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ABSTRACT

For the study of high-frequency electromagnetic waves in tokamaks, an electromagnetic simulation model, in which the ion dynamics is described
by a six-dimensional Vlasov equation and the electron dynamics is described by a drift kinetic equation, is formulated and implemented in the
global gyrokinetic toroidal code (GTC). Analytic dispersion relations are derived in reduced systems and compared with various theories to verify
the model. Linear simulations of a generalized ion Bernstein wave and ion cyclotron emission are verified by comparing the GTC simulation
results with analytic dispersion relation theory and magnetoacoustic cyclotron instability theory, respectively, in cylindrical geometry.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0090168

I. INTRODUTION

There are a variety of high-frequency waves excited by energetic par-
ticles in fusion plasmas, such as compression Alfv�en eigenmodes (CAE),
global Alfv�en eigenmodes (GAE), and ion cyclotron emission (ICE),
recently observed in many tokamaks.1–10 Many new phenomena arising
from high-frequencymodes needmore experimental, theoretical, and sim-
ulation research to understand their effects on plasma confinement and
their potential roles as diagnostic tools for a-particles in burning plasmas.

CAEs and GAEs typically have a frequency close to the ion gyro-
frequency. They can be driven by super- Alfv�enic energetic particles and
are frequently observed in the NSTX-U and DIII-D tokamak experi-
ments with low magnetic fields. The 3D hybrid MHD-kinetic code
HYM,11 in which fast ions are simulated using the particle-in-cell (PIC)
method and full-orbit equations of motion, has been used in simulations
of CAE and GAE excitation and stabilization in the NSTX-U.12,13 ICEs,
on the other hand, are usually excited due to magnetoacoustic cyclotron
instability (MCI), in which the compression Alfv�en wave frequency is
close to the harmonics of the energetic ion gyrofrequency. The basis for
diagnostic exploitation of the ICE has been greatly strengthened by
recent nonlinear simulations using fully kinetic ions and fluid electrons
in a slab geometry.14 Such simulations have confirmed that ICE inten-
sity scales linearly with concentration of energetic ions (nf =n0, where nf
is the energetic ion density and n0 is the electron density), which agrees
with the measurement in the JET tokamak.15–17 Therefore, ICE

potentially offers a unique diagnostic tool for the a-particles produced
by a fusion reaction and is planned to be used in future deuterium-
tritium experiments in the ITER tokamak.18 These local simulations of
the ICE in a simplified geometry, however, cannot address some key
physics, such as mode structure, the time evolution, and the dependence
on the fast-ion distributions, as observed in the DIII-D experiments.9

To simulate high-frequency waves whose frequency is close to or
higher than the ion cyclotron frequency, a fully kinetic ion model is
needed to resolve the ion cyclotron motion. An electromagnetic, fully
kinetic, PIC simulation model has been used in EPOCH19 and
iPIC3D20 simulations of the ICE21 and magnetic reconnection,20 respec-
tively, using Cartesian coordinates for slab geometry. In space plasma
simulations, there are also several electromagnetic models in which ions
are fully kinetic, such as GeFi22 and AIKEF.23 In tokamak plasma simu-
lations, however, accurate description of the toroidal geometry is essen-
tial for the study of resonant excitation and mode structures, which is
absent in the models mentioned above. The kinetic-MHD toroidal
codes HYM and M3D-K24 use an MHD model for thermal plasmas
and a gyrokinetic model for energetic particles to describe the macro-
scopic behavior of plasmas, although the kinetic effects of thermal plas-
mas can in principle be incorporated. In previous gyrokinetic toroidal
code (GTC)25 simulations, the Boris push has been implemented for
integrating the full particle orbit in cylindrical26 and toroidal geome-
tries.27 In the electrostatic simulation using fully kinetic ions, a linear
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dispersion relation and nonlinear particle trapping have been verified
for a lower hybrid wave (LHW)28 and an electrostatic ion Bernstein
wave (IBW).29 The frequency and mode structure in simulations agree
well with those of theoretical prediction.30 GTC simulations using fluid
ions and drift kinetic electrons have also been carried to study the LHW
linear mode conversion and absorption in the toroidal geometry.31

In this work, we extend the GTC simulation in the toroidal
geometry to the electromagnetic simulation model, in which the ion
dynamics is described by a six-dimensional Vlasov equation and the
electron dynamics is described by a drift kinetic equation. An analyti-
cal dispersion relation is derived in two reduced systems with massless
fluid electrons. We implement the model in the GTC code and carry
out linear simulations of waves propagating in the perpendicular (to
an equilibrium magnetic field) direction, in which the electron
response can be neglected. In these simulations, the compressional
Alfv�en wave and the generalized IBW32 frequency are verified using
an analytical dispersion relation. Then, simulations of both thermal
and energetic ions are carried out for the ICE excitation. Consistent
with analytic theory,33 GTC simulation results show that the ICE lin-
ear growth rate is approximately proportional to the square-root of
the concentration of the energetic ions (nf =n0), and that different
cyclotron harmonics have comparable growth rates.

The remainder of this paper is organized as follows. Section II
describes the formulation of the kinetic simulation model for high-
frequency waves in toroidal geometry. The analytic dispersion rela-
tions in reduced systems are derived and compared with a fully kinetic
model in Sec. III. The verification of GTC simulations of the general-
ized IBW dispersion relation and the excitation of ICE is presented in
Sec. IV. Finally, Sec. V presents the conclusion and discussion.

II. SIMULATION MODEL

To study high-frequency electromagnetic waves in a tokamak, we
develop a new electromagnetic simulation model with fully kinetic
ions and drift kinetic electrons. In Sec. IIA, we use a Vlasov equation
in six-dimensional phase space to describe the ion dynamics. In Sec.
II B, we employ a drift kinetic equation to describe the electron
dynamics. Then, field equations, including Poisson’s equation, the par-
allel Ampère’s law, and the electron perpendicular force balance equa-
tion are used to close the system in Sec. II C.

