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ABSTRACT

Gyrokinetic simulation and eigenvalue calculation of electromagnetic instabilities are carried out for an experimentally observed low-n mode
in weak magnetic shear discharge. With different magnetic shear values, the Gyrokinetic Toroidal Code simulation of the ion temperature
gradient mode is consistent with the eigenvalue code (HD7) calculation. Due to the sensitivity of the kinetic ballooning mode (KBM) to
global equilibrium, the simulation of the KBM deviates from the eigenvalue results, for the ballooning representation used in HD7 satisfies
its spatial scale separations. Under a flat safety factor profile, the KBM is more unstable and its mode structure tends to move with the peak
of the ion temperature drive. Further simulation of the KBM in an HL-2A-like equilibrium shows that the b excitation threshold of the mode
is lower than 0.2% and the dominant toroidal mode number is n¼ 4, which is consistent with the measured experimental spectrum.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021362

I. INTRODUCTION

The pressure gradient and unfavorable curvature-driven balloon-
ing mode (BM) is very common in magnetized plasmas,1 and in
a tokamak, this mode determines the critical b (ratio of thermal
pressure to magnetic pressure) of plasmas.2,3 Using an ideal
MagnetoHydroDynamics (MHD) model, Dorbrott et al.4 and Coppi5

obtained a theoretical estimate of the critical b based on high-mode
number BM. The properties of ideal BM are modified by kinetic effects
(e.g., finite Larmor radii effect, finite orbit width effect, and wave parti-
cle interaction). The kinetic BM (KBM) is the kinetic analogue of the
ideal MHD BM and has been investigated by Tang et al.6,7 using
kinetic MHD ballooning theory, for which the ballooning transforma-
tion is employed. For a single poloidal mode localized around the
mode rational surface and whose perpendicular wavelength is much
shorter than its parallel wavelength, i.e., kk � k?, the width of the
mode envelope is determined by the pressure drive, which is on an
equilibrium scale. For instance, the ion temperature gradient (ITG)
mode, the trapped electron mode (TEM), and the KBM are all charac-
terized by good scale separation. Based on the above scale separation

of these modes, the appropriate eikonal form for such oscillations was
introduced for a tokamak, known as the ballooning representation.8

The ballooning formalism reduces the problem to the first-order eiko-
nal partial differential equation, thereby making it easy to obtain the
phase and amplitude of the wave along the characteristic lines in
weakly non-uniform systems. The transformation has been used
widely in analytical calculations; some numerical codes, such as
FULL9,10 and HD7,11,12 have been used successfully to analyze the ITG
mode13 and TEM.14

The hybrid scenario has been designed for next-generation toka-
maks15–18 and offers the possibility of enhanced stability and improved
bootstrap current alignment for steady-state operation with a broad
region of weak magnetic shear. The low-n electromagnetic modes that
have been observed in HL-2A,19,20 DIII-D,21 and JET22 weak magnetic
shear experiments can affect the confinement of plasma in the hybrid
scenario. For the observed low-n electromagnetic modes, the theoreti-
cal gyrokinetic method with the BM representation is not appropriate
in the case of a flat safety factor (q) profile. Because of its electromag-
netic properties, rotation in the ion diamagnetic drift direction, and
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the frequency lying in a range of KBM, it was suspected to be the
KBM.20

There has been a great deal of analytical work and simulations of
the KBM23–28 to explain the experimental observations and predict the
b limit in future tokamaks. Due to the complicated tokamak geometry
and multi-scale effect of the mode, it is still far from being understood
the long-time behavior of the mode. The present theories and numeri-
cal calculations based on the ballooning representation are not applica-
ble for the case of weak magnetic shear, in which the scale separation
of these modes is not valid. In this work, the three-dimensional (3D)
GTC29 is used to study electromagnetic instabilities. The GTC is a
particle-in-cell code that naturally includes the kinetic effects of the
background plasma. In GTC simulation of low frequency electromag-
netic waves, thermal ions are simulated by gyrokinetic equations and
electrons are modeled using the fluid–kinetic hybrid electron
model.30,31

