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Abstract
We report a formation mechanism of macro-scale zonal flow (ZF) in ion-temperature-gradient

(ITG) turbulence. Through gyro-kinetic simulations, it finds that the guiding centers of the EPs
(energetic particles) open a new dynamical coupling regime (∼ a few EP gyro-radius) between the
ITG turbulence and the ZF, so that the ITG turbulence produces a substantial global Reynolds’
force, which drives the macro-scale ZF. Besides, with the increase of the EP concentration, the ZF
driven by a unit of turbulence intensity — the ZF capability — will get enhanced correspondingly.
A kinetic analysis reveals that the EP stimulates macro-scale ZF generation by its strong in-phase
effect with the ITG velocity fluctuations, which roots at the large diamagnetic drift frequency of
the EP’s guiding center. We also carry out numerical experiments and show that in the presence
of macro-scale ZF, the intensity of the nonlinearly saturated Alfvén eigenmodes would decrease.
Thus, it potentially suggests a direct self-organization process of improving the EP confinement in
burning plasma.

I. INTRODUCTION

EPs, the key minority, are crucial in maintaining the self-sustained heating of burning
plasmas in magnetically confined fusion reactors[1, 2]. To be detained in the fusion devices,
the EPs need overcome their anomalous loss induced by macro-scale MHD modes, such as
Alfvén eigenmodes (AEs) and internal kink modes, which are in turn driven by the EPs
themselves[3, 4]. On the other hand, the EP-heated fusion fuels (background plasmas) are
usually subjected to turbulent transport by microscopic instabilities, particularly the ITG
mode, and this process constitutes an indirect loss channel of the EP energy. Though ITG
turbulence is a major ingredient in lowering the thermal confinement of the background
plasmas, it is also a driving force for the plasma self-organizing into a high confinement
state, i.e., through ZF generation[5]. Besides linear stabilization effects[6–13], it is reported
that the EPs can also nonlinearly regulate the ITG turbulence via the zonal flow generated
by macro-scale modes[14–18]. Recently, the zonal flow produced by EP-driven Alfvén modes
and its effect in regulating microscopic turbulence have also been reported in tokamak and
stellarator experiments[19–21]. This self-organization process can be summarized as fol-
lows: EPs initially destabilize AEs. The AEs then drive zonal flow, and suppress the ITG
turbulence, improving the confinement of the background plasmas.

In this work, we report that EPs can directly enhance the efficiency of ZF generation in
ITG turbulence. By defining a specific ZF capability, which accounts for the ZF intensity
generated by a unit of ITG turbulence intensity, it finds that the EPs can increase both
the ZF capability and the proportion of macro-scale zonal flow. This effect comes from
the strong phase coupling between the EP guiding center density and the ITG fluctuations,
independent of the weak coupling between the EP polarization density and the ITG. In spite
of the smallness of the amplitude of the EP guiding center fluctuations, its cross-phase with
the ITG radial velocity fluctuation is either locked to 0 or π. This in-phase effect produces
∗ zbguo@pku.edu.cn
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a significant EP guiding center flux and hence drives ZF at a length scale of a few EP
gyro-radius or at macro-scale. Interestingly, the profile of the cross-phase exhibits resilient
property, i.e., persisting from the linear stage to the nonlinear stage, hence it is a robust
mechanism for the ZF formation. The macro-scale ZF has prominent effect in suppressing
AE modes, through which the EP’s confinement is improved, directly.

The remainder of this paper is structured as follows: section 2 outlines the simulation
setup and insights from linear and nonlinear simulation results. Section 3 explores the
Reynolds’ force in describing the zonal flow generation, and investigate the impact of EPs
on the zonal flow. Section 4 summarizes our findings.

II. SIMULATION INSIGHTS

We investigate EP’s effect on the self-organization physics of ITG turbulence by using
the GTC code, in which the ions and EPs are described by their gyro-kinetic equations and
electrons by hybrid model of fluid (adiabatic part) and drift-kinetic (non-adiabatic part)[22].
The equilibrium plasma profiles are adopted from DIII-D shot #159243, as shown in Fig.
1(a)-(b). The plasma beta is approximately β = 3.1% on the magnetic axis. Consistent with
the reversed q profile (Fig. 1(a)), reversed shear Alfvén eigenmodes (RSAE) is observed in
experiment. The EP temperature is approximately 12 times the bulk ion temperature, i.e.,
TEP = 24keV and Ti = 2keV on the magnetic axis. For more experimental details, one
can refer to[23]. The simulation region is chosen as r = [0.17, 0.77]a, with a = 0.548m