A. Fully kinetic ions

For fully kinetic ions, the dynamics is governed by a Vlasov equa-
tion in six-dimensional phase space:

Lfi r; v; tð Þ ¼ 0: (1)

Here r; v; t are the particle position, velocity, and time, respectively; fi
is an ion distribution function; and L is a nonlinear propagator, which
can be decomposed into an equilibrium part L0 and a perturbed part
dL, L ¼ L0 þ dL:

L0 ¼
@

@t
þ v � $þ qi

mic
v � B0 � $v; (2)

dL ¼ qi
mi

dEþ 1
c
v � dB

� �
� $v; (3)

where qi andmi are the ion charge and ion mass, B0 is the equilibrium
magnetic field, and dE and dB are the perturbed electric field and

perturbed magnetic field, respectively. The ion distribution function is
also decomposed into an equilibrium part and perturbed part as
f ¼ fi0 þ dfi. The equilibrium distribution fi0 obeys

L0fi0 ¼ 0: (4)

The solution of this equation is any distribution function of constants
of motion, e.g., uniform isotropic Maxwellian and modified slowing
down distribution used in this work. Defining the particle weight as
wi ¼ df i=fi, we obtain the weight evolution equation:

dwi

dt
¼ � 1� wi

fi0
dLfi0: (5)

The ion motion in the phase space under self-consistent electromag-
netic fields is given by

dv
dt
¼ qi

mi
dEþ 1

c
v � B

� �
; (6)

dr
dt
¼ v: (7)

We use the Boris scheme in magnetic coordinates to push ions in the
GTC code.27 The perturbed number density dni and current density
dji can be obtained from the velocity moments of dfi, i.e.,

dni ¼
ð

dfidv; (8)

dji ¼ qi

ð
vdfidv: (9)

Here, the particle charge and current are deposited onto the surround-
ing eight grid points in the 3D space using linear interpolation.34

B. Drift kinetic electrons

The electrons are described by the drift kinetic equations.35

Using the gyrocenter position X, parallel velocity vjj, and magnetic
moment l as independent variables in five-dimensional phase space,
the drift kinetic equation is

Lgfe X; vjj;l; tð Þ ¼ 0; (10)

where fe is the electron distribution function and Lg is the gyrocenter
propagator in symplectic form.35 Lg can be decomposed into an equi-
librium part Lg0, a first-order linear part dLg1, and a second-order
nonlinear part dLg2 as Lg0 þ dLg1 þ dLg2:

Lg0 ¼
@

@t
þ

vjj
B0

B�0 þ
cb0
qeB0
� l$B0

� �
� r � l

meB0
B�0 � $B0

@

@vjj
;

(11)

dLg1 ¼ vjj
dB?
B0
þ cb0
qeB0
� qe$d/þ l$dBjj
� �� �

� $

þ
�
� l
meB0

dB? � $B0 �
B�0

meB0
� qe$d/þ l$dBjj
� �

� qe
cme

@dAjj
@t

�
@

@vjj
; (12)

dLg2 ¼ �
dB?
meB0

� qe$d/þ l$dBjj
� � @

@vjj
; (13)
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where B� ¼ B�0 þ dB?; B�0 ¼ B0 þ B0vjj
Xe

$� b0, and dB? ¼ $?
� dAjjb0
� �

. B0 ¼ B0b0 is the equilibrium magnetic field; Xe is the
electron cyclotron frequency; qe and me are the electron charge and
electron mass, respectively; and d/; dBjj, and dAjj are the perturbed
electrostatic potential, perturbed parallel magnetic field, and parallel
vector potential, respectively. Then, the distribution function is
decomposed into an equilibrium part and a perturbed part as
fe ¼ fe0 þ dfe. The equilibrium distribution fe0 satisfies

Lg0fe0 ¼ 0: (14)

fe0 is approximated as a Maxwellian distribution function by neglecting
electron finite Larmor radius effects and equilibrium parallel flow, assum-
ing the effects of the equilibrium current are not important for the high-

frequency modes such as ICE: fe0 ¼ n0ð me
2pTe0
Þ3=2exp � mev2jjþ2lB0

2Te0

� �
. n0

and Te0 are the equilibrium electron density and electron temperature,
respectively. From Eqs. (10) and (14), we have

Lg0dfe þ dLg1fe0 þ dLg1dfe þ dLg2fe0 þ dLg2dfe ¼ 0: (15)

Defining weight as we ¼ dfe=fe, the weight evolution equation can be
written as

dwe

dt
¼ Lgwe ¼ �

1� weð Þ
fe0

dLg1 þ dLg2
� �

fe0: (16)

The equations of particle motion corresponding to Eq. (10) are given
in Appendix A of Bao’s paper.35

We keep only the leading linear and nonlinear terms based on
the ordering: ujje0 ¼ 1

n0

Ð
vjjfe0dv � 0, kjj � k?, k?c=xpe � 1, dne=n0

� dPjje=Pjje � dBjj=B0 � dB?=B0, rn0=n0 � rTe0=Te0 � 1=aminor ,
rB0=B0 � 1=R, a=R < 1. Here, xpe is the electron plasma frequency;
kjj and k? are the absolute values of the parallel and perpendicular
wave vectors, respectively; and a and R are the tokamak minor radius
and major radius, respectively. We then integrate Eq. (15) in the gyro-
center velocity space to derive the electron continuity equation:

@dne
@t
þ B0 � $

n0duejj
B0

� �
þ B0vE � $

n0
B0

� �

� n0 v� þ vEð Þ � $B0

B0
þ
cb0 � $dBjj

B2
0

� $P?e0
qe

þ dB? � $
n0duejj
B0

� �
þ B0vE � $

dne
B0

� �

þ
cb0 � $dBjj

B2
0

� $dP?e
qe
¼ 0; (17)

where duejj ¼ 1
n0

Ð
vjjdfedv is the perturbed parallel velocity; dPjje

¼ me
Ð
vjj2dfedv and dP?e ¼

Ð
dfelB0dv are the perturbed parallel

and perpendicular pressures, respectively; P?e0 ¼
Ð

lB0fe0dv ¼ n0Te0

is the equilibrium perpendicular pressure; vE ¼ cb0�$/
B0

is the E� B

drift velocity; v� ¼ b0�$ dP?eþdPjjeð Þ
n0meXe

is the perturbed diamagnetic drift

velocity; and
Ð
dv ¼ 2pB0

me

Ð
dvjjdl. Equation (17) is solved on the spa-

tial grids using finite difference method for perturbed quantities and
B-spline interpolation for equilibrium quantities.34 Similarly, we inte-
grate Eq. (15) based on the same ordering to obtain the parallel
momentum equation:

n0
@duejj
@t
þ qen0

me
b0 �$d/þ qen0

mec

@dAjj
@t
þ B0

me
b0 �$

dPjje
B0

� �

þ
B0 �$dBjj
meB2

0
P?e0 þ

qedne
me

b0 � rd/þ qedne
mec

@dAjj
@t

þ qen0
meB0

dB? �$d/þ dB?
me
�$

dPjje
B0

� �
þ B0vE �$

n0duejj
B0

� �
¼ 0:

(18)

C. Field equations

In the particle simulation, the plasma is treated as a set of
computational particles interacting with each other through self-
generated electromagnetic fields. To close the system, therefore, we
need to solve the field equations. The electrostatic is solved by the
Poisson’s equation for fully kinetic ions and drift kinetic
electrons:35

1þ
x2

pe

X2
e

 !
r2
?d/�

x2
pe

X2
e

x2
pe

c2
d/

1þ 0:5be

¼ �4p qidni þ qedne � qe
be

2þ be

dP?e
Te

� �
�

x2
pe

X2
e

x2
pe

c2
v

1þ 0:5be
;

(19)

where be ¼ 8pn0Te=B0
2. The parallel vector potential is solved by the

parallel Ampère’s law (kjj � k?):

r2
?dAjj ¼ �

4p
c

jijj þ qen0duejj
� �

: (20)

Finally, the compressible magnetic perturbation is solved from the per-
pendicular electron force balance equation,35

dBjj ¼
4p

B0 1þ 0:5beð Þ n0qev� n0qed/� dP?eð Þ: (21)

Here, the effective potential v for the perturbed Lorentz force is
defined35 as

$2
?v ¼ � 1

n0qec
$? � dji? � B0ð Þ: (22)

The perturbed electric field is defined by the perturbed scalar and vec-
tors potential:

r2
?A? ¼ �$dBjj � b̂0; (23)

dE ¼ �$ d/� 1
c
@dA
@t

: (24)

Now, we complete the formulation of the fully kinetic ion model for
electromagnetic simulations. These field equations are solved by GTC
in a field-aligned mesh36 using either finite difference method34 or the
finite element method.37

III. ANALYTIC DISPERSION RELATION IN REDUCED
SYSTEMS

In order to verify the simulation model given in Sec. II, we derive
a corresponding linear dispersion for two reduced systems. Here, we
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consider uniform ambient magnetic field and uniform equilibrium
plasma density and temperature profiles. Furthermore, we reduce the
drift kinetic electrons to massless cold fluid electrons, retaining
only the linear terms. Then, Eqs. (17), (18), and (21) reduce, respec-
tively, to

@dne
@t
¼ �n0b̂0 � $duejj; (25)

@dAjj
@t
¼ �cb̂0 � $d/; (26)

dBjj ¼
4pn0qe
B0

v� d/ð Þ: (27)

Using the quasi-neutrality condition, Poisson’s equation [Eq. (19)]
reduces to

d/ ¼ B2
0

4pn20q2e
qidni þ qedneð Þ þ v: (28)

Since electrons move much faster than ions in the parallel direction,
we can neglect the perturbed parallel ion current. Then, from the par-
allel Ampère’s law, we have

duejj ¼
c

4pen0
r2
?dAjj: (29)

A. Two fluid, cold plasmas

In the first reduced system, we treat ions as cold fluid plasmas
and qi ¼ �qe ¼ e. The ion continuity equation is

@dni
@t
þ n0$? � dui? ¼ 0: (30)

Using the ion dynamic equation and normal mode ansatz, @@t ¼ �ix;
$ ¼ ik; we easily derive the following equation:

dui? ¼
ixqi

mi x2 � Xi
2

� � dE? þ
iXi

x
dE? � b̂0

� �
: (31)

Combining the definition of perpendicular ion current,

dji? ¼ n0qidui?; (32)

together with Eqs. (22)–(31), and using the non-trivial solution condi-
tion, we derive the dispersion relation as

S0 � njj
2

� �
S0 � n?

2
� �

� D02 ¼ 0; (33)

where

S0 ¼ xpi
2

Xi
2

1

1� x=Xið Þ2
� S� 1; (34)

D0 ¼ �xpe
2

xXe
þ xpi

2Xi

x x2 � Xi
2

� � � D: (35)

S and D have the same definitions as those in Stix’s cold fluid
theory:38

L ¼ 1�
X
s

xps
2

x x� Xsð Þ ;

R ¼ 1�
X
s

xps
2

x xþ Xsð Þ ;

S ¼ 1
2

Rþ Lð Þ;

D ¼ 1
2

R� Lð Þ:

The difference between S0 and S comes from the fact that we
have dropped the displacement current in our model. In Eq. (33), the
factor S0 � n?2 corresponds to S� n2 in the ideal MHD theory. The
difference comes from the fact that we assume kjj � k? in the parallel
Ampère’s law and the perpendicular force balance equation, and we
also drop some coupling terms between the parallel and perpendicular
wave vectors.