The remainder of this paper is as follows. In Sec. II, the simula-
tion models used in GTC and HD7 are introduced. In Sec. III, the
numerical study of the KBM is presented. The KBM growth rate, real
frequency, and mode structure are studied in the cyclone base case,
and the results are the same as those obtained by Xie et al..32 How
magnetic shear influences the KBM is studied systematically. The
simulation results are also compared with those obtained using the
HD7 gyrokinetic eigenvalue code under the same local equilibrium
parameters. Meanwhile, the KBM-driving mechanism is discussed
further by using the temperature and density profiles of independent
and separated particles. The KBM is also simulated under an HL-2A-
like equilibrium. Finally, in Sec. IV, the present work is summarized
and possible future work is discussed.

II. SIMULATION MODEL

The simulation model used in the GTC is a kinetic model in five-
dimensional (5D) phase space. The plasma is treated as a set of marker
particles interacting with each other through self-consistent electro-
magnetic fields. The fields adopt 3D spatial grids of a field-aligned
mesh, and the motion of the particles is tracked in the magnetic flux
coordinates. The gyrokinetic formulation and simulation model are as
follows.

The Vlasov equation is derived from the gyrokinetic equation
by neglecting the collision effects. For the low-frequency waves in a
magnetized plasma, the Vlasov equation is written as

d
dt

fa X;l; vk; tð Þ ¼
@

@t
þ _X�r þ _vk

@

@vk

" #
fa ¼ 0; (1)

where fa is distribution function, X is the gyrocenter position in 3D
space, l is the magnetic moment, and vk is the parallel velocity, which
forms a 5D phase space. The subscript a denotes the particle species.
The gyrocenter velocity _X and the parallel acceleration _vk are written as

_X ¼ vk
B
B0
þ vE þ vd; (2)

_vjj ¼ �
1
ma

B�

B0
� lrB0 þ Zarh/ið Þ � Za

mac

@hAjji
@t

; (3)

where ma; Za, and c denote the mass, charge of ions, and speed of
light. Also, we have B � B0 þ dB, where B0 ¼ B0b0 and dB are the
equilibrium and perturbed magnetic field and B� ¼ B�0 þ dB is the

modified magnetic field, with B�0 ¼ B0 þ B0vk
Xa
r� b0, in which Xa is

the gyro-frequency. Here, / and Ak are the electrostatic potential and
the parallel components of the magnetic vector potential, respectively,
and the Bk effect

28,33 is neglected in low b plasmas. vE is the E� B
drift, and vd is the magnetic drift. Furthermore, h� � �i �

Ð dvc
2p dxdðX þ

q� xÞ is the gyro-orbit averaging, q is the gyro-radius, and x is the
position of the particle in 3D coordinates. In Eq. (3), the gyro-Poisson
equation and Ampère’s law are needed to solve the electrostatic poten-
tial / and magnetic vector potential Ak. We define f ¼ f0 þ df , where
f0 and df are the equilibrium and perturbed distribution function.
Integrating df, neglecting high order term, and applying Eq. (1), the
electron continuity equation is

@

@t
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þ B0VE � r

n0e
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eB0
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" #
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(4)

Here, dne and ujj0e represent the perturbed electron density and
parallel velocity, v�e is the diamagnetic drift velocity, dPjje and dP?e
show the perturbed pressure, and all the other symbols have their
usual meanings and are mentioned in this paper. The df simula-
tion34–36 is used to reduce the discrete particle noise. The fluid kinetic
hybrid electron model is adopted, which is built upon the expansion of
the electron response into the lowest-order adiabatic part and a
higher-order kinetic response, based on the electron–ion mass ratio as
a small parameter, in the simulation of electron dynamics. This model
is a highly efficient electron model for kinetic simulations of electro-
magnetic turbulence in the absence of tearing modes.37 In KBM simu-
lation, where the thermal ion kinetic effect is important, the
gyrokinetic ion model is applied in this simulation. Herein, since the
physics behavior of KBM is decided by the thermal ions, we neglect
the contribution of kinetic electrons and consider the adiabatic elec-
tron response for dynamics of low-frequency electromagnetic modes.

