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Abstract
The motional Stark effect (MSE) diagnostic has been a standard measurement for the magnetic
field line pitch angle in tokamaks that are equipped with neutral beams. However, the MSE data
are not always available due to experimental constraints, especially in future devices without
neutral beams. Here we develop a deep-learning based model (SGTC-QR) that can reconstruct
the safety factor profile without the MSE diagnostic to mimic the traditional equilibrium
reconstruction with the MSE constraint. The model demonstrates promising performance, and
the sub-millisecond inference time is compatible with the real-time plasma control system.

Keywords: deep learning, tokamak equilibrium reconstruction, safety profile,
artificial intelligence

(Some figures may appear in colour only in the online journal)

1. Introduction

In tokamak operations, accurate equilibrium reconstruction
is essential for reliable real-time control and realistic post-
shot instability analysis. The safety factor (q) profile, which
defines the magnetic field line pitch angle, is an important
quantity to be calculated in equilibrium reconstruction. The
popular reconstruction method, for example, that is used in
the equilibrium fitting (EFIT) code [1], uses the iterative
algorithm to minimize the total error between computed and
measured values of some key parameters such as the mag-
netic field line pitch angle [2]. The final reconstruction and
the subsequent physical analysis can depend sensitively on
the capability of measurements. EFIT traditionally used data
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from external magnetic measurements. For increased accur-
acy, internal measurements such as the magnetic pitch angle
from the motional Stark effect (MSE) [3] can be used to dra-
matically improve the accuracy of the equilibrium reconstruc-
tions. In this paper, we have followed the naming convention
at DIII-D National Fusion Facility for convenience, where the
magnetics-only EFIT reconstructions is called EFIT01 and the
magnetics+MSEEFIT reconstructions is called EFIT02. The
equilibria reconstructed by the EFIT01 and EFIT02 can lead
to different predictions for magnetohydrodynamics (MHD)
instability for the same discharge. For example, figure 1 shows
a comparison of the gyrokinetic toroidal code (GTC) [4,
5] simulation results of internal kink mode using the equi-
libria reconstructed by the EFIT01 and EFIT02, as com-
pared in figures 1(a) and (b), respectively, for the same shot
(#168973) at an identical time (4676 ms). Using the same
set of simulation control parameters (such as the time step
size and grid number), only equilibrium from the EFIT02
reconstruction with the MSE constraint leads to unstable cur-
rent driven instability, which is more consistent with the low
frequency long-lived modes observed from the Mirnov coil

1741-4326/23/086020+9$33.00 Printed in the UK 1 © 2023 The Author(s). Published on behalf of IAEA by IOP Publishing Ltd

https://doi.org/10.1088/1741-4326/acdf00
https://orcid.org/0000-0001-7486-0407
https://orcid.org/0000-0002-3991-872X
mailto:dongge@energysingularity.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-4326/acdf00&domain=pdf&date_stamp=2023-6-28
https://creativecommons.org/licenses/by/4.0/


Nucl. Fusion 63 (2023) 086020 X. Wei et al

measurements, as shown in figure 1(g). The reason for this
distinct difference in the current driven kink instability is that
the q profile from the EFIT02 is less than 1 near the axis,
while the minimum q value from the EFIT01 is larger than
1 as shown in figure 1(a). This example demonstrates that the
reconstruction from the EFIT02 (or other EFIT versions using
more constraints) is preferable to the EFIT01 for an accurate
physics analysis. A limitation of the EFIT02 is that the recon-
struction relies heavily on the measurement of the magnetic
pitch angle and radial electric field using the MSE diagnostic,
which relies on specific reference neutral beam settings [6, 7].
There is a significant portion of DIII-D shots where the MSE
diagnostic is unavailable, or only available for limited periods
of time during operation for the real-time EFIT (‘rtEFIT’) [8]
equilibrium reconstruction. Future fusion pilot plants might
need neutral beams solely for diagnostic purposes, bringing
additional unnecessary costs [9]. To address this long-standing
problem, it is desirable to build a model which uses available
diagnostic signals to reconstruct the q profile as accurately as
that in EFIT02.

