q

Check for
updates

Heterogeneous Programming
and Optimization of Gyrokinetic Toroidal
Code Using Directives

Wenlu Zhang'?, Wayne Joubert’, Peng Wang®, Bei Wang®,
William Tangs, Matthew Niemerg6, Lei Shil, Sam Taimourzadeh',
Jian Bao', and Zhihong Lin'®?

! Department of Physics and Astronomy, University of California, Irvine, USA
zhihongl@uci. edu
2 Institute of Physics, Chinese Academy of Sciences, Beijing, China
3 Oak Ridge National Lab, Oak Ridge, TN, USA
* NVidia, Santa Clara, USA
5 Princeton University, Princeton, NJ, USA
® IBM, New York, USA

Abstract. The latest production version of the fusion particle simulation code,
Gyrokinetic Toroidal Code (GTC), has been ported to and optimized for the next
generation exascale GPU supercomputing platform. Heterogeneous program-
ming using directives has been utilized to balance the continuously implemented
physical capabilities and rapidly evolving software/hardware systems. The
original code has been refactored to a set of unified functions/calls to enable the
acceleration for all the species of particles. Extensive GPU optimization has
been performed on GTC to boost the performance of the particle push and shift
operations. In order to identify the hotspots, the code was the first benchmarked
on up to 8000 nodes of the Titan supercomputer, which shows about 2-3 times
overall speedup comparing NVidia M2050 GPUs to Intel Xeon X5670 CPUs.
This Phase I optimization was followed by further optimizations in Phase II,
where single-node tests show an overall speedup of about 34 times on Sum-
mitDev and 7.9 times on Titan. The real physics tests on Summit machine
showed impressive scaling properties that reaches roughly 50% efficiency on
928 nodes of Summit. The GPU + CPU speed up from purely CPU is over 20
times, leading to an unprecedented speed.

Keywords: Massively parallel computing - Heterogeneous programming -
Directives - GPU - OpenACC - Fusion plasma - Particle in cell

1 Introduction

Fusion energy would ensure a safe, environmentally friendly, resource conserving
power supply for future generations. In an operating fusion reactor, part of the energy
generated by fusion itself will serve to maintain the plasma temperature as fuel is
introduced. However, to achieve the desired levels of fusion power output, the plasma

© Springer Nature Switzerland AG 2019
S. Chandrasekaran et al. (Eds.): WACCPD 2018 Workshop, LNCS 11381, pp. 3-21, 2019.
https://doi.org/10.1007/978-3-030-12274-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12274-4_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12274-4_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12274-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-12274-4_1

4 W. Zhang et al.

in a reactor has to be heated and maintained to its operating temperature of greater than
10 keV (over 100 million degrees Celsius) and additional current drive must be
applied. Confinement of such a high density and high temperature burning plasma
poses big scientific and technological challenges. One critical mission for the fusion
energy research and development is the timely achievement of the capability to
understand, predict, control, and mitigate performance-limiting and integrity-
threatening instabilities in the burning plasmas. The excitation and evolution of the
most important instabilities can be expected to depend on kinetic effects and the
nonlinear coupling of multiple physical processes spanning disparate spatial and
temporal scales.

In the research of fusion plasma physics, simulations have always been an effective
tool due to the complexity of theoretical analysis and the high cost of experiments.
After several decades of development in the capability of high performance computing,
it becomes feasible to conduct massively parallel simulations to investigate the com-
plex physics using equilibrium and profiles close to realist discharges in fusion devices.
Along with the progress in computing power, a set of gyrokinetic theory [1-11] have
been proposed and established to construct a set of simple theoretical and numerical
model by eliminating the fine-scale gyro-phase dependence through gyro-averaging,
which reduces the original phase space dimensionality from six to five. This not only
assists in the comprehension of the low frequency physics in magnetized plasmas, such
as the anomalous transport that is critical for the magnetic fusion, but also facilitates the
development and application of massively parallel simulation codes.

As a well benchmarked massively parallel gyrokinetic toroidal code, GTC [12, 13]
is built upon the first-principles and adopts efficient low-noise numerical simulation
methods for integrated simulations of key instabilities. This is of great significance
since these instabilities not only limit the burning plasma performance but also threaten
device integrity in magnetic fusion such as the International Thermonuclear Experi-
mental Reactor (ITER) [14], which is a crucial next step in the quest for the fusion
energy. The particle-in-cell method is utilized so that particles are treated with a
Lagrangian scheme while fluid moments and field information are calculated with an
Eulerian scheme. The capability of GTC has been extensively expanded and verified to
deal with a wide range of physical problems such as neoclassical and turbulence
transport [15, 16], energetic particle transport by microturbulence [17, 18], Alfven
eigenmodes [19-22], radio frequency heating [23], static magnetic island [24] and
current-driven instabilities [25, 26]. Over the years, the GTC code has grown to a
prominent code being developed by an international collaboration with many users and
contributors from the magnetic fusion energy and high performance computing
communities.

GTC is the key production code for several multi-institutional U.S. Department of
Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) project
and National MCF Energy R&D Program, for example. GTC is currently maintained
and developed by an international team of core developers who have the commit
privilege and receives contributions through the proxies of core developers from

Heterogeneous Programming and Optimization of GTC Using Directives 5

collaborators worldwide [13]. GTC continuously pushes the frontiers of both physics
capabilities and high-performance computing. It is the first fusion code to reach the
teraflop in 2001 on the Seaborg computer at NERSC [27] and the petaflop in 2008 on
the Jaguar computer at ORNL [16] in production simulations. GTC is also the
benchmark and early application code that fully utilizes the computing power of a list
of TOP500 machines such as Tianhe-1A [28] and Titan with a CPU and GPU
heterogeneous architecture and Tianhe-2 [29] with an Intel Xeon Phi accelerator
architecture.