When we derive the parallel dispersion relation, therefore, we use
the assumption n? 	 njj instead of letting n? ¼ 0,

D2

n2? � S
¼ y2S2

n2? � S
�

y2n2jj
n2?
� 0;

where y ¼ x
Xi
. Furthermore, we have

k2jjv
2
A=X

2
i ¼ y2= 1� y2

� �
; (36)

which is the dispersion relation of a shear Alfv�en wave modified by an
ion cyclotron frequency.

Considering the perpendicular dispersion relation, we let njj ¼ 0
directly and easily obtain

k2?v
2
A=X

2
i ¼ y2; (37)

which is a compressional Alfv�en wave (CAW).

B. Fully kinetic ions and massless fluid electrons

If we retain only the leading order linear terms for the fully
kinetic ion model, then Eq. (5) reduces to

dwi

dt
¼ � 1

fi0
dLfi0: (38)

Using the unperturbed particle orbit integration method, combining
Eqs. (2), (3), (8), and (9), and using a uniformMaxwellian distribution
function

fi0 ¼ ni0
mi

2pTi

� �3=2

exp �
mi v2? þ v2jj
� �
2Ti

0
@

1
A
;

we derive the ion density:

dni ¼ F
lJ2l

k?v?=Xi
v?

" #
dEx þ F iJlJ

0
l v?

� 	
dEy þ F J2l vjj

h i
dEz; (39)

and the ion current:

dji ¼ r � dE: (40)

The conductivity tensor can be written as
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r ¼
rxx rxy rxz

ryx ryy ryz

rzx rzy rzz

0
B@

1
CA

¼ qiF

l2J2l
k?v?=Xið Þ2

v2? i
lJ 0l Jl

k?v?=Xi
v2?

lJ2l
k?v?=Xi

vjjv?

�i lJ 0l Jl
k?v?=Xi

v2? J 02l v
2
? �iJlJ 0l vjjv?

lJ2l
k?v?=Xi

vjjv? iJlJ 0l vjjv? J2l v
2
jj

0
BBBBBBBB@

1
CCCCCCCCA

2
666666664

3
777777775
;

where F � � �½ 
 ¼ i
Ð Ð 2pqi

Ti
fi0
P

l
ð���Þ

x�lXi�kjjvjj v?dv?dvjj, Jl is a Bessel func-

tion of the first kind of order l, and the argument of Jl is
n ¼ k?v?=Xi.

Now, using Eqs. (22)–(29), (39) and (40), we derive the dispersion
relation in which waves propagate perpendicular and parallel to B0,
respectively. In the perpendicular direction, the dispersion relation is

b2

0:5bi
þ F1

 !
F3

0:5bi
� b2

0:5b
þ F4
0:5b

� �
1þ F2ð Þ ¼ 0; (41)

where

b ¼ k?vthi
Xi
¼ k?qi;

bi ¼ 2
vthi
vA

� �2

¼ 8pn0Ti

B0
2 ;

F1 ¼
Xþ1
l¼0

2� d lð Þð Þy2
y2 � l2

exp �b2ð Þ l2

b2
þ 2 b2 � lð Þ

� �
Il � 2b2Ilþ1

� �
;

F2 ¼
Xþ1
l¼1

2l
y2 � l2

exp �b2ð Þ l2

b2
� l

� �
Il þ lIlþ1

� �
;

F3
0:5bi

¼
Xþ1
l¼1

4l=bi

y2 � l2
exp �b2ð ÞlIl;

F4
0:5bi

¼
Xþ1
l¼0

4� 2d lð Þð Þy2=bi

y2 � l2
exp �b2ð Þ l � b2ð ÞIl þ b2Ilþ1

� �
;

vthi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
and vA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
0=ð4pn0miÞ

p
are, respectively, the ion

thermal speed and Alfv�en speed; d is the Dirac delta function; Il the
first kind modified Bessel function of order l; and the argument of Il is
b2. If the ion temperature is very low, we have b� 1, bi � 1. Then,

using the asymptotic formula Il b2ð Þ � 1
l!

b2
2

� �l
6 b2l; we retain only

the lowest-order terms, and Eq. (41) reduces to

y2 � b2

0:5bi

 !
b2

0:5bi

1
1� y2

¼ 0: (42)

Then, y2 ¼ 2b2=bi is equivalent to x ¼ k?vA, which corresponds to a
compressional Alfv�en wave in fluid theory. We plot the dispersion rela-
tion numerically according to Eq. (41), as shown in Fig. 1 for parameter
bi ¼ 0:1.

The wave descried by Eq. (41) is a generalized electromag-
netic IBW (ion Bernstein wave, blue solid line).32 It becomes a

compressional Alfv�en wave in the long wavelength limit, and an
electrostatic IBW in the short wavelength limit. dBjj, coming from
the polarization currents, provides a perpendicular inductive elec-
tric field, which causes an electron density perturbation via the
dE� B0 drift effect, as shown in Poisson equation Eq. (28). The
1þ F2ð Þ term in the dispersion relation comes from dBjj, which is
much less important to the dispersion relation in the short wave-
length limit. Therefore, F3 ¼ 0 is approximately satisfied, which is
very close to the electrostatic IBW dispersion relation. In fact, in
the short wavelength limit, the quasi-neutrality condition fails.
The electrostatic IBW is recovered exactly when we retain r2

?d/
in Poisson’s equation [Eq. (19)].