The desired model should have three features. Firstly, the
model prediction should be accurate and performs better than
EFIT01. Secondly, it should be capable of using as many real-
time diagnostic signals as possible. We notice that many sig-
nals may correlate to the q-profile, but there is no easy way to
express explicitly any single signal (or a simple combination
of a group of signals) as a constraint of the Grad–Shafranov
solver. For example, the plasma rotation profile combined
with distinguishing features of current-driven instabilities and
Alfven Avalanches from the spectrogram of magnetic signals
can be correlated with constraints in the q profile, such as the
minimum q and the radial location of the q= 1 surface. Finally,
the model prediction should be fast. There have been many
studies aimed at fast equilibrium reconstruction, but it is gen-
erally hard to achieve computational speed and the integration
of physics-based information for improving accuracy at the
same time. Multiple acceleration methods have been imple-
mented in the EFIT framework, i.e. rtEFIT [8], P-EFIT [10],
and the machine learning model EFIT-AI [11]. The time scale
of the q-profile reconstruction should also be on the order of
or shorter than 1 ms to be compatible with the plasma con-
trol system (PCS). Traditional methods to improve the accur-
acy of q-profile reconstruction like the multi-step EFIT recon-
struction based on measured plasma instabilities such as that
described in [12] require time-costly manual investigations for
post-shot analysis. In this work, we have developed a deep-
learning basedmodel, which serves as the q-profile reconstruc-
tion module of the surrogate GTC framework (SGTC-QR), to
recover the q-profile reconstructed with the MSE constraint
(EFIT02). We demonstrate that the SGTC-QR result is bet-
ter than the traditional method when MSE is not considered
as a constraint (EFIT01). We should also point out that the
‘kinetic-EFIT’ that uses kinetic profiles as constraints provides
more accurate equilibrium including q-profile [2, 13, 14]. In
this paper, we demonstrate the q-profile reconstruction work-
flow using the EFIT01 and EFIT02 data, but it is also interest-
ing to study the machine learning algorithm to reproduce the
kinetic-EFIT q-profile in the future.

Figure 1. Comparison of GTC simulation results using equilibria
reconstructed by the EFIT01 and EFIT02 for DIII-D shot #168973
at time 4676 ms. The q profile (panel (a)) and shape of flux surfaces
(panel (b)) are compared. Panels (c) and (d) are the time history of
m = 1, n = 1 mode, and exponential linear growth is observed only
in the simulation result with EFIT02 equilibrium shown in panel
(d). Panels (e) and (f ) are poloidal mode structures of the perturbed
electrostatic potential at the end of the simulation. Panel (e) only
exhibits noise level fluctuations while panel (f ) shows the unstable
kink mode structure. Panel (g) shows the Mirnov coil spectrogram
from 4500 ms to 4800 ms in shot #168973, where low-frequency
long-lived perturbations can be observed.

In this work, we have built and tested a statistical model
based on a deep neural network, which takes as inputs the
measured plasma perturbation signals, combinedwith the real-
time EFIT results without the MSE constraints, to predict the
q profile. The model is trained on about 12 000 DIII-D EFIT02
reconstruction data. The output q profile is close to the EFIT02
results, which confirms that theMSE constraints are implicitly
included in the trained model. The sensitivity test on input
parameters has been carried out, showing the relative import-
ance of each parameter to the accurate q reconstruction. This
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model has been implemented as the SGTC q-Reconstruction
module (SGTC-QR). The outputs of the SGTC-QR provide
more accurate plasma equilibrium information for more accur-
ate instability analysis and predictive models in the PCS, such
as the SGTCMHD instability simulator [15] and fusion recur-
rent neural network (FRNN) disruption predictors [16]. The
inference time of the pre-trained surrogate models from the
SGTC-QR will be compatible with the PCS.