In the pursue of extreme performance from the high computing community, many
excellent pioneer works have been carried by computer scientists and developers by
porting and optimization the GTC and its companion codes to the GPU on variety of
machines. The work of Madduri et al. [30, 31] discussed the porting of an earlier
version of GTC to GPU and concluded that the GPU was slower than the CPU for their
version of GTC, which only included kinetic ions with adiabatic electrons. Then the
GTC GPU [28] version, which was the Tianhe-1A benchmark code developed on the
production version using NVidia CUDA libraries, showed some speedup and excellent
scaling in the whole machine test with the actual physics simulation parameters. The
weak scaling to 3072 nodes of Tianhe-1A was obtained with 2X-3X overall speedup
comparing NVidia M2050 GPUs to Intel Xeon X5670 CPUs. A “companion” version
of the GTC code, the GTC-P code is a modern, highly portable GTC code now
operational on the top 7 supercomputers worldwide [32]. Over the years, GTC-P has
been ported and optimized on different supercomputers such as IBM Blue Gene/P
(BG/P) at Argonne Leadership Computing Facility (ALCF), IBM Blue Gene/Q (BG/Q)
of Mira at ALCF, Sequoia at Lawrence Livermore National Laboratory, the Cray XT4,
Cray XE©6, and later Cray XC30 at Lawrence Berkeley National Laboratory, et al. [32,
33]. The scalability up to 131,072 BG/P and 32,768 XT4 cores were attained with as
little as 512 MB memory per core by incorporating a new radial decomposition
method, developed first by Ethier et al. that features a dramatic increase in scalability
for the grid work and decrease in the memory footprint of each core [33]. Later,
Madduri et al. made further optimizations of the code, such as multi-level particle and
grid decompositions, particle binning, and memory-centric optimizations. As a result,
they delivered 1.22x, 1.35x, 1.77x, and 1.34x performance improvement on BG/P, the
Cray XE6, and Intel Cluster, and a Fermi Cluster, respectively [30]. Recently, the radial
domain decomposition was optimized by Wang et al., which enables the GTC-P code
scale up to the full capability of Sequoia (98,304 nodes), and Mira (49,152 nodes) [32].
The performance was increased from nearly 50 billion particles per second per step
(BPST) to more than 100 BPST on 98,304 Sequoia nodes. GTC-P was also weak
scaling to 32,768 Fujitsu K nodes, and about 50 BPST was achieved [34].

In this work, the associated R&D has been focused toward the goal of delivering a
comprehensive and modern production version of the fusion GTC code capable of
greatly accelerating progress toward a realistic predictive capability for ITER experi-
ments. The technical advances are aimed at providing the computational foundations
needed for simulating nonlinear interactions of multiple physical processes covering
disparate spatiotemporal scales in burning plasmas. This is part of efforts to develop the

6 W. Zhang et al.

next generation applications for exascale supercomputing platforms. For vast porta-
bility and easy maintenance, the directive approach is chosen to lower the technical
requirement for students and researchers of fusion plasma physics.

GTC is one of a small but growing number of production applications run on
leadership class systems to employ compiler directives to access modern accelerated
node hardware. Use of compiler directive programming models such as OpenACC and
OpenMP is of increasing importance to achieve performance portability across multiple
target computer architectures. We believe the lessons learned in this paper will be
useful to other developers wishing to use directives for programming to accelerated
architectures.

This paper is organized as follows. Section 2 briefly introduces the benchmark
platforms of Titan, SummitDev, and Summit. Section 3 discusses the technical basis of
the GTC code, which is followed by the porting and optimization strategies in Sect. 4.
Section 5 reports the status of the porting and optimization. Section 6 shows the
performance benchmarks. The conclusions are given in Sect. 7.

2 Simulation Platforms: Titan, SummitDev, and Summit

All the benchmark runs in the following sections were performed on the Titan,
SummitDev, and Summit supercomputers, both hybrid massively parallel processing
(MPP) systems with CPUs and GPUs.

The Titan system at Oak Ridge National Laboratory (ORNL) is a Cray XK7 system
composed of 200 cabinets containing 18,688 compute nodes, each equipped with a 16-
core Advanced Micro Devices AMD Interlagos processor with 32 GB of memory and
an NVidia Kepler K20X GPU accelerator with 6 GB memory, with Gemini inter-
connect. Titan’s peak speed is in excess of 27 petaflops. The GPU attains a peak double
precision rate of 1.311 TF/s with main memory bandwidth of 250 GB/s and is con-
nected to the CPU by a PCI Express Gen 2.0 bus with an 8 GB/s data transfer rate [41].

SummitDev is an early access system at ORNL used by developers to prepare
applications for the 200 PF Summit system to be available in 2018. SummitDev is
comprised of 54 IBM Power8 S822LC compute nodes connected with a Mel-
lanox EDR Infiniband network, each node containing two IBM POWERS processors
with 10 cores and 80 hardware threads each. Each CPU is connected by an 80 GB/sec
NVLINK connection to two NVidia P100 GPUs with peak double precision rate of
5.312 TF/sec and with 16 GB of on-package high bandwidth memory with peak speed
of 732 GB/sec [42].

Summit is the next generation leadership supercomputer at ORNL, which is the
200PF system built upon IBM AC922 architecture. It consists of 4,608 nodes linked
with Mellanox EDR 100G InfiniBand network, each node host 2 22-core IBM Power 9
CPUs, 6 Nvidia Volta GPUs, 512 GB DDR4 memory and 96 GB HBM2 memory on
GPU.

Heterogeneous Programming and Optimization of GTC Using Directives 7

3 Scientific Methods of GTC

As a gyrokinetic particle-in-cell [35, 36] (PIC) code, GTC tracks individual charged
marker particles in a Lagrangian frame in a continuous phase-space [10, 11], whereas
the moments of particle distribution of different species (thermal ion, thermal electron,
fast ion, fast electron, etc.) are simultaneously computed on a stationary Eulerian field
mesh. This field mesh is also used to interpolate the local electromagnetic fields at the
marker particle positions in phase-space. The trajectories of charged marker particles
(guiding centers) in a strong magnetic field are calculated by integrators of the equa-
tions of motion in the self-consistent electromagnetic fields computed on the field
mesh. The number density and current density carried by each marker particle is then
projected to the field mesh through interpolations. The moments of the distributions of
species, such as number density, charge density and current density, are then calculated
by accumulating the projected quantities of marker particles. The electromagnetic fields
are then solved on mesh grids using proper combinations of Poisson equation,
Ampere’s law, Faraday’s law and force-balance equations with finite difference
methods [37] and finite element methods [38].