The effective potential is defined as dEk ¼ �b0 � r/eff . In the
kinetic approximation, the adiabatic electron response equation is

vkb0 � rdfe ¼ �vjj
dB
B0
� rf0e � vjj

dB
B0
� lf0erB0

Te
þ vjj

ef0e
Te

b0 � r/eff :

(5)

The adiabatic electron response can be obtained with the Clebsch
toroidal magnetic field representation, namely,

dfe ¼
ef0e
Te

/eff þ
@f0e
@w0

����
v?

dwþ @f0e
@a0

����
v?

da; (6)

where w is the poloidal magnetic flux and a ¼ qðwÞh� 1 is the mag-
netic field line label in terms of the poloidal angle h and toroidal angle
1 in the magnetic flux coordinate. Integrating Eq. (6) in phase space,
the lowest order effective potential /eff is derived as

e/eff

Te
¼ dne

n0e
� dw
n0e

@n0e
@w0
� da
n0e

@n0e
@a0

: (7)
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Together with the electron continuity equation and ideal Ohm’s law,
we have an adiabatic simulation model for electron. More precise
kinetic electron effects are described in Ref. 31.

To consider the toroidal coupling effect of high n mode, the bal-
looning representation is employed in HD7 code. In ballooning angle
h space, the gyrokinetic equation is

i
vk
Rq

@

@h
ha þ x� xDað Þha ¼ x� x�aTð ÞJ0 dað ÞFMa

qan0
Ta

� /̂ðhÞ �
vk
c
ÂkðhÞ

� �
: (8)

The non-adiabatic response ha is determined using Eq. (8), in which

xDa ¼ 2�nx�a½cos hþ sin hð̂sh� a sin hÞ� v̂2?
2 þ v̂2k

� �
; x�aT ¼ x�a

½1þ ga
v2

v2ta
� 3

2

� �
�; da ¼ ð2baÞ1=2v?; 2ba ¼ k2?v2ta=X

2
a; v2ta ¼ 2Ta=

ma; x�a ¼ ckhTa=qaBLn; andXa ¼ qaB=mac. The symbols represent
their usual meanings, such asx�a and Xa are the diamagnetic drift fre-
quency and the gyrofrequency, respectively. Coupled to the gyro-
Poisson equation and Ampère’s law, HD7 code solves the integral
eigenvalue equation numerically, the code has been successfully used
in solving ITG, impurity mode, and one can see Refs. 12 and 13 for
more details.

III. NUMERICAL RESULTS
A. GTC simulation of KBM

To study the magnetic shear effects on the KBM, we use the
fourth order polynomial function, qw ¼ a1 þ a2 � ðw=wwÞ
þ a3 � ðw=wwÞ

2 þ a4 � ðw=wwÞ
3 þ a5 � ðw=wwÞ

4, as an equilibrium q
profile, where “a” represents the adjustable coefficient, w shows the
poloidal magnetic flux, ww is the poloidal magnetic flux at wall,
ww ¼ 0:0375R0B0, in which R0 and B0 are the major radius and on-
axis magnetic field, and qr is the normalized radial coordinate in GTC
simulation. Using different coefficients “a,” the safety factor (q) profiles
in Fig. 1(a) are constructed with the various magnetic shear
(s ¼ rq0=q) profiles in Fig. 1(b). Here, the five cases are employed and
each case shows a specific magnetic shear profile of corresponding
safety, as shown in Table I. For the cyclone base case,38 the parameters
are R0 ¼ 167 cm, R0=LT ¼ 6:9; R0=Ln ¼ 2:2, Te ¼ Ti, a=R0 ¼ 0:36,
and b ¼ 2%, where R0, a, LT, Ln, and b are the tokamak major and
minor radii, temperature density gradient scale lengths, and plasma

beta, respectively. The KBM growth rate and real frequency are
measured for the most unstable mode at the q¼ 1.2 flux surface.
The mode number scan with different magnetic shears is presented in
Fig. 2. In Fig. 1(a), with different q profiles and cyclone case parame-
ters, the red q profile (i.e., q1) recovers the result in Fig. 2 of Ref. 32.