Machine learning and deep learning methods have previ-
ously been introduced for equilibrium reconstruction by solv-
ing the Grad–Shafranov equation [17, 18]. More recently,
the EFIT-AI model [11] and the deep-reinforcement learning
control [19] have demonstrated the capability for computing-
intensive, hard-to-model problems. We should note the dif-
ference between the current work and the previous deep
learning-based Grad–Shafranov solver [11, 17, 18]. The pre-
vious equilibrium reconstruction focused on finding the sur-
rogate model of a known physical equation, i.e. the Grad–
Shafranov equation, with given constraints. In this work, we
focus on the q-profile and investigate whether it is possible
to obtain a higher-quality q-profile reconstruction without the
important constraint of the MSE signal. The methodology of
this paper is similar to the recent works that use machine learn-
ing methods to predict the equilibrium related quantities and
the last closed flux surface (LCFS) [20, 21]. In other words,
themachine learning algorithm tries to recover the information
contained in theMSEmeasurements from othermeasurements
in the absence of a physical model, looking to the potential of
reducing the expensive physical diagnostics in the planning
and design of fusion pilot plants. In the future, the recovery of
other measurements can also be studied. A complete equilib-
rium reconstruction, including the flux surface shape, will also
be investigated.

In section 2, we describe the building and training details
of the SGTC-QR. The testing results of SGTC-QR and an
example of physical analysis based on the predicted q profile
are presented in section 3. The conclusions and future works
are presented in section 4.

2. Workflow and data for q profile reconstruction

The workflow of SGTC-QR is shown in figure 2. The real-
time measurements provide some global equilibrium paramet-
ers such as the total current, the stored energy, MSE (if avail-
able), and the perturbation signal such as the electron cyclo-
tron emission (ECE) and magnetic perturbations. Through the
offline or real-time EFIT, the 2D equilibrium is reconstruc-
ted, including the flux surface shape, q-profile, current pro-
file, pressure profile, etc. When the MSE measurement is not
available, we can incorporate all available equilibrium and per-
turbation signals in the SGTC-QR module to predict the best
q profile. Then these equilibrium profiles from SGTC-QR and
the 2D equilibrium quantities from EFIT are taken as input
by the stability models or predictors like SGTC or FRNN.
The stability estimations act as feedback to the control sys-
tems. And with the knowledge of real-time instability inform-
ation, the control system can actively modulate or mitigate the
instabilities.

The architecture of the SGTC-QR is shown in the lower
panel of figure 2. We select 16 diagnostic signals (listed in
table 1) as input for the SGTC-QR. The 0D and 1D signals
we have selected are widely accepted as the most important
parameters to determine the tokamak operation, the equilib-
rium quantities, and the pedestal shape. For each time step,
the electron density profile ne and electron temperature profile
Te are 1D functions on the Nr grid points of the normalized
square root of toroidal flux ρ. The magnetic perturbations are
a function of frequency ω and the other signals are scalar vari-
ables. The ne and Te are combined into a Nr ×Nr 2D feature
and fed into a set of Nc1 convolutional layers. The δB acts as a
1D feature of size Nω, and feeds into another set of Nc2 convo-
lutional layers. The scalar variables are fed in a set of Nf1 fully
connected layers. The output of the convolutional layers and
the fully connected layers are stacked together to go through
Nf2 fully connected layers. The final output layer has the size
of Nr, which corresponds to the q profile on grid points of ρ.
We use the convolutional neural networks for this task mainly
for two reasons, (1) it is proved that the neural networks can
approximate any functions given sufficient neural units [22].
And (2) the convolutional layers consist of small filters that are
sensitive to various local patterns. A filter is activated when it
sees a certain local pattern. Multiple convolutional layers will
capture the global and local patterns from spatial or temporal
signals or transform the features to signals. In this paper, the
convolutional layers are used to capture the relevant spatial
information from the 1D radial profiles and transform the lat-
ent representation to the radial q-profile.