In the parallel direction, assuming n ¼ k?v?=Xi � 1, we have

Jn nð Þ ¼
1; n ¼ 0;

6n=2; n ¼ 61;

0 others;

Jn
0 nð Þ ¼

�n=2; n ¼ 0;

61=2; n ¼ 61;

0 others:

8><
>:

8><
>:

Therefore, the dispersion relation can be written as

FIG. 1. Perpendicular dispersion relation: (a) over a large wavevector range; (b)
zoom in to show the coupling between CAW and the ion cyclotron frequency.
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Z3y � 1ð Þ 1� Z1ð Þ þ 1
bi

f2

y2
� Z1

 !
b2

0:5bi
� Z2y

 !
¼ 0; (43)

where

Z xð Þ ¼ 1ffiffiffi
p
p
ðþ1
�1

exp �s2ð Þ
s� x

ds;

f ¼
ffiffiffi
2
p

kjjvthi
Xi

;

Z1 ¼ Z
y � 1

f

� �
� Z

y þ 1
f

� �� �.
2fð Þ;

Z2 ¼ Z
y � 1

f

� �
þ Z

y þ 1
f

� �� �.
2fð Þ;

Z3 ¼ Z
y � 1

f

� �
þ Z

y þ 1
f

� �
� 2Z

y
f

� � !.
2fð Þ;

Z4 ¼
y � 1

f
Z

y � 1
f

� �
þ y þ 1

f
Z

y þ 1
f

� �
þ 2

� �.
2:

Similarly, at very low ion temperatures, f� 1, and only the lowest-
order terms are retained. Equation (43) now reduces to

b2

0:5bi
� y2

1� y2

 !
v2A
2v2thi
� y2

1� y2

 !
� y2

y2

1� y2

 !2

¼ 0; (44)

which is exactly the same as Eq. (33) from the fluid theory. The kinetic
dispersion relation b ¼ 5fffiffi

2
p ; bi ¼ 0:02 is shown in Fig. 2. Compared

with the MHD theory, the kinetic dispersion relation has a lower real
frequency and a Landau damping effect.

IV. VERIFICATION OF ICE SIMULATION
IN PREPENDICULAR DIRECTION

In this section, we verify the simulation results for the generalized
IBW dispersion relation and the excitation of ICE using analytic the-
ory and simple geometry. The model described in Sec. II is imple-
mented in the GTC. The simulations are performed in cylindrical
geometry with a uniform magnetic field and uniform equilibrium
profile.

We first verify the simulation results of the generalized IBW disper-
sion relation. We carry out an initial value simulation with parameters
r0 ¼ 0:3164 a, r1 ¼ 0:3465 a, Dt ¼ 0:0558X�1i , and xpi ¼ 10:05Xi.
Here r0 is the inner boundary, r1 is the outer boundary, a is the minor
radius, andDt is the time step. Moreover, we select only the poloidal har-
monic m¼ 0 of the perturbed fields in every time step to mimic slab
geometry for verification. In the first simulation, we begin from a ran-
dom perturbed density and retain modes in the full range of the k? spec-
trum. The initial random perturbations decay after 18 ion cyclotron
periods. The spectral signals are shown in Fig. 3, where the background
color represents the mode amplitudes. The analytic dispersion relation is
also plotted in Fig. 3 as solid blue lines, which agree very well with the
strongest spectral signals from the simulations. In the next simulation,
we give an initial perturbed density profile dni

n0
¼ 10�5sin 6� 2p r�r0

r1�r0
� �

and filter the field at every time step to allow only a single mode with a
k? ¼ 12p=Dr component. By scanning the value of qi, we obtain the
dispersion relation for various k?qi, shown in Fig. 3 as blue circles,

FIG. 2. Parallel dispersion relation from the model with fully kinetic ions and mass-
less fluid electrons: (a) frequency and (b) growth rate as a function of parallel wave
vector.

FIG. 3. The dispersion relation. GTC simulation results, keeping all k? modes and
only a single k? mode, are represented by the color and blue circles, respectively;
solid lines are the analytic kinetic solution.
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which agree with the analytic solution. These simulation results provide
a solid verification of the physical and numerical models for the ICE sim-
ulation in the perpendicular direction. Notably, the signals, especially for
high cyclotron harmonics, are very weak when k?qi is very small. It
might come from the cyclotron damping effect of bulk ions.

Next, the simulation results for the ICE excited by energetic par-
ticles are verified by comparing them with Dendy’s analytic theory,33

which holds the view that ICE arises from a magnetoacoustic cyclo-
tron instability (MCI). The MCI is driven by free energy in the phase
space of energetic particles, whose distribution in velocity space exhib-
its a natural population inversion. The a-particles produced by fusion
reaction have, at birth, an isotropic shell distribution in the velocity
space. The fast ions produced by the neutral beam injection (NBI)
have an anisotropic shell distribution at birth. However, the shell dis-
tribution will relax to the slowing-down distribution at the collisional
timescale, which is much longer than the MCI excitation time.
Therefore, the fast ion distribution with the inverted population that
excites the MCI can be somewhere between the shell distribution and
slowing-down distribution. An isotropic (spherical) shell distribution
has been used in the analytic theory33 for the MCI excitation. Effects
of the spherical shell distribution with a finite thickness and the ring-
beam distribution with a perpendicular velocity spread have been
shown to affect the excitation and evolution of the MCI in the nonlin-
ear full-f simulations.21 These physical effects will be further studied in
our future nonlinear full-f simulations using the new simulation mod-
els described in Sec. II. For the linear df simulation reported in this
paper for the verification of our simulation model, we construct two
isotropic distribution functions based on a slowing-down distribution
function that has already been implemented in the GTC:

Ff 6 vð Þ ¼ nf
v6

C6

H vb � vð Þ
v3 þ v3c

and

Ff 4 vð Þ ¼ nf
v4

C4

H vb � vð Þ
v3 þ v3c

;

where H is Heaviside function, vc ¼ 1:5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tf =mf

p
, vb ¼ 2vc,

C6 ¼
Ð vb
0

4pv8
v3þv3c

dv ¼ 2
3 pðv6b � 2v3bv

3
c þ 2v6c lnð1þ v3b=v

3
c ÞÞ, and C4

¼
Ð vb
0

4pv6
v3þv3c

dv ¼ pv4b � 4pvbv3c þ 2
9 pv4c ð

ffiffiffi
3
p

p � 6
ffiffiffi
3
p

arctan vc�2vbffiffi
3
p

vc

� �
þ6 ln vb þ vcð Þ � 3 lnðv2b � vbvc þ v2c ÞÞ. We also use parameters
similar to those in the analytic theory: an energetic proton population
in deuterium plasmas with parameter values B0 ¼ 3:1 T, Ti ¼ 1keV,
Tf ¼ 3MeV, and n0 ¼ 2 � 1013cm�3. Other parameters are r0
¼ 0:3164 a, r1 ¼ 0:3465 a, a ¼ 0:4242R, and ðr1 � r0Þ=qi ¼ 1227.
The initial perturbed density profile is dni

n0
¼ 10�5sin 32p r�r0

r1�r0
� �

and

only the k?qi ¼ 32p=ðr1 � r0Þ ¼ 0:0819 component is retained in
the simulation. Using these parameters, the linear simulations find the
MCI instability.

To ensure that the simulation results are physical, we have veri-
fied the conservation of the equilibrium particle kinetic energy as a
check for the accuracy of the time integration. More importantly, we
have performed numerical convergences for the number of particles
per cell and the size of time step size as shown in Fig. 4. The mode
x ¼ 4Xi ¼ 2Xf is retained and the Ff 6 distribution function is used

in these simulations. Considering the converged simulation results, we
use 2048 grids in the radial direction, approximately average 6400
thermal ions and 640 fast ions per radial grid, and a time step of Dt
¼ 2:0� 10�2X�1f to obtain accurate results in all subsequent simula-
tions. Now we scan the value of nf =n0 to obtain the relation between
growth rate and concentration of energetic ions, which is shown in
Fig. 5. The GTC simulation results of the growth rate for the x ¼ 2Xf

FIG. 4. Numerical convergence studies showing the dependence of the MCI growth
rate on: (a) the number of fast ions per radial grid Nf ; and (b) the size of the time
step Dt.

FIG. 5. Dependence of the ICE growth rate on the concentration of energetic ions.
The red solid line is from Dendy’s analytic theory.31 Orange points and blue squares
are from the GTC simulation using slightly different distribution functions.
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mode are plotted as orange points for Ff 6 and blue squares for Ff 4.
Their fitted straight lines (the orange dashed line and the red solid
line) show that the growth rate scales linearly as

ffiffiffiffiffiffiffiffiffiffiffiffi
nf =n0

p
, which

agrees with the analytic theory and other PIC simulations.14,39

However, there is a difference between the slope in our simulation
using Ff 6 and the slope using analytic theory. Our results using Ff 4
have a slope similar to that of the analytic theory. The Ff 6 distribution
has a greater inverse population than the Ff 4 distribution and a higher
effective temperature than the Tf ¼ 3MeV used in the analytic theory;
and therefore, the orange line has a steeper slope. It is worth noting
that, when nf =n0 is very small (

ffiffiffiffiffiffiffiffiffiffiffiffi
nf =n0

p
� 0:01), the growth rates

from the simulations do not follow this linear scaling, implying the
existence of bulk ion cyclotron damping effects and confirming previ-
ous results.14 Selecting different k?qi modes in the simulation allows
the examination of various resonant frequencies: x ¼ 1; 2; 3; 4; 5Xf .
As shown in Fig. 6, linear growth rates for different harmonics of the
ICE are obtained from the fully kinetic simulations using Ff 6 for the
three values nf =n0 ¼ 0:5%; 1%; 2%. The results show that all harmon-
ics have similar growth rates for each concentration of energetic ions.

In future work, we will explore the MCI in relation to the ICE
excitation in fusion plasmas in toroidal geometry using nonlinear sim-
ulations, comparing the results with other nonlinear 2D simula-
tions.21,40 We will then validate our model by comparing simulation
results with experimental measurement results to study the ICE mode
structure, saturation,9 and amplitude modulation correlated with
edge-localized mode (ELM) activity.41

V. CONCLUSIONS AND DISCUSSION

A new electromagnetic simulation model, in which ion dynamics
is described by a six-dimensional Vlasov equation and electron
dynamics is described by a drift kinetic equation or massless fluid
equation, was formulated and implemented in the GTC code for simu-
lations of high-frequency waves in the toroidal geometry. Linear dis-
persion relations of such high-frequency waves in both perpendicular
and parallel directions were verified. Using a model with fully kinetic
ions and massless fluid electrons, we derived the general IBW disper-
sion relation in the perpendicular direction and kinetic shear Alfv�en
wave in the parallel direction, which confirms that our simulation
model faithfully preserves the high-frequency waves. Furthermore, the

simulation results of the ICE excitation in the cylindrical geometry
were verified by comparing them with analytic theory. The simulation
results recovered the important scaling of the MCI growth rate with
the fast ion concentration.

Furthermore, the nonlinear dynamics of high-frequency waves
(ICE, CAE, and GAE waves) will be studied using the new simulation
capability.