The PIC approach implemented in GTC dramatically reduces the computation
complexity from O(N?) to O(N + MlogM), where N is the number of particles, and M
is the number of grid points [34, 39]. The use of spatial grids and the procedure of
gyro-averaging reduce the intensity of small-scale fluctuations (particle noise). Particle
collisions can be recovered as a “sub-grid” phenomenon via Monte Carlo methods. The
system geometry simulated in GTC is a torus with an externally-imposed equilibrium
magnetic field [30]. In order to capture and take advantage of the characteristics of this
curvature geometry, GTC employs the magnetic flux coordinate system (i, 0, () [40],
where is the poloidal magnetic flux, 0 is the poloidal angle and (is the toroidal angle.
This is the base coordinate used for mesh construction, on which the equilibrium and
profiles are built. It is also used to construct an intermediate field-line-following
coordinate (Y, 0, &) by a simple transformation o = { — g(1)0, where ¢ is the tokamak
safety factor (representing magnetic field-line pitch). The introduction of such a field-
line coordinate system makes it convenient to decompose a vector into components
parallel and perpendicular to the direction of magnetic field and to separate the rapid
guiding center motion along the magnetic field lines from the slow motion across the
lines, which promotes the simplicity in theory analysis and efficiency in numerical
simulation. In particular, the field-line coordinate system drastically reduced compu-
tational complexity in the parallel direction. The Poisson equation can be simplified
and solved in the (i, 0) plane perpendicular to the equilibrium magnetic field in this
field-line coordinate system.

Physical quantities and variables in GTC can be divided into various categories.
The first one includes the field quantities bounded to the stationary mesh, such as
electrostatic potential, vector potential, magnetic fields, and accumulated number
density and current density distributions on mesh. Originally, the field solver was built
on the Portable, Extensible Toolkit for Scientific Computation (PETSc), which was the
best choice in the dual core and multiple code age and has been the major solver for
daily electromagnetic simulations. However, it gradually emerges as a serious

8 W. Zhang et al.

Hybrid Weak Scaling on TITAN, May2016

10" -
GTC, Particles Pushed / sec
TC w/ Hypre, Particles Pushed / sec
—Ideal Scaling
10 3
£
Q L2 e
7] wirripis
B 10°F 3
<
[Z]
]
e 8
8 10°F 3
o
I$
o 107F E
106 1 L L L
10" 102 10° 104 105 108
number of cores
10* x . T .
GTC, Poisson Time [s]
TC Poisson Time w/ Hypre [s]
X Total Grid Number _x10°5
al A
10 A x
o
e I I
102F - e i “" E
X i
—+ % Ly e
sor LKtz . .
10" 102 10° 104 10% 108

number of cores

Fig. 1. Phase-I weak scaling of GTC on Titan (top), with the number of nodes ranging from 32
to 16384 (88% of the whole machine). Both grid number and total particle number are increased,
but the number of particles per core remains constant. The Poisson time (bottom) shows the
improved performance due to the Hypre multigrid solver. The total grid number is also shown.

performance hot spot later in the many-core and heterogeneous architecture era due to
its lack of in-node accelerations for many-core architectures, for instance for general
purpose GPU and Intel Xeon Phi.

The other category includes marker particle related quantities for every species,
such as physical position, velocity or momentum, particle number and electric current
carried by each marker particle. Depending on the physics studied, a typical production
run in fusion plasma research may have multiple species with different governing
equations, such as thermal ions, thermal electrons, energetic ions, energetic electrons,
impurities, etc. Originally, each species had its own set of functions and subroutines
which are used to calculate the particle trajectories (push subroutine), manage and
exchange particle information between computing devices and processes (shift sub-
routine), and aggregate number density and current density as well as the thermal
pressure carried by each particle (charge subroutine).

GTC has successfully transferred the physical models into computing power by
employing a multi-level palatalization technique, which utilizes the Message Passing
Interface (MPI) to manage and balance the distributed computing resources cross

Heterogeneous Programming and Optimization of GTC Using Directives 9

computing nodes or devices on the top level, and utilizes shared memory multipro-
cessing (SMP) techniques via OpenMP and OpenACC/CUDA inside each node or
device on the lower level so that it can take the advantage of the hardware hierarchy of
modern massively parallel computers and reach a scale up to millions of conventional
CPU cores and heterogeneous accelerating devices such as NVidia GPU and Intel
Xeon Phi (MIC) chips.

4 Porting and Optimization Strategy

When porting the GTC code to the next generation supercomputing machines powered
by accelerators or co-processors such as the GPU or Intel Xeon Phi (MIC), significant
challenges are anticipated. Achieving high parallel efficiency on complex modern
architectures is in general a formidable task facing PIC codes because of potential fine-
grained data hazards, irregular data access, and low arithmetic intensity. Attaining high
performance becomes an increasingly complex challenge as HPC technology evolves
towards vast on-node parallelism in modern multi- and many-core designs. In order to
harness the computing power of advanced systems such as Summit, application codes,
including GTC, need to be carefully designed such that the hierarchy of parallelism
provided by the hardware is fully utilized. To this end, the multithreading capabilities
in the GTC code will be enhanced.

GTC was originally written in Fortran 90. The current GTC version has four
species of particles: thermal ions, fast ions, fast electrons and kinetic thermal electrons.
Many routines are shared between those particle types. In fusion simulations using
GTC, the number of particles per mesh cell varies from tens to thousands in a typical
production run for each particle species, which means that every cell would have O
(10)—0(103) of particles. In other words, the total number of particles is 0(10)—0(103)
larger than the total number of cells (with field data on cells). Most of the data, either
on disk or in memory, and runtime—including I/O time and computing time—are
accordingly consumed by the particle routines instead of field routines, which has been
consistent with our benchmarking results.