Figure 2(a) shows that with various magnetic shears, the KBM
growth rate first increases and then decreases with the increasing
mode number, and the most unstable mode number is approximately
0.22. All the curves in Figs. 2(a) indicate that the growth rate of the
KBM saturates with increasing n and a critical value for n should exist.
(kh ¼ m=r, here, m represents the poloidal mode number and r shows
the poloidal radius.) This is probably because that diamagnetic fre-
quency increases linearly with the toroidal mode number,
x�i ¼ ckhTi=QBLni, and the diamagnetic effect becomes stronger with
the toroidal mode number increasing.39 More discussions about the
diamagnetic effect are discussed in Refs. 40 and 41. Besides, the KBM
can be destabilized with decreasing magnetic shear. The blue and pur-
ple lines almost coincide when the magnetic shear is lower than 0.11.
Thus, magnetic shear has a stabilizing effect on the KBM. Figure 2(b)
shows that the simulated real frequency depends linearly on the mode
number. In conclusion, the magnetic shear does not influence the real
frequency. Figure 3 shows the characteristics of the two-dimensional
(2D) mode structure of the most unstable mode (n¼ 10) for different
magnetic shears. Figure 3(a) exhibits the mode structure of d/, due to
the toroidal geometry effect, the different poloidal mode harmonics
couple each other, and it mostly exists in the bad curvature region.
Figure 3(b) shows the poloidal harmonics of d/ in the minor radius
direction, which are located on the corresponding rational surface.

FIG. 1. (a) Different equilibrium q profiles. (b) Corresponding magnetic shear profiles. Here, r is normalized to the major radii R0, and R0 ¼ 167 cm.

TABLE I. The different cases of a magnetic shear profile of the corresponding safety
factor.

Case
Safety
factor

Magnetic shear
profile

Local magnetic
shear value

Case 1 q1 s1 s ¼ 0.66
Case 2 q2 s2 s ¼ 0.47
Case 3 q3 s3 s ¼ 0.31
Case 4 q4 s4 s ¼ 0.11
Case 5 q5 s5 s ¼ 0.03
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Figures 3(c) and 3(d) display the mode structure and poloidal har-
monics of d/ with weak magnetic shear, respectively. In Figs. 3(b) and
3(d), the pink line represents the q profile and the black dashed line
shows the rational surface. Figures 4(b) and 4(d) are as Figs. 3(b) and
3(d). Compared to Figs. 3(a) and 3(b), the only difference in Figs. 3(c)
and 3(d) is that the q profile is flat. In cases of flat q (i.e., low magnetic

shear), there are few dominant m modes and the mode structure is
wider; this is due to the weaker magnetic confinement in cases of lower
magnetic shear.

With the purpose of studying the KBM-driving mechanism, we
use two hyperbolic tangent functions to fit the ion temperature and
density profiles. The peaks of the density and temperature gradients

FIG. 2. Kinetic ballooning mode (KBM) growth rate c (a) and real frequency x (b) vs khqi with various magnetic shears.

FIG. 3. Two-dimensional mode structure of KBM with the cyclone case parameter: (a) mode structure of d/; (b) poloidal harmonic modes of d/; (c) and (d) d/ and its poloi-
dal harmonics modes with weak magnetic shear. In (b) and (d), the pink line represents the q profile, and the black dashed line shows the rational surface; the same pertains
to Figs. 4(b) and 4(d).
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are adjusted from the q¼ 1.2 to q¼ 1.1 rational surface separately
with the q3 profile in Fig. 1(a). The most unstable toroidal mode num-
ber is still n¼ 10 with the same growth rate. The characteristics of the
mode structure are shown in Fig. 4, where the mode structure in Figs.
4(a) and 4(b) remains unchanged as the peak of the density gradient
moves from the q¼ 1.2 to q¼ 1.1 rational surface. However, Figs. 4(c)
and 4(d) show clearly that the KBM structure moves to the q¼ 1.1
surface as the peak of the temperature gradient moves to that surface.
With the separate temperature and density profiles in the simulation,
it can be concluded that the KBM structure is sensitive to both the
rational surface and the temperature gradient.

