sin 8ϕ+ 0.001548 sin 12ϕ+ 0.00007772 sin 16ϕ) ez, (3.8)
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with η̄ = 1.569. The normal vector n rotates around the axis poloidally four times as the
axis is traversed toroidally, resulting in N = 4. For these configurations, the boundary
at r = a are carefully chosen so that the axes of the resulting VMEC equilibria are
much closer to the original axes assumed by the NAE, which reduces the QS error at the
axis to O((a/R0)

3). As shown in figure 4, the QS-breaking components of B are much
smaller compared to the 1st-order configurations (figure 2). However, a toroidal variation
in B has to be introduced in order to construct these configurations, which is zero at
the axis and increases with r as O(r/R0)

2. Therefore, strictly speaking the QS-breaking
components remain at O(ϵ2) rather than O(ϵ3) for the 2nd-order NAE configurations.

Numerical results are shown in figure 5. For the 2nd-order QA configuration, the GAM
oscillations are very similar to the 1st-order QA in figure 3; the numerical fitting formula
(3.5) provides a reasonable description at large t, and the numerical and theoretical
frequencies also agree. Meanwhile, the RH residual agrees much better with theory at
small ϵ, but still deviate from theory at large ϵ due to the increasing QS error. For the
2nd-order QH configuration, qN/

√
C = 0.48 and Er quickly drops to the RH residual

without GAM oscillations, consistent with the result in tokamaks with q = 0.5 (figure 1)
as well as previous numerical results from simulations of zonal flows in HSX (Smoniewski
et al. 2021). Since GAM oscillations do not exist, the numerical fitting (3.5) are not
applicable to the QH configuration. If we fit the numerical results with equation (2.36),
we obtain ωr and |γ| that are much smaller than the solution of the dispersion function,
but still much larger than the GAM frequencies in the QA configurations (table 1).
Therefore, even though the theory correctly predicted the heavy damping of GAM in
the QH configurations, quantitative agreement in the frequency and damping rate is not
achieved. Note that the GAM dispersion function (2.33) has multiple roots, and one of
them has a much lower frequency (appendix ??). However, this frequency is too low
to explain the numerical results, and further work is required to clarify this issue. Also,
despite the small C, the RH level in the QH configuration is still much larger than the QA
configuration due to the small |qN |, as predicted by an earlier study (Plunk & Helander
2024).However, the simulated RH level is still much lower than the theoretical prediction,
indicating that the QS-breaking components of B are still significant.

3.5. The precise QA and QH configurations
The precise QA and QH configurations were obtained from global optimization using

the software framework SIMSOPT (Medasani et al. 2024). As shown in figure 6, the QS-
breaking components of B are very close to zero. Also, the QS components of B are still
dominated by M = 1, so that B = B0[1+ ϵ cosϑ+O(ϵ2)] holds even though they are not
generated from the NAE approach. Quantities such as η̄ and σ can also be obtained near
the axis and used to calculate C, which showed good agreement with direct numerical
evaluation of

〈
|∇ψ|2/B2

〉
. As shown in figure 7, numerical results of the GAM dynamics

are qualitatively similar to the NAE configurations. For the RH residual, good agreement
between theory and numerical results can be achieved throughout the volume for both the
QA and QH configurations, the difference being less than 10%. Therefore, the theoretical
description of collisionless zonal-flow dynamics can be applicable to actual QS stellarator
configurations when the QS-breaking components of B become small enough.

For the precise QH configuration, however, the zonal flow dynamics are still very
different due to the small |qN |. Namely, GAM oscillations become nonexistent and the
initial perturbation in Er quickly damps to the RH level. Also, while the RH level in
the precise QA configuration agrees reasonably well with the theory with less than 10%
difference, the agreement is still not good for the precise QH configuration with about
20% difference. There are several possible explanations, for example, the NAE theory
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Figure 6. The Fourier spectrum of B in helical angle (ϑ, φ) for the precise QA and QH
configurations. Shown are

√∑
B2
MN where the summation is over the range in (M,N) indicated

by the legends.

Figure 7. Simulation results for the precise QA and QH configurations. (a) and (b): Er(t)
at ϵ = 0.1. The black dashed curve is from the numerical fit (3.5). (b): Comparison
between analytical (curves) and numerical (markers) results for the RH level. The precise QH
configuration has a smaller range in r than the precise QA configuration, but still a larger range
in ϵ = η̄r due to its larger η̄.

only provides an approximate description of this configuration. Also, as mentioned above,
gyrokinetic effects cannot be completely neglected in the QH configuration if one wants
to retain finite-orbit-width effect. The neglected O(ϵ0) terms in equation (2.22) can also
reduce the theoretical RH level; one example being the calculation of

〈
1/B2

〉
in Λ1,

which can be 8% larger than 1/B2
0 at ϵ = 0.15. Nonetheless, these corrections are not big

enough to explain the observed 20% difference, and a more careful study is needed in the
future in order to determine the cause.

4. Conclusions
In conclusion, the linear collisionless plasma response to a zonal density perturbation

in QS stellarators is studied, including the initial GAM oscillations and the final RH
residual-flow level. It is found that while the GAM oscillations in QA configurations are
similar to tokamaks, they become nonexistent in QH configurations due to the small
effective safety factor qN in helical-angle coordinates. Compared with concentric circular
tokamaks, the RH residual is also found to be modified by a geometric factor C, which
we derived analytically using the NAE framework. It is found that C > 1 for the QA
configurations and C < 1 for the QH configurations studied in the paper. Nevertheless,
the QH configurations still have much larger RH residual due to the much smaller qN .
These analytic results are compared with numerical simulation results from GTC. While
the GAM physics is reasonably predicted by the theory, we found that for the RH
residual level, good agreement between analytical and numerical results is achieved only
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when the amplitude of QS-breaking magnetic-field component is small enough. Since
zonal flows can be important for regulating turbulent transport, these results suggest
possible relation between the transport level and the stellarator geometric parameters
via nonlinear interactions with zonal flows.

The data that supports the findings of this study are openly available at Zenodo (Zhu
2024).
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