the minor radius. We employ approximately 105 grid points in the perpendicular plane in
order to capture the short wavelength ITG, and 24 parallel grid points to resolve the long
parallel wavelength. The time step is 1.2× 10−7s (∼ 11.4Ω−1

ci , where Ωci = qiB0/Mi), which
is sufficient to resolve the ITG frequency. A periodic boundary condition is employed in the
toroidal direction and a linear decay boundary condition is employed in the radial direction.

Electrostatic simulations are initialized using a Maxwellian distribution for all particle
species including EP. In our equilibrium, ITG has a toroidal mode number spectrum from
n = 10 to n = 25, with the most unstable branch n = 16. To accelerate the simulation and
meanwhile not lose the essential nonlinear physics, we keep the n = 0 zonal modes and fix
the toroidal mode number of the ITG as n = 16, and keep all poloidal mode numbers. We
have checked that including nonlinear interaction among toroidal mode n does not change
our conclusion qualitatively, and it only impacts the quantitative values of each physical
quantity. For EP with fixed temperature, the control parameters are its density and density
gradient. Here we introduce an EP concentration parameter λEP to describe its equilibrium
profile: nEP = nEP,0+λEPni,0 and ni = (1−λEP )ni,0, where nEP,0 and ni,0 correspond to the
EP and ion density in the experiment (i.e., λEP = 0). The ηi(≡ ∂r lnTi/∂r lnni) keeps fixed
when increasing λEP , so that the ITG is mainly impacted by the EP effect. The variation
of EP density gradient R0/Ln,EP is shown in Fig. 1(c), along with the ion density gradient
(black curve). A scan of the ITG growth rate γITG and frequency ωITG with λEP is shown in
Fig. 1(d), and it is consistent with the well-known result that EP has a linear stabilization
effect on ITG mode[7–9, 24].
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FIG. 1. (a)-(b) Equilibrium density and temperature profiles for the three species with a reversed
safety factor profile q. (c) EP density gradient with different λEP (colored) and ion density gradient
(black). (d) Dependence of ITG growth rate γITG and frequency ωITG on λEP . (e) Dependence of
the ZF capability and ZF shearing rate on λEP .

In the above setup, the increase of λEP would result in a lower intensity of the saturated
ITG turbulence. However, this should not be conceived as a real scenario, because other
physical processes may be also happening, e.g., the enhanced EP heating on the background
plasmas would increase ηi ( γITG), and hence it may neutralize λEP ’s stabilization effect. To
disentangle the linear impact and extract the nonlinear process of the ITG turbulence, we
define a new quantity called ‘specific zonal flow capability’:

CZF ≡ VZF,rms

ϕ2
rms

, (1)

where VZF,rms is the root-mean-square value of the ZF velocity and ϕ2
rms is the fluctuation

intensity of electrostatic potential associated with the ITG turbulence. CZF measures the
ability of ZF driving by unit turbulence intensity. As shown in Fig. 1(e), CZF grows with
the increase of λEP , which implies EP enhances the efficiency of ZF production. While, the
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ratio of ZF shear rate V ′
E over γITG only increases mildly, as is consistent with reduction of

γITG with the increase of λEP .

III. ENERGETIC PARTICLES STIMULATING ZONAL FLOW

A. Fluid theory of Reynolds’ force

In order to understand how EP changes the ZF capability of the ITG turbulence, we
first carry out a fluid analysis. In the fluid model, VZF is driven by the Reynolds’ force:
RF = −∇ · Πr,θ, with Πr,θ = ⟨υ̃rυ̃θ⟩ the magnetic surface averaged poloidal velocity flux.
For electrostatic fluctuations, we have υ̃ = −∇ϕ̃ × b̂/B0 and ϕ̃ can be expressed as ϕ̃ =∑

m,n ϕme
−imθ+inζ . The Reynolds’ stress then becomes Πr,θ = (1/B2

0)
∑

m>0

(
−2m

r
|ϕm|2∂r lnϕm

)
with n taken fixed. Since ϕm = |ϕm|eiΘm and ∂r lnϕm → i∂rΘm, only the phase gradient
makes a finite contribution to Πr,θ. Correspondingly, the RF is composed of three pieces:

RF =
∑
m>0

2m

rB2
0

∂|ϕm|2

∂r

∂Θm

∂r︸ ︷︷ ︸
RFamp

+
∑
m>0

2m

rB2
0

|ϕm|2
∂2Θm

∂r2︸ ︷︷ ︸
RFph

+
∑
m>0

2m

r2B2
0

|ϕm|2
∂Θm

∂r︸ ︷︷ ︸
RFgeo

, (2)

where RFamp is from the gradient of the turbulence intensity, RFph is from the phase cur-
vature and RFgeo is the geometric effect. In the experimental case (λEP = 0, EP ratio
6%), their spatiotemporal evolutions are plotted in Fig. 2(a-c) and these structures are
also consistent with ∂tVZF . As can be seen, the phase curvature is the dominant RF. The
phase-amplitude decomposition of ϕm indicates phase patterning is an important point of
penetration to understand the ZF dynamics. However, it does not explicitly demonstrate
how EP contributes to Θm’s structure.

B. Particle contribution to zonal flow generation

The Taylor’s identity provides a key relation that bridges the RF and the guiding center
density fluxes of different particles[25]. To see this, we use the quasi-neutrality condition in
the presence of EPs:

δni,pol + δni,g + δnEP − δne = 0, (3)

where δni,pol is ion’s polarization density and δni,g is ion’s guiding center density. Due to the
smallness of the electron’s gyro-radius, its polarization density is ignorable, i.e., δne = δne,g.
Also, for convenience, we have assumed the EP has the same charge with the ion, qEP = qi =

e. The ion’s (or EP’s) polarization density has a general form of δnpol = −n0(1−Γ0(b))eϕ̃/T ,
where Γ0(b) = I0(b)e

−b with I0 the modified Bessel function of the zeroth kind[26]. In ITG
turbulence, for ions, one has b = bi = k2

⊥ρ
2
ti < 1 and using Padé’s expansion, δni,pol can

be approximated as δni,pol
∼= −χik

2
⊥ρ

2
tieϕ̃/Ti with χi = 1/(1 + k2

⊥ρ
2
ti) the polarization rate.

χi varies with different k⊥s and for analytical convenience, we use a statistically averaged
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FIG. 2. Reynolds’ force from: (a) turbulence inhomogeneity RFamp, (b) phase curvature RFph and
(c) geometric effect RFgeo. (d) Spatiotemporal profile of ZF generation rate.

χi,eff = 1/(1 + k2
⊥,cρ

2
ti) instead of the χi(k⊥), with k⊥,c the characteristic wave number of

the ITG turbulence and typically χi,eff ≃ 0.5 (or k2
⊥,cρ

2
ti ≃ 1). With −k2

⊥ρ
2
ti ⇒ ρ2ti∇2

⊥, Eq.
(3) can be recast into a Poisson equation:

ρ2ti∇2
⊥
eϕ̃

Ti

= − 1

χi,eff

δni,g + δnEP − δne

ni,0

. (4)

The non-triviality of the EP effect can be glimpsed from: (1) δni,g − δne could be compa-
rable with δnEP , even though |δnEP | ≪ |δni,g|, |δne|; (2) the ZF generation is a multi-scale
problem, though at meso-scale (a few ρtis), the collective dynamics of ions and electrons are
important, the EP dynamics potentially plays a more important role at macro-scale (a few
ρt,EP s) and hence it may stimulate the ITG-ZF coupling at macro-scale, which is inactive in
the absence of EPs. Similar to ions, for EPs, we have δnEP = δnEP,pol+δnEP,g. For δnEP,pol,
it is b = bEP = k2

⊥ρ
2
t,EP ≫ 1 and Γ0(bEP ) is then approximated as Γ0(bEP ) ∝ 1/

√
bEP ≪ 1.

Therefore, δnEP,pol will be dominated by adiabatic response, i.e., δnEP,pol ≃ −nEP,0eϕ̃/TEP

and its contribution to the particle flux is ignorable. Hence, we have ΓEP = ⟨δnEP υ̃r⟩ ≃
⟨δnEP,gυ̃r⟩ = ΓEP,g. This is in essence the conventional wisdom that the direct coupling of
EP to ITG is weak because the EP’s gyro-radius significantly exceeds the wavelength of the
ITG mode. However, it should be noticed that there is no pre-judgement that the response
of EP guiding center density to ITG is ignorable. Its role in macro-scale ZF generation will
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be disclosed here. To verify this speculation, we inspect the contributions of each term on
the RHS of Eq. (4) to the Reynolds’ force.