B. Benchmark between GTC simulation and the HD7
calculation

In this section, for comparison and benchmark purposes, the
GTC and HD7 gyrokinetic integral eigenvalue codes are used with the
same local parameters to simulate the ITG mode and the KBM. First,
the benchmark case of the electrostatic ITG mode is performed with
different magnetic shears. Figures 5(a) and 5(b) show the growth rate
and real frequency as functions of khqi, and Fig. 5(c) shows the radial
mode structure, where the other parameters are gi ¼ 3:13, s¼ 0.78,

q¼ 1.4, �n ¼ 0:45, and s ¼ 1. The most unstable mode number is
khqi ¼ 0:5, and the GTC and HD7 results are consistent. With
decreasing magnetic shear, Fig. 6 shows similar results: the ITG growth
rate increases, while the real frequency remains unchanged. The two
codes agree well with each other for the weak magnetic shear case.
Thus, the BM representation is always applicable to the ITG mode.
Note that the typical ballooning representation requires approximating
the spatial scale separation. Here, as given in Table II, we measured
the corresponding spatial scale of mode width, distance of the neigh-
boring rational mode surface (RMS), and equilibrium scale from the
one-dimensional (1D) radial mode structure and the 1D equilibrium
profile of the ITG mode in Figs. 5(c) and 6(c) and the KBM in
Figs. 3(b) and 3(d).

As shown in Fig. 7, the veracity of using the HD7 electromagnetic
code to study the KBM was assessed using kinetic shear Alfv�en (KSA)
waves. Figure 7(a) shows the growth rate as a function of khqi, and
Fig. 7(b) does the same for the real frequency; the red circles are the
results from Fig. 1 of Ref. 12, and black triangles are the HD7 verifica-
tion results. Thus, KSA benchmarking shows that the HD7 code can
be used for electromagnetic studies. However, Fig. 8 shows that the
results of KBM using the GTC and HD7 are only qualitatively consis-
tent. As we will see later, the KBM is sensitive to equilibrium:32 it is

FIG. 4. Two-dimensional mode structure of KBM with weak magnetic shear: (a) and (b) are obtained by moving the peak of the density gradient from the q¼ 1.2 rational sur-
face to the q¼ 1.1 rational surface; (c) and (d) are obtained by moving the peak of the temperature gradient from the q¼ 1.2 rational surface to the q¼ 1.1 rational surface.
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FIG. 5. (a) Growth rate of electrostatic ion temperature gradient (ITG) mode vs khqi . (b) Real frequency vs khqi ; the red triangles show the GTC results, and the black circles
represent the HD7 results. (c) Radial mode component of d/; the pink line represents the q profile, the black dashed line shows the rational surface, and the light-blue line
exhibits the temperature gradient profile.

FIG. 6. (a) Growth rate of electrostatic ITG mode vs khqi . (b) Real frequency vs khqi ; the red triangles show the GTC results, and the black circles represent the HD7 results.
(c) Radial mode component of d/; the other lines are as shown in Fig. 5(c).

TABLE II. Influence of scale separation of ballooning-mode representation on ITG mode and KBM.

Length Equilibrium scale (R0) Distance of nearby RMS (R0) Mode width (R0)

ITG (cyclone case) 10.80D 2.25D D ¼ 0.01490
ITG (s¼ 0.31) 4.30D 2.02D D ¼ 0.03918
KBM (cyclone case) 5.89D 1.39D D ¼ 0.02458
KBM (s¼ 0.31) 4.04D 1.83D D ¼ 0.03993

FIG. 7. Verification results for HD7 using kinetic shear Alfv�en waves: (a) growth rate vs gi and (b) real frequency vs gi. The red circles show the results from Fig. 1 in Ref. 12,
and the black triangles represent the HD7 verification results. The other parameters are khqs ¼

ffiffiffiffiffiffi
0:2
p

, s¼ 0.5, �n ¼ 0:2; ge ¼ 0, q¼ 2.0, si ¼ 1, and bi ¼ 0:015.
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necessary to include the global effect, which is not available in the local
HD7 code. From Table II, it is demonstrated that in the cyclone case,
the ratio of scale separation is 5:89 : 1:39 : 1; in the magnetic
shear¼ 0.31 case, the ratio of scale separation is 4:04 : 1:83 : 1.
Table II shows that the scale separation of the KBM is better when the
magnetic shear is 0.31. As shown in Figs. 8(e) and 8(f), the HD7 results
approach the GTC ones, where the magnetic shear is relatively low.
This may be because the scale separation in the ballooning representa-
tion is better in this case. Therefore, it can be concluded that the KBM
is sensitive to the global equilibrium (i.e., both the pressure and mag-
netic profiles).