The preceding analysis and observations suggest that particle related routines are
the key for optimizing the PIC code like GTC. An appropriate effective strategy for
porting GTC to a CPU-GPU heterogeneous architecture would be as follows: migrate
all particle relevant data and computing onto the GPU. This approach will not only
enable the utilization of the most powerful computing unit of the heterogeneous
architecture but also minimize the data transfer between the CPU and the GPU which
can be the most challenge part when utilizing GPU in high performance computing.
Instead of porting each particle species one by one, all the particle related routines are
replaced with a set of unified push, charge and shift routines, which can then be ported
to the GPU using OpenACC. After the successful port of particle related part, the field
solvers will also be ported onto the GPU to boost the computing performance of field
solvers (Figs. 1 and 2).

10 W. Zhang et al.

OE+02

OE+02

OE+02

 poisson

OE+02 i fast

W electron

OE+02
“ charge

W shift

OE+02
W pusher

OE+01

OE+00

Fig. 2. The Phase I timing breakdown for GTC particle weak scaling study on Titan. Note: x-
axis is the number of nodes and y-axis the total wall-clock time. The GPU delivers up to 3.0X
speedup compared with the CPU.

Given the existing MPI-OpenMP framework, the most natural parallel framework
for GTC on CPU-GPU nodes would be using one MPI rank per GPU. Since the CPU
version is already parallelized using OpenMP, OpenMP threads should also be enabled
to utilize all the available CPU cores.

A large part of the performance optimization work will thus focus on multi-
threading for NVidia GPU and Intel Xeon Phi architectures (MIC), as well as current
multicore processors. Fortunately, the GTC code has been using multithreading for
more than a decade and has already had initial porting efforts to advanced heteroge-
neous architecture systems that deploy the GPU and Intel MIC.

To satisfy the needs for performance portability across multiple HPC system
architectures, GTC will initially support multiple programming models via conditional
compilation. For shared memory multi-core and Intel Xeon Phi many-core processors,
OpenMP parallel directives are used. Support for NVidia GPUs will be deployed using
OpenACC directives. An alternative conditionally compiled CUDA code path will be
available for cases when compilers are not yet able to generate well-performing code
for OpenACC. Later as compiler support becomes available, OpenMP 4.5 and 5.0
target directives will be evaluated as a potential performance portability solution.

GTC currently uses the DOE-funded PETSc toolkit to implement the electro-
magnetic parallel solvers. PETSc is a well-established MPI-based framework through
which many different solvers can be exercised without having to change the source
code. Advanced third-party packages, such as LLNL’s Hypre multigrid solver, can also
be used via the PETSc framework with a simple parameter change in a runtime con-
figuration file. Nevertheless, in spite of its successful use in GTC, PETSc has some

Heterogeneous Programming and Optimization of GTC Using Directives 11

limitations with respect to today’s advanced computer architectures. The main draw-
back is its lack of multithreading support, which especially impacts global PIC codes
like GTC since they run routinely in mixed-mode MPI + OpenMP. It would clearly be
beneficial to introduce OpenMP multithreading at the lowest level, for example, in the
PETSc functions. This would help us avoid having to deal with non-thread-safe issues
in higher-level functions.

In order to identify the hotspots and performance issues, code profiling was per-
formed to reveal performance characteristics and to identify performance issues. The
code’s timer instrumentation for major parts of the computation was revised to provide
performance data needed for the project (Fig. 3).

8.00E+02

7.00E+02

6.00E+02

“ poisson

5.00E+02

“ fast

4.00E+02 B electron

charge
3.00E+02

— _— W shift

2.00E+02

1.00E+02 r I—l
0.00E+00
GPU| CPU ‘GPU CPU| ‘GPU CPU GPU‘CPU GPU| CPU GPU CPU

32 128 ‘ 512 2048 8192 16384 ‘

W pusher

i.

Fig. 3. The Phase I timing breakdown for GTC hybrid weak scaling study on Titan. Here the
work per processor is increased as node count is increased. Note: x-axis is the number of nodes
and y-axis the total wall-clock time. GPU delivers up to 3.0x speedup compared with CPU.

5 GPU Porting Status

Baseline code versions were extracted from current production version of GTC (For-
tran) as a starting point of the code porting and optimization work. Firstly, all the
particle routines (push, charge and shift) for thermal ions, fast ions and fast electrons
and kinetic thermal electrons have been replaced by the set of unified routines, which
can operate on every species controlled by the calling parameters like:

push(species_name, and other parameters)
charge(species_name)
shift(species_name)

12 W. Zhang et al.

where species_name is the description keyword which can be any of “thermal-ion”,
“thermal-electron”, “fast-ion” or “fast-electron”. Such species, including both the
thermal and fast particles, are described by diverse physical models such as fully-
kinetic, gyrokinetic, drift-kinetic, or fluid-kinetic hybrid. This makes it possible that all
species benefit from optimizations, for example OpenACC optimizations for the GPU,
through changing only one subroutine.

Table 1. Phase II GPU and CPU timings (in seconds) from the preliminary SummitDev
benchmarks. For comparison, the same physics case, for both GPU and CPU, is shown for Titan.
All runs use 32 MPI ranks; GPU runs have 1 GPU/MPI rank; the SummitDev CPU run has 5
OMP/MPI rank; and the Titan CPU case has § OMP/MPI rank, however in the data shown here,
we assume an ideal scaling in OMP from 8 to 16 threads, and so the data here is the real time
divided by 2. This latter point is done to yield a lower bound in the possible speed up. Also, so as
to keep the GPU to MPI rank ratio unity, there are 2 ranks/CPU and 1 rank/CPU on SummitDev
and Titan, respectively; hence, SummitDev CPUs have a larger compute load.