The data for training and testing SGTC-QR are randomly
selected from the DIII-D shots #125000–180844. In total,
13 491 shots are picked, and 4521 of them are disruptive. A
total of 6780 shots are chosen for the training data set, with
2267 of them being disruptive; 3339 for the validation data set
with 1122 of them being disruptive and another 3372 for the
testing data set with 1132 of them being disruptive. The equi-
librium slices are evenly spaced and selected every 25ms from
these shots, as a result, each of them typically contains 110
time-sliced equilibriums on average. The models are trained
and tested in the PyTorch framework [23]. The ensemble
method is used to reduce stochastic errors. We build 40 differ-
ent networks, with different learning rate schedulers, and dif-
ferent hidden layer depths and widths. The mean-square-error
between the output q profile and the EFIT02 q profile is taken
as the loss function. Note that the training does not involve
any output from the EFIT01. The training process uses the
stochastic gradient descent optimizer, with a minibatch size of
4. The 40 networks are trained parallelly on the same training
data set. The whole training takes less than 1 h for one epoch
when training using one node with 128 CPUs and 4 GPUs on
NERSC’s Perlmutter computer. The training process would be
terminated when the average validation loss of the 40 networks
no longer drops in 1000 epochs to avoid overfitting.

3. Results

After the training is complete, five networks with the best
validation accuracy are chosen, and the average value of
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Figure 2. Upper panel shows SGTC workflow. Lower panel shows SGTC-QR workflow.

their outputs is taken as the prediction for the q profile. The
average prediction time is less than 1 ms, meaning this model
is compatible with the real-time PCSs. Figure 3 shows the dif-
ferences between the reconstructed q profile from the SGTC-
QR model and EFIT02, which is taken as the reference. The
average mean-square-error of SGTC-QR is 0.165, lower than
the average mean-square-error of the EFIT01 of 0.232 also
using EFIT02 as the reference. The median mean-square-error
of SGTC-QR (0.064) is also lower than that of EFIT01 (0.080).
The distribution of the mean-square-error of the q profile in
figure 3 shows that the SGTC-QR tends to have smaller errors.
The comparison shows that in general the SGTC-QR recon-
structed q profile is more accurate than that by the EFIT01.
q95, and qmin are two important features in the q profile that
can affect the physics near the edge and core in tokamaks. In
figure 4 we compare these two parameters between EFIT01
and SGTC-QR reconstructions, using the EFIT02 results as

reference true value. The deviation of the points from the y= x
line shows the difference of reconstructed q95 or qmin from the
EFIT02 results. From the two upper panels of figure 4, we
see that the q95 difference of SGTC-QR with the EFIT02 is
comparable to that of the EFIT01. In the lower two panels of
figure 4, the SGTC-QR qmin values are closer to the EFIT02
than that of the EFIT01, which indicates that the reconstruc-
tion in the core region is more accurate. This is also demon-
strated by the radial error distribution in figure 5. The errors
in each of the 128 radial points are calculated for all shots in
the test dataset and plotted in figure 5. It clearly shows that
both the average and median of the errors from the SGTC-
QR reconstruction are lower than the EFIT01 when ρ < 0.8.
The reason for the large error near the edge is as follows.
The q95 is taken as a constraint in the EFIT01 and EFIT02
reconstructions, which enforces the q95 value to be close to
the measured one during the iteration of the EFIT calculation.
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Table 1. Data used in training, validation, and testing of the SGTC-QR. ρ is normalized toroidal flux and ω is time frequency. The pedestal
height is set to 0 for L-mode shots.

Signal description Symbol Usage in SGTC-QR Shot number

Safety factor profile from EFIT02 q(ρ) Output 12 000 equilibriums from shot # 125000–180844
Safety factor profile from EFIT01 Not used
Electron temperature profile Te (ρ) Input
Electron density profile ne (ρ)
Mirnov spectrogram δB(ω)
Internal inductance Li
Plasma density ne0
Safety factor at 95% radial domain from EFIT01 q95
Plasma current Ip
Ratio of thermal to magnetic pressure β
Plasma stored energy WMHD

Input beam power Pin

Input beam torque Tin
Pressure profile pedestal height Pped

Temperature profile pedestal height Tped
Density profile pedestal height nped
Temperature profile pedestal width ∆T

Density profile pedestal width ∆n

Figure 3. Comparison of the mean squared error of EFIT01 q profile and SGTC-QR q profile, using EFIT02 q profile as true value. Data
are shown for the test dataset with 164 782 time slices from 3372 shots.