C. GTC simulation of HL-2A observation

Previously herein, the characteristics of the ITG mode and the
KBM were studied in various analytical equilibria with different mag-
netic shears. In shot 25803 of HL-2A weak magnetic shear experiment,
in which R0 is 165 cm, the inverse aspect ratio is a=R0 ¼ 0.24, on-axis

Ti ¼ 1703 ev, ni ¼ 0.189 � 1014 cm�3, and B0 ¼ 14 000 gauss, the fit-
ted equilibrium profile is shown in Fig. 9, and the local parameters
near the q minimum are Ti 	 1:1 keV, Te 	 0:75 keV,
�R0r lnTi 	 32;�R0r ln ni 	 6; gi ¼ r lnTi=r lnni 	 5, and
s 	 0, which are the same as those used in Ref. 20. The instabilities in
the experimental observation are detected by Mirnov probes and
reveal their electromagnetic character, with the toroidal mode num-
bers n ¼ 2 
 8, and these structures propagate in the direction of the
ion diamagnetic drift. Figure 10 shows the simulation results. The
most unstable toroidal mode number of the KBM decreases to a low
number, and the excitation threshold also becomes small. The KBM
growth rate increases with the equilibrium current, whereas the real
frequency remains almost the same. Thus, the equilibrium current has
a destabilizing effect on the KBM with weak magnetic shear.

General KBM theory predicts an excitation threshold of
be 
 1:5%, with the mode number usually being the high toroidal
mode number. However, in this flat q simulation, the low-n KBM can

FIG. 8. Growth rate and real frequency vs mode number khqi with various magnetic shears. The red triangles show the GTC results, and the black circles represent the HD7
results. (a),(b),(c), and (d) are the growth rate, and (e), (f), (g), and (h) are the frequency of KBM vs khqi with various magnetic shears.

FIG. 9. Equilibrium profiles: (a) ion temperature and density profile; Ti is normalized to Ti0 ¼ 1703 eV; ni is normalized to ni0 ¼ 0:189� 1014 cm� 3; (b) safety factor profile.
Here, r is normalized to the major radius, and R0 ¼ 165 cm.
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FIG. 10. KBM (a) growth rate and (b) real
frequency vs toroidal mode number; the
red squares are the results without equilib-
rium current, while the black crosses are
the results with equilibrium current. Here,
n shows the toroidal mode number of
KBM. KBM (c) growth rate and (d) real
frequency vs be with the toroidal mode
number n¼ 4.

FIG. 11. Poloidal contours (a) d/ and (c) dAk of KBM. Poloidal harmonic modes of (b) d/ and (d) dAk of KBM with n¼ 4; the pink line shows the safety factor profile.
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also develop; a lower excitation threshold is needed to destabilize the
mode, and the equilibrium current42 also has a destabilizing effect on
the KBM. Here, the b scan in Fig. 10(c) shows that b has a destabiliz-
ing effect on the KBM, and in Fig. 10(d), the frequency decreases
slightly with increasing b. These results are consistent with the qualita-
tive analysis of the experiment.20 In the simulation, the low toroidal

mode number instability developed, around the magnetic shear, s 
 0,
and the experimental b falls into the simulated excitation threshold
b 
 0:2%. The magnetic component of the instability is comparable
with the electrostatic component. Meanwhile, the real frequency is
decided by ion diamagnetic drift frequency. Therefore, the electromag-
netic mode is identified to be KBM. Meanwhile, Fig. 11 shows the 2D

FIG. 12. Time history of the normalized perturbed electrostatic potential / (a) and parallel vector potential dAk (b) for the mode (m¼ 3 and m¼ 4 and n¼ 3) measured at the
q¼ 1.0 rational surface in a simulation with or without the self-consistently generated zonal component.