SummitDev SummitDev Titan SummitDev Titan CPU

GPU GPU GPU CPU w/PETSc (Ideal

w/AmgX w/PETSc w/PETSc w/PETSc OMP)
Pushi 0.66 0.65 2.37 23.97 17.3
Shifti 0.26 0.26 0.61 21.07 7.8
Chargei 0.66 0.65 1.03 9.59 2.0
Electron 8.40 8.37 22.40 370.23 266.0
Fast 1.53 1.54 4.74 55.47 28.7
Poisson 2.64 14.67 10.19 9.54 8.1
Pushfield 0.27 0.27 0.53 0.26 1.0
Total 14.42 26.41 41.87 490.13 330.9

Secondly, these unified routines have been successfully ported to the GPU using
OpenACC directives supported by PGI compiler. GTC’s main data structure is allo-
catable arrays within modules. The “acc declare” directive was used in the module file
to specify all the arrays that the GPU needs to access. Then, the CPU code for allo-
cating the array typically will not require any change since the OpenACC runtime will
automatically allocate a GPU copy if an array is specified in “acc declare”. Whenever
data needs to be copied between the CPU and the GPU, the “acc update” directive was
used. Finally, the “acc host_data” directive was used to interoperate with the CUDA
kernels.

The unified push routine was ported to the GPU using OpenACC. Most of the push
time is spent in two loops. The first loop performs a gather operation from grid points
to particles. By porting this loop to CUDA, it was identified that using texture cache for
the grid arrays will lead to ~3X speedup compared to the base OpenACC version. So,
enabling texture cache in OpenACC will be an important next step for optimizing this
loop. The second loop updates the particle locations. It was identified that the memory
access of the private array “dx” was the main bottleneck. This “dx” array stores the
coefficients used to interpolate the local field quantities from the Euclidian meshes.

Heterogeneous Programming and Optimization of GTC Using Directives 13

The optimization was to move the array bound variable for dx to a module file as a
parameter and rewrite some of the loops involving dx using the array bound parameter.
Those changes enabled the compiler to put this array in local memory, which led to
~4X speedup compared to the base OpenACC version. So, this made a case for adding
texture cache support to OpenACC. Experimental support of texture cache is now
being added to PGI’s OpenACC compiler, and we will test it when available.

The unified charge routine was ported to the GPU using OpenACC. Because
different particles may write to the same grid points, the OpenACC atomic directive
was used to handle write collisions. This strategy looked to be working well.

The shift routine was ported to CUDA before the US DOE Center for Accelerated
Application Readiness (CAAR) program. Since shift routine is not modified by
developer often at all, the GTC team thinks it’s fine to use the CUDA version for this
routine. So, the CUDA port in previous version was used for shift routine.

A binning subroutine, based on the out-of-place counting sort algorithm, was
implemented in GTC (radial_bin.F90). The first version of the binning algorithm bins
all particle species in the radial dimension periodically to improve data locality for
charge deposition and field interpolation. For linear problems, where spatial change is
small in the radial dimension from one time step to the next, up to 10% overall speedup
is observed. It is expected that binning will speed up the performance significantly for
nonlinear problems. Later, a cell-based binning was developed and improved the
performance by 70% for electron subroutines. Overall, over 10% performance
improvement is observed by enabling the cell-based binning.

Both Array of Structure (AoS) and Structure of Array (SoA) data layouts for
particles have been implemented on a simplified version of GTC. For GPU, perfor-
mance analysis is conducted using CUDA profiling toolkit nvprof on a single Titan
node. Higher bandwidth and transactions are observed for the AoS layout. Overall no
significant speedup is obtained with the SoA data structure for all versions including
CPU, GPU (OpenACC) and GPU (CUDA) of the code. We thus decide to use AoS
layout for all particle species (as before). The SoA alternative will be available in the
future for architectures for which this data layout might improve performance.

Due to increasing relative costs of the Poisson field solve, the PETSc standard solver
has been replaced with several alternatives. The Hypre algebraic multigrid solver,
whether used standalone or as part of PETSc, runs up to 11X faster than the PETSc
standard solver on SummitDev. An early GPU-enabled version of Hypre gave up to 15X
improvement over PETSc, and furthermore the NVidia AmgX solver executed up to
27X faster than PETSc. The new solvers also scale much better than PETSc, an
increasingly important property as larger and more complex problems are attempted.

GTC uses explicit OpenACC directives to manage GPU data. Unified memory has
been introduced since CUDA 6.0 for reducing the complexity of GPU programming
and improving performance through data locality. Though typical unified memory
implementation has lower performance than explicit memory management, it is
interesting to port GTC to unified memory to evaluate the tradeoff between productivity
and performance. The initial experiments have suggested that using unified memory in
GTC incurred a significant performance penalty due to page fault of Fortran automatic
arrays. It is expected that the performance of the unified memory will be improved as
PGI provides optimized pool allocator.

14 W. Zhang et al.

Table 2. Phase II GPU speedups, for 15 time steps. SummitDev speedups are relative to the
SummitDev CPU w/PETSc & 5 OMP thread/rank case. The Titan GPU speedup is relative to the
Titan CPU w/PETSc & Ideal OMP case (see Table 1 caption). All GPU runs use 32 MPI, with 1
GPU/rank.

SummitDev GPU SummitDev GPU Titan GPU
w/AmgX, Speed up w/PETSc, Speed up w/PETSc, Speed up
Pushi 36.2 36.6 7.3
Shifti 825 80.5 12.7
Chargei 14.6 14.7 1.9
Pushe 27.4 27.6 14.0
Shifte 76.1 75.9 9.6
Chargee 10.2 10.2 2.7
Fast 36.2 36.0 6.0
Poisson 3.6 0.7 0.8
Pushfield 1.0 1.0 1.8
Total 34.0 18.6 7.9

6 Performance

A set of test problems was developed for evaluating performance (see scaling studies
below). The physics case [21] in the 2013 Physical Review Letters by Wang et al. was
prepared as a base case to measure improvements in performance. This choice is
appropriate since it is a good representation of future production runs and GTC’s
capabilities, since it employs all particle species, electromagnetic capabilities, experi-
mental profiles and realistic tokamak equilibrium.

6.1 Solver Performance Improvement

The GTC Poisson solver currently runs on the CPU. Though it is presently not the most
time-consuming part of GTC simulations, the solver time requirements have become
more significant since other parts of the code have been accelerated using GPUs. We
have replaced the standard PETSc solver with a Hypre multigrid solver. This solver is
threaded to effectively use the CPUs and is also scalable to many compute nodes.
Figure 1 shows comparative timings of the PETSc solver and the Hypre multigrid
solver for a representative set of GTC test cases. The Hypre solver for these cases is
~4X faster than the standard PETSc solver and has better scaling properties.