On the other hand, SGTC-QR only takes the q95 as an input
parameter, without using it as a constraint. Furthermore, the
q value at the separatrix is singular (infinity), and the recon-
struction in the EFIT02 (and of course also in the EFIT01)
is inaccurate near the separatrix. Therefore, it is very diffi-
cult for the deep-learning method to find the pattern of the
q profile from the EFIT02 near the separatrix. In fact, the
errors rapidly increase when ρ approaches 1, especially at
the last three radial points, which are omitted in figure 5
(and included in the calculation of figure 3). If we ignore
the region for the last three points, the error of the q profile
from SGTC-QR would be even smaller than that shown in
figure 3.

From the above results, we conclude that the reconstructed
q profile outperforms the EFIT01 and successfully

incorporates the MSE constraint implicitly. The underlying
reason for the successful reconstruction is revealed through
a sensitivity study. In this study, we contaminate one of the
inputs by directly setting it to 0 each time, and then measure
the prediction accuracy on the testing data set. The increase
of the median and average mean-square-error value from the
original one reflects the relative importance of each input
parameter. The result is shown in figure 6, where the title of
each bar labels the contaminated input. The lines are arranged
in the order of decreasing average mean-square-error, and
all the errors are normalized so that the median and average
mean-square-error of the original SGTC-QR prediction is 1.
We also show the error from the EFIT01 q profile reconstruc-
tion in the figure. Figure 6 shows the most important input for
successful q reconstruction is the plasma current, the internal
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Figure 4. Comparison of q95 and qmin given by the EFIT01 and SGTC-QR, using q95 and qmin from the EFIT02 as the reference. Data are
shown for the testing dataset with 164 782 time slices from 3372 shots. Colors indicate the number of points.

Figure 5. Comparison of mean-square-error of the EFIT01 and SGTC-QR at each radial point. The q-profile from EFIT02 is used as the
reference true value (the last three radial grid points are not shown).

inductance, and the normalized beta. The importance of these
factors to the q profile makes physical sense because they
directly affect the current and pressure profile, and directly
determine the solution of the Grad–Shafranov equation that
determines the q profile. On the other hand, we should point
out that the ‘less importance’ does not necessarily imply less
physical relation between the signals and the q-profile. There
could be redundancy among the input signals and the inclu-
sion of one relevant signal may not increase the accuracy of

QR significantly with the presence of all other signals. It will
be an interesting future study to find an algorithm to reveal
the correlation of different signals and the rigorous physical
dependence of q-profile on each of the signals. It is remark-
able that no additional input signal significantly deteriorates
the performance of SGTC-QR, demonstrating the advantage
of deep-learning based methods that have much stronger cap-
ability of drawing useful information from large size of input
data. It is also worth noting that the Mirnov coil signal is not
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Figure 6. Sensitivity study on testing data set. All mean-square-error data are normalized to the results of the SGTC-QR model.
Orange/blue bars show the normalized median/mean mean-squared-error when the labeled signal is contaminated. Longer bar indicates
higher sensitivity in the marked input signal.

very important to the q-profile reconstruction. One possibility
is that the dominant fluctuations shown from the Mirnov coils
may come from the instability that does not strongly depend
on the q-profile and the 0D magnetic fluctuations are just not
enough to correlate with the q-profile data. Another possibility
is that the Mirnov signal is redundant when other signals are
taken as input of the model. This result implies that we should
add more input signals in the future like spatial distribution of
the fluctuations and study the redundancy in the input features
that determine the q-profile. It is also notable that the q95 value
and the magnetic fluctuation signal do not make much differ-
ence in the improvement of the reconstruction. This indicates
that the SGTC-QR does not take the information from the q95
factor efficiently, and it potentially causes an increase in the
error in the edge region. In principle, we can add q95 as a term
in the loss function or increase the weight of the edge region
in the loss function to increase the accuracy in the edge region.
But for the neural network architectures we have used in this
study, we have found a tradeoff between the accuracy in the
core region and the edge region. Because the SGTC modules
developed previously and in the near future will mainly focus
on instabilities in the core including Alfven eigenmodes, kink
mode, and neo-classical tearing modes (NTM), here we prefer
to keep the core accuracy. A possible way to improve the