According to the Taylor’s identity, the RF is equal to the vorticity flux: RF =
〈
∇2

⊥ϕ̃υ̃r

〉
/B0.

Using Eq. (4), this relation is re-expressed as

RF =
Ωci

χi,effni,0

(Γi,g − Γe + ΓEP,g), (5)

with Γi,g = ⟨δni,gυ̃r⟩ the guiding center flux of the ions and Γe = ⟨δneυ̃r⟩ the electron particle
flux. The fluxes on the RHS of Eq. (5) reflect the degree of coherent coupling between each
type of particles with the ITG velocity fluctuations. From a mechanical perspective, the RHS
of Eq. (5) represents a radial currents produced by guiding centers of background plasmas
and the EPs, and hence it is proportional to the J × B force in the poloidal direction that
drives the ZF[27].

C. Cross-phase Coherence and Macro-scale Zonal Flow Formation

Eq. (5) provides a straightforward way for assessing the contributions of different species
to the total RF. The RF associated with (Γi,g−Γe) is plotted in Fig. 3(a). As can be seen, it
is dominated by meso-scale structures. Fig. 3(b) shows that ΓEP,g is mainly at macro-scale
and its amplitude is comparable with (Γi,g − Γe), though |δnEP,g| ≪ |δni,g|, |δne|(Fig. 3(c)).
A further inspection reveals that this is due to the phase coupling effect between δnEP,g and
δvr, with the cross-phase ΘEP,vr = ΘEP −Θvr and δnEP,g = |δnEP,g|eiΘEP and υ̃r = |υ̃r|eiΘvr .
Fig. 3(d-f) shows that the averaged cosines of the EP cross-phase ⟨cos(ΘEP,vr)⟩ significantly
exceed those of ion’s ⟨cos(Θi,vr)⟩ and electron’s ⟨cos(Θe,vr)⟩, indicating the strong phase
coherence between EP and the ITG fluctuations. By checking the spatiotemporal evolutions
of the three cosine values (Fig. 3(g-i)), it finds that ΘEP,vr tends to form a ‘shock layer’
pattern in its linear stage[28–30] and interestingly, this pattern persists into its nonlinear
stage. Similarly, the ions and electrons also exhibit phase resilience in their nonlinear stage.
The difference is that their cross-phases with vr are locked to an incoherent state, which
means the density perturbations and radial velocities of particles become out of phase in
such a way that their combined effect results in negligible net particle and charge flux, hence
reducing their ZF driving.

The cross-phase dynamics rely on the kinetic response of different particles to the
ITG fluctuations. We plot the contours of their perturbed guiding center distributions
δFj,g(v∥, v⊥) with j = i, e, EP . As shown in Fig. 4, the cross-phases at the maxima of |δFi,g|
and |δFe,g| are π/2 and −π/2, respectively. It is notable to observe that |δFEP,g| reaches
its maximum at a relatively low energy, ∼ 0.1TEP ∼ 2Ti, with a corresponding cross-phase
ΘFEP ,vr ∼ ±π. In other words, the low energy component of the EP tends to produce a
large amplitude response, which is also consistent with previous work[31]. Fig. 4(c) also
shows that most active EPs are deeply trapped.

To obtain analytically the kinetic response of EP to the ITG, first note that the perturbed
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FIG. 3. Spatiotemporal pattern of the Reynolds’ force (contours) and its averaged values (green
lines) (a) for ions and electrons, and (b) for the EPs. (c) The averaged guiding center densities.
(d)-(f) Spatiotemporal patterns (contours) of the cosines of three cross-phases and their averaged
values (red lines). (g)-(i) The three cross-phases in their linear stage (black) and nonlinear stage
(contour). Data in (c)-(i) is from the most unstable ITG mode with m = 48 and n = 16.