ACKNOWLEDGMENTS

The authors gratefully acknowledge helpful discussions with J.
Bao, A. Kuley, J. Y. Fu, and S. Y. Sun, as well as technical support
by the GTC team. This work was supported by the China National
Magnetic Confinement Fusion Science Program (Nos.
2017YFE0301300 and 2018YFE0304100) and by the U.S.
Department of Energy (DOE) Grant No. DE-SC0021316 and
SciDAC ISEP Center. This work used the High-Performance
Computing Platform of Peking University and the resources of the
Oak Ridge Leadership Computing Facility at Oak Ridge National
Laboratory (DOE Contract No. DE-AC05-00OR22725) and the
National Energy Research Scientific Computing Center (DOE
Contract No. DE-AC02-05CH11231).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Yangyang Yu: Conceptualization (equal); Data curation (lead);
Formal analysis (lead); Investigation (lead); Methodology (lead);
Project administration (lead); Software (supporting); Validation
(lead); Visualization (lead); Writing – original draft (lead); Writing –
review and editing (equal). Xishuo Wei:Writing – original draft (sup-
porting); Writing – review and editing (supporting). Pengfei Liu:
Writing – original draft (supporting); Writing – review and editing
(supporting). Zhihong Lin: Conceptualization (equal); Formal analy-
sis (supporting); Funding acquisition (lead); Investigation (support-
ing); Methodology (supporting); Resources (lead); Software (lead);
Supervision (lead); Writing – original draft (supporting); Writing –
review and editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1N. N. Gorelenkov, E. Fredrickson, E. Belova, and C. Z. Cheng, Nucl. Fusion 43,
228 (2003).

2N. N. Gorelenkov, E. Belova, H. L. Berk, C. Z. Cheng, E. Fredrickson, W. W.
Heidbrink, S. Kaye, and G. J. Kramer, Phys. Plasmas 11, 2586 (2004).

3D. Stutman, L. Delgado-Aparicio, N. Gorelenkov, M. Finkenthal, E.
Fredrickson, S. Kaye, E. Mazzucato, and K. Tritz, Phys. Rev. Lett. 102, 115002
(2009).

4E. D. Fredrickson, E. V. Belova, D. J. Battaglia, R. E. Bell, N. A. Crocker, D. S.
Darrow, A. Diallo, S. P. Gerhardt, N. N. Gorelenkov, B. P. LeBlanc, and M.
Podest�a, Phys. Rev. Lett. 118, 265001 (2017).

FIG. 6. Linear growth rates of different ICE harmonics for three fast ion concentra-
tions nf =n0 ¼ 0:5%; 1%; 2%.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 073902 (2022); doi: 10.1063/5.0090168 29, 073902-8

Published under an exclusive license by AIP Publishing

https://doi.org/10.1088/0029-5515/43/4/302
https://doi.org/10.1063/1.1689667
https://doi.org/10.1103/PhysRevLett.102.115002
https://doi.org/10.1103/PhysRevLett.118.265001
https://scitation.org/journal/php


5S. G. Thatipamula, G. S. Yun, J. Leem, H. K. Park, K. W. Kim, T. Akiyama, and
S. G. Lee, Plasma Phys. Controlled Fusion 58, 065003 (2016).

6B. Chapman, R. O. Dendy, K. G. McClements, S. C. Chapman, G. S. Yun, S. G.
Thatipamula, and M. H. Kim, Nucl. Fusion 57, 124004 (2017).

7L. G. Askinazi, A. A. Belokurov, D. B. Gin, V. A. Kornev, S. V. Lebedev, A. E.
Shevelev, A. S. Tukachinsky, and N. A. Zhubr, Nucl. Fusion 58, 082003 (2018).

8R. Ochoukov, V. Bobkov, B. Chapman, R. Dendy, M. Dunne, H. Faugel, M.
Garc�ıa-Mu~noz, B. Geiger, P. Hennequin, K. G. McClements, D. Moseev, S.
Nielsen, J. Rasmussen, P. Schneider, M. Weiland, and J. M. Noterdaeme, Rev.
Sci. Instrum. 89, 10J101 (2018).

9K. E. Thome, D. C. Pace, R. I. Pinsker, M. A. Van Zeeland, W. W. Heidbrink,
and M. E. Austin, Nucl. Fusion 59, 086011 (2019).

10E. D. Fredrickson, N. N. Gorelenkov, R. E. Bell, A. Diallo, B. P. Leblanc, and M.
Podest�a, Phys. Plasmas 26, 032111 (2019).

11E. V. Belova, N. N. Gorelenkov, and C. Z. Cheng, Phys. Plasmas 10, 3240
(2003).

12E. V. Belova, N. N. Gorelenkov, E. D. Fredrickson, K. Tritz, and N. A. Crocker,
Phys. Rev. Lett. 115, 015001 (2015).

13E. V. Belova, E. D. Fredrickson, J. B. Lestz, and N. A. Crocker, Phys. Plasmas
26, 092507 (2019).

14L. Carbajal, R. O. Dendy, S. C. Chapman, and J. W. S. Cook, Phys. Rev. Lett.
118, 105001 (2017).

15R. O. Dendy, K. G. McClements, C. N. Lashmore-Davies, G. A. Cottrell, R.
Majeski, and S. Cauffman, Nucl. Fusion 35, 1733 (1995).

16S. Cauffman, R. Majeski, K. G. McClements, and R. O. Dendy, Nucl. Fusion 35,
1597 (1995).

17G. A. Cottrell, V. P. Bhatnagar, O. D. Costa, R. O. Dendy, J. Jacquinot, K. G.
McClements, D. C. McCune, M. F. F. Nave, P. Smeulders, and D. F. H. Start,
Nucl. Fusion 33, 1365 (1993).

18K. G. McClements, R. D’Inca, R. O. Dendy, L. Carbajal, S. C. Chapman, J. W. S.
Cook, R. W. Harvey, W. W. Heidbrink, and S. D. Pinches, Nucl. Fusion 55,
043013 (2015).

19T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J.
Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers,
Plasma Phys. Controlled Fusion 57, 113001 (2015).

20S. Markidis, G. Lapenta, and Rizwan-uddin, Math. Comput. Simul. 80, 1509
(2010).

21B. Chapman, R. O. Dendy, S. C. Chapman, K. G. McClements, and R.
Ochoukov, Plasma Phys. Controlled Fusion 62, 095022 (2020).