FIG. 13. Poloidal contour of the perturbed electrostatic potential / and perturbed parallel vector potential dAk in the nonlinear regime. Panels (a) and (c) show the macroscale
radial structure in the simulation with the zonal component artificially suppressed. Panels (b) and (d) show the radial structure in the simulation with the self-consistently gener-
ated zonal component.
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mode structure; there are a few much wider poloidal harmonics in the
radial mode, with these being due to the weak magnetic confinement
effect of the flat q profile, which was mentioned in Sec. III. A time his-
tory for the nonlinear KBM simulation in shot 25803 of HL-2A weak
magnetic shear experiment is shown in Fig. 12. The perturbed parallel
vector potential is normalized as edAkvA=Ti, respectively, where
vA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0mi
p

. At t 
 1:5R0=Cs; dAk starts to grow exponen-
tially, which indicates that the mode evolves into an intermediate
regime. From t 
 1:5R0=Cs to t 
 2:7R0=Cs; dAk grows slightly
faster than its linear phase. The d/ mode saturation level without the
zonal component is comparable with the zonal component one in
Fig. 12(a). As shown in Fig. 12(b), the dAk4;3 mode saturation level is
slightly higher than dAk3;3. In this regime, d/ retains its linear poloidal
mode structure. Mode saturation (around t 
 3:0R0=Cs in this case)
indicates the end of the intermediate regime. In the saturation stage,
dAk3;3 saturates at a magnitude higher than the case without the zonal
current. This indicates that zonal current affects the KBM saturation
level. A comparison of the d/ and dAjj nonlinear poloidal structures
between simulations with and without the zonal component is shown
in Fig. 13. As shown in Fig. 13(b) (d), the zonal components break the
radially elongated eigenmode structure into small scales. It can be con-
cluded that the KBM saturation is influenced by the zonal current.

IV. DISCUSSION AND CONCLUSION

In this paper, the linear properties of electromagnetic instabilities
in tokamak plasmas with different magnetic shears have been investi-
gated by both the GTC simulation and the HD7 calculation. For
cyclone case equilibrium, the GTC simulation shows that the most
unstable toroidal mode number of the KBM is n¼ 10, with various
poloidal mode numbers coupled together, and the 2D structure of the
mode is the typical BM structure. As to the effect of magnetic shear, it
has an obvious stabilizing effect on the KBM: the KBM linear growth
rate increases with weaker magnetic shear, while the KBM real fre-
quency, which is determined by the ion diamagnetic drift frequency,
remains the same. Compared to strong magnetic shear, the GTC sim-
ulation shows that there are few dominant poloidal harmonic modes
in weak magnetic shear equilibrium, the radial mode structure is
wider, and the envelope of the mode is determined by the dominant
mode. Furthermore, the mode structure of the KBM is more sensitive
to the ion temperature gradient and tends to move with the drive,
which can centralize around the relative mode rational surface.

Comparing the GTC simulation with the HD7 eigenvalue calcu-
lation, it is found that the KBM is more sensitive to the equilibrium
profile, and the ballooning-representation-based code is sufficient for
revealing the ITG properties. However, it is not applicable to analyzing
the KBM with weak magnetic shear, even for high toroidal mode
numbers, in which the approximation for the ballooning representa-
tion is sufficient. Because the KBM is more sensitive to the equilibrium
profile, a more general method with full geometry effects is needed for
both analytical work and simulation.

In simulation of the HL-2A weak magnetic shear experiment,
there is good agreement between the simulation and experimental
results with the fitted equilibrium of the HL-2A experiment. The GTC
simulation indicates that the dominant toroidal mode number is
between 3 and 7, and the excitation threshold of b decreases to 0.2%
with weak magnetic shear. The zonal component breaks the radially
elongated eigenmode structure into microscale and mesoscale

structures. It can be concluded that the KBM with a weak magnetic
shear saturation is governed by the zonal fields. To explain the experi-
mental observation and predict the long-time behavior of this mode in
the hybrid scenario, a nonlinear KBM simulation will be performed
for numerical equilibrium of a realistic tokamak.
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