FIG. 4. Contours of the amplitudes ((a)-(c)) and the cross-phases ((d)-(f)) of δFi,g, δFe,g and
δFEP,g at r = 0.46a.
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guiding center distribution function of the EP δfEP,g has a form of:

δfEP,g = δhEP − f0EPJ0EP
eϕ

TEP

, (6)

where J0EP ≡ J0(k⊥ρEP ), J0 is the Bessel function of the zeroth kind. For trapped EPs,
δhEP is determined by the bounce averaged equation[32]:

(ω − ⟨ωD,EP ⟩b)δhEP = J0EP
e ⟨ϕ⟩b
TEP

f0EP (ω − ωT
∗,EP ), (7)

where ⟨ϕ⟩b is the bounce averaged potential, ωT
∗EP = ω∗EP [1 + ηEP (E/TEP − 3/2)] is EP’s

diamagnetic frequency, with ω∗EP = kθTEP/(eB0Ln,EP ), Ln,EP = −(∂r lnnEP )
−1, LT,EP =

−(∂r lnTEP )
−1, ηEP = Ln,EP/LT,EP and kθ is the poloidal wave number. ⟨ωD,EP ⟩b is trapped

EP’s toroidal precession frequency and it has a form of:

⟨ωD,EP ⟩b = ω∗EP
Ln,EP

R

E

TEP

G(ŝ, κ), (8)

with R the major radius of a tokamak, E = mEPυ
2/2 the particle energy, ŝ = d ln q/dr the

magnetic shear, κ = (1 − µBmin/E)/ [(Bmax −Bmin)/Bmax] where µ = mEPυ
2
⊥/2B is the

magnetic moment and Bmax, Bmin are the maximum and minimum of |B| that a particle
experiences during its unperturbed orbit excursion, respectively. G(ŝ, κ) = 2E(κ2)/K(κ2)−
1 + 4ŝ(E(κ2)/K(κ2) + κ2 − 1), E(κ2) and K(κ2) are the complete elliptic integral of the
first and the second kind, respectively. For deeply trapped particles (|υ∥| ≪ |υ⊥| and
υ2
⊥ ≃ υ2), one has κ ≪ 1 and G(ŝ, κ) ≃ 1, thus ⟨ωD,EP ⟩b can be simplified as ⟨ωD,EP ⟩b =

ω∗EP (Ln,EP/R)[υ2/(2υ2
t,EP )], and, neglecting the mode amplitude variation along the field

lines, the bounce-averaged potential ⟨ϕ⟩b can be approximated as ϕ. As the frequency of
ITG mode ωITG is on the order of ion diamagnetic frequency kθTi/(eB0Lni), the RHS of
Eq. (7) is dominated by ωT

∗EP term provided that ωITG/ω∗EP ∼ (Ti/TEP )(Ln,EP/Lni) ≪ 1.
This constraint limits our analysis to a parameter regime where Ln,EP/Lni ≪ TEP/Ti, a
condition that is easily met as TEP/Ti ≫ 1. Then Eq. (7) can be simplified as:

δhEP = J0EP
eϕ

TEP

F0EP

−ωT
∗,EP

ω − ⟨ωD,EP ⟩b
. (9)

Substituting Eq. (9) into Eq. (6) and integrating over the velocity space, one arrives at:

δnEP,g

nEP,0

= − eϕ̃

TEP

[
Γ0(bEP ) +

〈
ωT
∗EPJ

2
0f0EP

ω − ⟨ωD,EP ⟩b

〉
υ

]
, (10)

where ⟨·⟩υ ≡
∫
d3υ, ωT

∗EP = ω∗EP

[
1 + ηEP

(
E

TEP
− 3

2

)]
and ω∗EP = kθTEP/(eB0Ln,EP )

is EP’s diamagnetic frequency, with ηEP = Ln,EP/LT,EP , Ln,EP = −(∂r lnnEP )
−1, and

LT,EP = −(∂r lnTEP )
−1. ⟨ωD,EP ⟩b is the toroidal precession frequency. |δnEP,g| is dom-

inated by its resonant EPs: ω = ωITG = ⟨ωD,EP ⟩b, which corresponds to an energy
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∼ 1
2
mEPυ

2(resonance) = TEP (ωITG/ω∗EP )(R/Ln,EP ) ≪ TEP as |ωITG| ≪ |ω∗EP | and
R/Ln,EP ≃ 1. This is consistent with the distribution in Fig. 4(c). Near the resonant
velocity, we have:

Im(δnEP,g/ϕ̃)

Re(δnEP,g/ϕ̃)
∝ ω∗,EP

γITG

(1− 3

2
ηEP ), (11)

which indicates that there exists a critical value ηEP,c = 2/3, across which the sign of the
cross-phase between δnEP,g and ϕ̃ (or υ̃r) flips sign. Since ω∗,EP/γITG ≫ 1, the transition
layer in the cross-phase profile would exhibit ‘shock’-like structure, as shown in Fig. 3(i),
with the ‘downstream’ and ‘upstream’ of the shock layer being locked to 0 and π, respectively.
In short, even though the amplitude (|δnEP,g|) of EP’s response to the ITG is dominated by
their low energy component, their cross-phase with the ITG (ΘEP,vr) is determined by the
EPs at T = TEP .