22Y. Lin, X. Wang, Z. Lin, and L. Chen, Plasma Phys. Controlled Fusion 47, 657
(2005).

23J. M€uller, S. Simon, U. Motschmann, J. Sch€ule, K. H. Glassmeier, and G. J.
Pringle, Comput. Phys. Commun. 182, 946 (2011).

24G. Y. Fu, W. Park, H. R. Strauss, J. Breslau, J. Chen, S. Jardin, and L. E.
Sugiyama, Phys. Plasmas 13, 052517 (2006).

25Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Science 281,
1835 (1998).

26A. Kuley, Z. X. Wang, Z. Lin, and F. Wessel, Phys. Plasmas 20, 102515 (2013).
27X. S. Wei, Y. Xiao, A. Kuley, and Z. Lin, Phys. Plasmas 22, 092502 (2015).
28J. Bao, Z. Lin, A. Kuley, and Z. X. Lu, Plasma Phys. Controlled Fusion 56,
095020 (2014).

29A. Kuley, Z. Lin, J. Bao, X. S. Wei, Y. Xiao, W. Zhang, G. Y. Sun, and N. J.
Fisch, Phys. Plasmas 22, 102515 (2015).

30J. Lin, W. Zhang, P. Liu, Z. Lin, C. Dong, J. Cao, and D. Li, Nucl. Fusion 58,
016024 (2018).

31J. Bao, Z. Lin, A. Kuley, and Z. X. Wang, Nucl. Fusion 56, 066007 (2016).
32R. W. Fredricks, J. Plasma Phys. 2, 365 (1968).
33R. O. Dendy, C. N. Lashmore-Davies, and K. F. Kam, Phys. Fluids B 4, 3996
(1992).

34Y. Xiao, I. Holod, Z. Wang, Z. Lin, and T. Zhang, Phys. Plasmas 22, 022516
(2015).

35J. Bao, Z. Lin, A. Kuley, and Z. X. Wang, Phys. Plasmas 23, 062501 (2016).
36Z. Lin, S. Ethier, T. S. Hahm, and W. M. Tang, Phys. Rev. Lett. 88, 195004
(2002).

37H. Feng, W. Zhang, Z. Lin, X. Zhufu, J. Xu, J. Cao, and D. Li, Commun.
Comput. Phys. 24, 655 (2018).

38T. H. Stix, Waves in Plasmas (AIP, New York, 1992).
39B. C. G. Reman, R. O. Dendy, T. Akiyama, S. C. Chapman, J. W. S. Cook, H.
Igami, S. Inagaki, K. Saito, and G. S. Yun, Nucl. Fusion 59, 096013 (2019).

40L. Carbajal and F. A. Calder�on, Phys. Plasmas 28, 014505 (2021).
41N. A. Crocker, S. X. Tang, K. E. Thome, J. B. Lestz, E. V. Belova, A. Zalzali, R.
O. Dendy, W. A. Peebles, K. K. Barada, R. Hong, T. L. Rhodes, G. Wang, L.
Zeng, T. A. Carter, G. H. Degrandchamp, W. W. Heidbrink, and R. I. Pinsker,
Nucl. Fusion 62, 026023 (2022).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 073902 (2022); doi: 10.1063/5.0090168 29, 073902-9

Published under an exclusive license by AIP Publishing

https://doi.org/10.1088/0741-3335/58/6/065003
https://doi.org/10.1088/1741-4326/aa8e09
https://doi.org/10.1088/1741-4326/aac10e
https://doi.org/10.1063/1.5035180
https://doi.org/10.1063/1.5035180
https://doi.org/10.1088/1741-4326/ab20e7
https://doi.org/10.1063/1.5081047
https://doi.org/10.1063/1.1592155
https://doi.org/10.1103/PhysRevLett.115.015001
https://doi.org/10.1063/1.5116357
https://doi.org/10.1103/PhysRevLett.118.105001
https://doi.org/10.1088/0029-5515/35/12/I38
https://doi.org/10.1088/0029-5515/35/12/I22
https://doi.org/10.1088/0029-5515/33/9/I10
https://doi.org/10.1088/0029-5515/55/4/043013
https://doi.org/10.1088/0741-3335/57/11/113001
https://doi.org/10.1016/j.matcom.2009.08.038
https://doi.org/10.1088/1361-6587/aba368
https://doi.org/10.1088/0741-3335/47/4/006
https://doi.org/10.1016/j.cpc.2010.12.033
https://doi.org/10.1063/1.2203604
https://doi.org/10.1063/1.4826507
https://doi.org/10.1063/1.4929799
https://doi.org/10.1088/0741-3335/56/9/095020
https://doi.org/10.1063/1.4934606
https://doi.org/10.1088/1741-4326/aa92dc
https://doi.org/10.1088/0029-5515/56/6/066007
https://doi.org/10.1017/S0022377800003895
https://doi.org/10.1063/1.860304
https://doi.org/10.1063/1.4908275
https://doi.org/10.1063/1.4952773
https://doi.org/10.1103/PhysRevLett.88.195004
https://doi.org/10.4208/cicp.OA-2017-0139
https://doi.org/10.4208/cicp.OA-2017-0139
https://doi.org/10.1088/1741-4326/ab2ca2
https://doi.org/10.1063/5.0029616
https://doi.org/10.1088/1741-4326/ac3d6a
https://scitation.org/journal/php

	s1
	s2
	s2A
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	s2B
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	s2C
	d19
	d20
	d21
	d22
	d23
	d24
	s3
	d25
	d26
	d27
	d28
	d29
	d30
	d31
	d32
	d33
	d34
	d35
	s3A
	d36
	d37
	d38
	d39
	d40
	s3B
	d41
	d42
	s3B
	d43
	f1
	s3B
	d44
	s4
	f2
	f3
	s4
	f4
	f5
	s5
	l
	c1
	c2
	c3
	c4
	f6
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41