6.2 Scaling Performance

Two sets of weak scaling studies were carried out on Titan up to nearly the full system
(16,384 nodes; at the time of this study, many Titan nodes were unavailable, making it
impossible to run on all 18,688 nodes). The first test set is called “particle weak scaling
study”, where we fix the grid size, but scale the total number of particles. The second set
of tests is called “hybrid weak scaling study”, where we scale both the grid size and total
number of particles. The first study holds the number of particles per MPI rank and the
number of grid cells per MPI rank nearly constant, thus reflecting a conventional weak

Heterogeneous Programming and Optimization of GTC Using Directives 15

scaling study; the second study is a more realistic scaling study based on typical pro-
duction run of the code: grid size is proportional to the square root of number of nodes.
For both sets of weak scaling study, the number of particles per processor is fixed at 3.2
million. Compared with CPU (16 cores AMD 6274), GPU (NVidia K20x) has boosted
the overall performance by 1.6-3.0X. The decrease of the performance speedup in large
processor counts is mainly due to the increased portion of the non-GPU accelerated
subroutines as well as MPI time. These tests were conducted in May 2016 (Fig. 4).

GTC SummitDev / TITAN CPU Benchmark (32 MPI, 15 Time Steps, w/ PETSc)

2000 1.0 ® Pushfield
23.8

® Poisson
= fast

® electron
1500 = chargei
= shifti

® pushi

1000

Time (s)

500

Summitdev SummitDev TITAN CPU, TITAN CPU, 8 TITAN CPU,
CPU, 1 CPU, 5 1 OMP/MPI OMP/MPI 16 OMP/MPI
OMP/MPI1 OMP/MPI1

GTC SummitDev / TITAN GPU Benchmark (32 MPI, 32 GPU, 15 time steps)

50 ® Pushfield
¥ Poisson
® fast

® chargee
® shifte

® pushe

= chargei
® shifti

® pushi

Time (s)

Summitdev GPU w/ Summitdev GPU w/ TITAN GPU w/
amgX PETSc PETSc

Fig. 4. The Phase II timing breakdown for GTC performance study on SummitDev and Titan
for 15 time steps and 32 MPI processes. Note that in order to keep the GPU to MPI ratio unity,
there are 2 ranks/CPU and 1 rank/CPU on SummitDev and Titan, respectively. Hence,
SummitDev CPUs have a larger load. (Top) Pure CPU tests with a scan of OMP thread/rank.
(Bottom) GPU tests. All GPU runs use 1 GPU/rank.

16 W. Zhang et al.

6.3 Tests on SummitDev

To foreshadow the performance of GTC on the next generation supercomputer,
Summit, a set of dedicated benchmarks have been executed on SummitDev and Titan,
again employing the physics case used in Sect. 6.1. The scaling study of Sect. 6.2 was
executed in May 2016, and since then much effort has been placed into GTC’s GPU
optimizations, such as removing unnecessary CPU to GPU data transfer and an
increase in compiler support for texture, for use on Titan, and these additions have
subsequently been ported for use on SummitDev. Hence, the speedups presented here
are larger than those shown above.

Since SummitDev is a small prototype machine, 32 MPI processes were used per
test. Tests covered both pure CPU runs and GPU dominant heterogeneous runs.
Table 1 tabulates the results of 5 tests: 2 CPU runs, one on Titan and one on Sum-
mitDev, and 3 GPU runs, one on Titan and two on SummitDev. The CPU runs aimed
to utilize both MPI and OpenMP parallelization with realistic job configurations,
employing 8 OMP threads'/MPI rank on Titan and 5 OMP threads/MPI rank on
SummitDev. This configuration leads to there being 2 ranks/CPU and 1 rank/CPU on
SummitDev and Titan, respectively; hence, the SummitDev CPUs have a larger load in
these runs, which explains why the SummitDev CPU timings are not as dramatically
better than the Titan CPU timings. The GPU runs used 1 GPU/MPI rank and no
OpenMP. Again, two GPU runs were carried out on SummitDev, each with a different
library to solve the Poisson equation. One used PETSc, and the other used AmgX, the
latter of which can take advantage of GPU acceleration. The Titan GPU run also uses

50.000 Poisson
fast

40.000 10719 chargee

shifte
4744

pushe

chargei

shifti

time (s)

pushi

Summitdev GPU w/ AMGX TITAN GPU w/ PETSc

Fig. 5. The Phase II timing breakdown for GTC performance study on SummitDev and Titan
for 15 time steps and 32 MPI processes.

! The timings for the TITAN CPU w/PETSc case in Table 1 assume an ideal scaling in OMP threads
from 8 threads to 16. i.e. the times presented in Table 1 for this case are those of the § OMP threads
case, but they are divided by 2. The motivation for this is to set a lower bound in the possible GPU
speedup attainable in TITAN.

Heterogeneous Programming and Optimization of GTC Using Directives 17

PETSc to solve the Poisson equation. With AmgX, the total number of particles pushed
per second on the SummitDev GPU run is 1.29 x 10°.

The tabulated data is also presented in Fig. 4. The upper panel shows CPU only
tests on both SummitDev and Titan for a range of OMP threads/MPI rank. The scaling
from 8 to 16 OMP threads/MPI rank in Titan was poor. This is in part due to there
being a decrease in efficiency when using OMP threads across cores on Titan—hence we
assumed an ideal scaling from 8 to 16 OMP threads/MPI rank in Table 1 to obtain a
lower bound in the possible speedup attainable. The lower panel presents the GPU
timing data (Fig. 5).