FIG. 5. (a)-(c)Distribution of ITG turbulence with zonal flow for different λEP s. (d) Relation
between macro-scale ZF proportion and λEP . (e) Saturated RSAE levels for different types of ZFs.

Figure 5(a)-(c) shows that with the increase of the EP concentrations, the electrostatic
potential tends to exhibit macroscopic patterns. This feature can be seen quantitatively by
defining a macro-scale ZF ratio (Fig. 5(d)). The macro-scale ZF driven associated with the
EPs would suppress macro-scale modes (i.e., RSAE in this configuration). To demonstrate
the effect of the macro-scale ZF on the saturated levels of the RSAE at multi-modes state,
we carry out a numerical experiment. First, we extract the time-averaged (over nonlinear
stage) zonal flow from our ITG turbulence simulation, and decompose it into meso-scale and
macro-scale pieces. Then, we impose these zonal flows into the nonlinear RSAE simulations,
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and meanwhile exclude the self-generated zonal flows from the RSAE themselves. By com-
paring the RSAE saturation amplitudes with and without the imposed zonal flows, we can
assess the effect of the ITG-generated zonal flow on RSAE saturation. Fig. 5 (e) shows that
the saturated RSAE intensities are almost not changed for the ZF-free and meso-scale-only
ZF cases. While for the macro-scale-only ZF scenario, the RSAE intensity is remarkably
reduced. It is speculated that with the increase of λEP , the macro-scale modes will be sup-
pressed more effectively. Thus, by simulating macro-scale ZF generation in ITG turbulence,
the AE triggered EP loss can potentially be reduced, so that confinement of the EPs in the
core region gets improved.

IV. CONCLUSION

In this work, we have investigated the direct role of EPs in stimulating macro-scale ZF
generation within ITG turbulence through nonlinear gyrokinetic simulations. By introducing
the concept of specific ZF capability, we find that the presence of EPs significantly enhances
the efficiency of ZF production beyond their known linear stabilization effects.

A detailed analysis reveals that this enhancement originates from the strong in-phase
coupling between the EP guiding center density and the ITG radial velocity fluctuation. This
interaction leads to a substantial EP guiding center flux at macro-scale, which contributes
to the Reynolds’ force comparably with the thermal particles. The persistence of the cross-
phase structure from linear to nonlinear stages underscores the robustness of this mechanism.

Furthermore, kinetic analysis shows that although the EP response is governed by res-
onant particles with lower energies, the in-phase coupling emerges because of EP’s large
diamagnetic frequency due to EP’s high temperature. The resulting macro-scale ZF is
found to be effective in suppressing macro-scale AEs, indicating a self-regulating mechanism
that could improve EP confinement in burning plasmas.

These findings highlight a previously underappreciated nonlinear pathway through which
EPs contribute to turbulence regulation and confinement improvement. This mechanism
may offer new insights for the control of transport and stability in future fusion devices.

It should be noted that, to focus on the impact of EP on the ITG turbulence self-
organization process, our current simulations only include EP, ITG and ZF, and not include
electromagnetic instabilities such as AEs. Including self-consistent AE modeling is essential
for a more complete understanding of the EP-AE-ITG-ZF system. Future work will focus
on extending the current framework to incorporate these effects, aiming to provide a more
self-consistent picture of multi-scale plasma turbulence and energetic particle dynamics.

The present analysis and simulations are conducted within the framework of the gyroki-
netic equations. However, at reactor scale, the EP gyro-radius become even larger (e.g.
ρTf ≈ 5cm for 3.4MeV alpha particles at B = 5T), which can induce more errors in the
guiding center approximation. Particularly, the fusion reactor needs to operate at a time
scale of thousand seconds and it would add more accumulative error. Thus, it is essential
to validate and extend the present findings by carrying out full-f simulation.
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