precision of the construction is to use two different neural
networks to predict the q-profile in the core region and edge
region, respectively. We can still use the current neural net-
work structure and training method in the core region. And
the model for the edge reason needs re-design and increase
the penalty of q95 error during training. Finally, a method is
needed to connect the two regions smoothly to form the com-
plete q-profile.Wewill leave this as an open issue, and develop
a separate model to target the q profile reconstruction near the
edge region in future work. In the future, we will also perform
the uncertainty quantification to show the quality of the recon-
struction due to the defect in the training data at different radial
locations.

In figure 7, we show the q-profile reconstruction for two
typical cases that appeared in previous publications. The line
for SGTC-QR is from the model with the best validation score
among all 40 models. The left panel is the equilibrium in the
benchmark case for the internal kink mode [5], in which the
EFIT01 reconstruction is invalid. Both EFIT02 and SGTC-QR
show normal shear, and the q profile near the axis is very sim-
ilar, which is important for calculating the correct kink drive.
The right panel is the equilibrium in the benchmark case for the
reversed-shear Alfven eigenmode [24]. The EFIT02 q profile
shows normal shear, but the SGTC-QR shows reversed shear,
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Figure 7. Comparison of q profile reconstructions for shot #141216 [5] and # 142111 [24].

with qmin ≈ 3.1. The inconsistency between the two q profiles
does not mean the failure of the machine learningmodel. More
accurate analysis with human calibration indicates that the
q-profile should have a reversed shear with qmin = 3.18 [24]. In
this case, the EFIT02 q profile deviates from the q distribution
that is considered more physical by human experts. By learn-
ing on the whole training dataset, the robust machine learn-
ing model successfully predicts the correct q profile according
to the learned data distribution. In this sense, the SGTC-QR
has the potential to warn and correct the q profile if the q pro-
file reconstruction in the test dataset is inaccurate and devi-
ates from the typical data distribution. On the other hand, the
SGTC-QR q-profile in figure 7(b) shows the irregular shape
near the axis. It is unclear at this point whether this shape
comes from the pattern in the EFIT02 data, or it is from the pre-
diction with large uncertainty of the machine learning model.
The uncertainty quantification in the future upgraded version
of SGTC-QR model will reveal the reason of similar irregu-
lar q-profile shape and the confidence we should have on the
reconstruction at certain radial locations.

4. Conclusions and future study

In this work, we have designed and built a deep-learning based
model for accurately reconstructing the safety factor profile,
and tested the model for DIII-D experimental data. A total
of 26 400 equilibria from DIII-D shots were selected for the
training and testing of the model. Using the 0D and 1D sig-
nals, the model is trained to recover the q profile from the
EFIT02 reconstruction. The model has demonstrated prom-
ising capability in terms of speed and accuracy. The typical
prediction time is less than 1 ms, and the predicted q pro-
file is close to that from the EFIT02. The correlation between
the input signals and the MSE constraint has been found and
included during the training process. This tool can be used to
generate the q profile for the shots where MSE is unavailable.

The SGTC-QR module has been implemented in the SGTC
framework and the whole framework can provide abundant
real-time equilibrium and perturbation information for the
PCS in fusion devices. Several improvements can be made in
future work. We will include more input features and explore
other carefully designed loss function to improve the recon-
struction accuracy to meet the engineering criteria, especially
in the edge region.We will use the more accurate kinetic-EFIT
constructed q-profile as reference and explore the relations
between this q-profile and the input features. We can extend
the current model to include more constraints and predict the
self-consistent 2D equilibrium, pressure profile, and the cur-
rent profile without solving the Grad–Shafranov equation. An
end-to-end 2D or 3D equilibrium reconstruction model will
be built in the same manner as in this work. A deep learning
model to build Boozer coordinate system based on the con-
structed equilibrium could also be interesting. We will explore
the efficient way to transfer of the learned QR model to other
tokamaks with acceptable errors.
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