Table 2 shows the GPU speedups obtained. SummitDev GPU speedups are relative
to the SummitDev CPU case with 5 OMP threads/MPI rank, and Titan GPU speedups
are relative to the Titan CPU case with ideal OMP scaling from 8 to 16 threads/MPI
rank. The overall speedups were 34.0 and 18.6 on SummitDev, for the AmgX and
PETSc libraries, respectively, and 7.9 on Titan. The most notable speedups came from
the particle push and shift routines on SummitDev, with a roughly 36 and 82 times
speed up for the ion push and shift, respectively; and a roughly 27 and 76 times speed
up for the electron push and shift, respectively. The high speedup factors are to large
degree enabled by the very effective use of texture cache as described earlier, as well as
need to further optimize the OpenMP threading version for CPU. Moreover, the uti-
lization of the AmgX library decreases the Poisson time by 5.5 times. It is noteworthy
that the SummitDev/GPU/AmgX to Titan/PETSc performance ratio is about 3X,
roughly in line with the 4X flop rate ratio and 3X memory bandwidth ratio of Sum-
mitDev vs. Titan GPUs.

6.4 Performance and Scalability on Summit

For testing the performance and scalability on Summit and the early science applica-
tions thereafter, a set of test problems was developed for evaluating performance. The
physics simulation reported in [21] was prepared as a base case to measure improve-
ments in performance. As shown in Table 3 and Fig. 6. GTC CPU-only runs scale
almost perfectly up to 928 nodes (about 20% of the whole Summit) in the weak scaling
test (i.e., by keeping constant number of particles per node). The simulation on 928
nodes uses 2 x 10°, i.e., 1 million grids and 2 x 10'! particles utilizing 2/3 of the
GPU memory. GTC simulations using all GPUs and CPUs also show good scaling,
with a ~50% efficiency at 928 Summit nodes when compared with the ideal scaling.
The GTC speed up from CPU-only to GPU + CPU is over 20 at 928 Summit nodes,
leading to an unprecedented speed of one trillion particle pushes in 2 s wall-clock time.
Furthermore, GTC performance on each Summit GPU is about 8 times faster than each
Titan GPU. Finally, as part of the Summit acceptance benchmark simulations, pre-
liminary results of GTC running on 4576 Summit nodes (by Dr. Wayne Joubert of
OLCF) show good scaling and similar performance, as shown in Fig. 7. The impres-
sive GTC performance on Summit would enable integrated simulation of multiple
physical processes.

18 W. Zhang et al.

Table 3. Wall-clock time for one trillion particle pushes in the GTC weak scaling test on
Summit.

Summit nodes | 16 64 256 512 928
GPU + CPU 5843 | 1537 499| 292| 2.00
CPU only 2167.56 | 525.98 | 150.45 | 71.53 | 41.76

m GPU
1000 = = perfect GPU
= A CcPU
s
§ = » perfect CPU
= 100
[Z]
-
Q
[
S
E 10
ko]
(=%
(]
£
1
10 100 1000

node number

Fig. 6. Wall-clock time for one trillion particle pushes in the GTC weak scaling test on Summit.

Weak Scaling on Summit

% Particles Pushed/sec % Ideal Scaling

particles pushed / sec (10*9)

50 100 500 1000 5000

number of nodes

Fig. 7. Phase-II weak scaling of GTC on Summit, with the number of nodes ranging from 32
nodes to 4576 nodes (almost the whole machine). Total particle number are increased by
increasing the number of particles per node.

Heterogeneous Programming and Optimization of GTC Using Directives 19

7 Conclusion

We have successfully restructured the current production version of gyrokinetic tor-
oidal code (GTC) to a more modularized format with unified routines for all particle
species, including thermal ions, thermal electrons, fast ions and fast electrons. This is
followed by the optimizations using OpenACC directives to enable the GPU acceler-
ations, which is also relatively friendly for fusion physics researchers and students.
Other techniques have also been introduced to boost the performance to a higher level,
which includes the binning technique where particle data storage is optimized for
access. Hypre and Amgx have been adopted as alternatives to the PETSc field solver,
which make the code benefit from the accelerations of many core CPUs (Hypre) and
GPUs (AmgX).

Realistic profiles and parameters from fusion experiments have been used in GTC
benchmarks to provide insights into technical interests and scientific significance. The
strong and weak scaling studies have been performed and the overall speedup is about
2-3 times with a very good scalability on the whole Titan; and on SummitDeyv it shows
an overall speedup of about 34 times. The real physics tests on Summit machine have
also been conducted to tackle the self-consistent energetic particle physics in fusion
plasmas, especially for ITER. These tests showed impressive scaling properties that
reaches roughly 50% efficiency on 928 nodes which is 20% of total nodes of Summit.
The GPU + CPU speed up from purely CPU is over 20 times, leading to an
unprecedented speed.

Acknowledgments. The authors would like to thank Eduardo D’Azevedo for his many useful
suggestions in the optimizations. This work was supported by the US Department of Energy
(DOE) CAAR project, DOE SciDAC ISEP center, and National MCF Energy R&D Program
under Grant Nos. 2018YFE0304100 and 2017YFE0301300, the National Natural Science
Foundation of China under Grant Nos. 11675257, and the External Cooperation Program of
Chinese Academy of Sciences under Grant No. 112111KYSB20160039. This research used
resources of the Oak Ridge Leadership Computing Facility (OLCF) at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-000R22725.

References

Lee, W.W.: Phys. Fluids 26, 556 (1983)

Lee, W.: J. Comput. Phys. 72, 243 (1987). ISSN 0021-9991

Littlejohn, R.G.: J. Plasma Phys. 29, 111 (1983)

Brizard, A., Hahm, T.: Rev. Mod. Phys. 79, 421 (2007)

Hahm, T.: Phys. Fluids (1958-1988) 31, 2670 (1988)

Frieman, E., Chen, L.: Phys. Fluids (1958-1988) 25, 502 (1982)

Rogister, A., Li, D.: Phys. Fluids B: Plasma Phys. (1989-1993) 4, 804 (1992)

Lin, Z., Chen, L.: Phys. Plasmas (1994-present) 8, 1447 (2001)

Lin, Y., Wang, X., Lin, Z., Chen, L.: Plasma Phys. Controlled Fusion 47, 657 (2005)
Holod, I., Zhang, W.L., Xiao, Y., Lin, Z.: Phys. Plasmas 16, 122307 (2009)

Liu, P., Zhang, W., Dong, C., Lin, J., Lin, Z., Cao, J.: Nucl. Fusion 57, 126011 (2017)

AN S R U ol

—_—

20

12.
13.
14.
15.
16.

17.
18.

19.
20.
21.
22.
23.
24.
25.
26.
217.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.
38.

W. Zhang et al.

Lin, Z., Hahm, T.S., Lee, W.W., Tang, W.M., White, R.B.: Turbulent transport reduction by
zonal flows: massively parallel simulations. Science 281, 1835 (1998)
http://phoenix.ps.uci.edu/GTC

http://www.iter.org

Lin, Z., Holod, 1., Chen, L., Diamond, P.H., Hahm, T.S., Ethier, S.: Phys. Rev. Lett. 99,
265003 (2007)

Xiao, Y., Lin, Z.: Turbulent transport of trapped electron modes in collisionless plasmas.
Phys. Rev. Lett. 103, 085004 (2009)

Zhang, W., Lin, Z., Chen, L.: Phys. Rev. Lett. 101, 095001 (2008)

Zhang, W., Decyk, V., Holod, L., Xiao, Y., Lin, Z., Chen, L.: Phys. Plasmas 17, 055902
(2010)

Zhang, W., Holod, 1., Lin, Z., Xiao, Y.: Phys. Plasmas 19, 022507 (2012)

Zhang, C., Zhang, W, Lin, Z., Li, D.: Phys. Plasmas 20, 052501 (2013)

Wang, Z., et al.: Radial localization of toroidicity-induced alfven eigenmodes. Phys. Rev.
Lett. 111, 145003 (2013)

Cheng, J., et al.: Phys. Plasmas 23, 052504 (2016)

Kuley, A., et al.: Phys. Plasmas 22, 102515 (2015)

Peng, J., Zhihong, L., Holod, 1., Chijie, X.: Plasma Sci. Technol 18, 126 (2016)
McClenaghan, J., Lin, Z., Holod, I., Deng, W., Wang, Z.: Phys. Plasmas 21, 122519 (2014)
Liu, D., Zhang, W., McClenaghan, J., Wang, J., Lin, Z.: Phys. Plasmas 21, 122520 (2014)
Lin, Z., Hahm, T.S., Ethier, S., Tang, W.M.: Size scaling of turbulent transport in
magnetically confined plasmas. Phys. Rev. Lett. 88, 195004 (2002)

Meng, X., et al.: Heterogeneous programming and optimization of gyrokinetic toroidal code
and large-scale performance test on TH-1A. In: Kunkel, J.M., Ludwig, T., Meuer, H.W.
(eds.) ISC 2013. LNCS, vol. 7905, pp. 81-96. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38750-0_7

Wang, E., et al.: The gyrokinetic particle simulation of fusion plasmas on Tianhe-2
supercomputer. In: Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems (ScalA) 2016, International Conference for High Performance Computing,
Networking, Storage and Analysis (SC2016), Salt Lake City, USA (2016)

Madduri, K., et al.: Gyrokinetic toroidal simulations on leading multi- and manycore HPC
systems. In: Proceedings of International Conference on High Performance Computing,
Networking, Storage and Analysis, SC 2011 (2011)

Madduri, K., Im, E.J., Ibrahim, K.Z., Williams, S., Ethier, S., Oliker, L.: Gyrokinetic
particle-in-cell optimization on emerging multi- and manycore platforms. Parallel Comput.
37(9), 501-520 (2011)

Wang, B., et al.: Kinetic turbulence simulations at extreme scale on leadership-class systems.
In: Proceedings of International Conference on High Performance Computing, Networking,
Storage and Analysis, SC 2013, no. 82 (2013)

Ethier, S., Adams, M., Carter, J., Oliker, L.: Petascale parallelization of the gyrokinetic
toroidal Code. LBNL Paper LBNL-4698 (2012)

Tang, W., Wang, B., Ethier, S.: Scientific discovery in fusion plasma turbulence simulations
at extreme scale. Comput. Sci. Eng. 16, 44 (2014)

Dawson, J.M.: Rev. Mod. Phys. 55, 403 (1983)

Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. CRC Press, Boca
Raton (2004)

Xiao, Y., Holod, 1., Wang, Z., Lin, Z., Zhang, T.: Phys. Plasmas 22, 022516 (2015)
Feng, H., et al.: Development of finite element field solver in gyrokinetic toroidal code.
Commun. Comput. Phys. 24, 655 (2018)

http://phoenix.ps.uci.edu/GTC
http://www.iter.org
http://dx.doi.org/10.1007/978-3-642-38750-0_7
http://dx.doi.org/10.1007/978-3-642-38750-0_7

39.

40.
41.

42.

Heterogeneous Programming and Optimization of GTC Using Directives 21

Ethier, S., Lin, Z.: Porting the 3D gyrokinetic particle-in-cell code GTC to the NEC SX-6
vector architecture: perspectives and challenges. Comput. Phys. Commun. 164, 456458
(2004)

White, R.B., Chance, M.S.: Phys. Fluids 27, 2455 (1984)

Joubert, W., et al.: Accelerated application development: the ORNL Titan experience.
Comput. Electr. Eng. 46, 123-138 (2015)

Vergara Larrea, V.G., et al.: Experiences evaluating functionality and performance of IBM
POWERS+ systems. In: Kunkel, J.M., Yokota, R., Taufer, M., Shalf, J. (eds.) ISC High
Performance 2017. LNCS, vol. 10524, pp. 254-274. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-67630-2_20

http://dx.doi.org/10.1007/978-3-319-67630-2_20
http://dx.doi.org/10.1007/978-3-319-67630-2_20

	Heterogeneous Programming and Optimization of Gyrokinetic Toroidal Code Using Directives
	Abstract
	1 Introduction
	2 Simulation Platforms: Titan, SummitDev, and Summit
	3 Scientific Methods of GTC
	4 Porting and Optimization Strategy
	5 GPU Porting Status
	6 Performance
	6.1 Solver Performance Improvement
	6.2 Scaling Performance
	6.3 Tests on SummitDev
	6.4 Performance and Scalability on Summit

	7 Conclusion
	Acknowledgments
	References

