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Abstract
Global linear gyrokinetic simulations using realistic DIII-D tokamak geometry and plasma
profiles find co-existence of unstable reversed shear Alfvén eigenmodes (RSAE) with low
toroidal mode number n and electromagnetic ion temperature gradient (ITG) instabilities with
higher toroidal mode number n. For intermediate n=[10, 12], RSAE and ITG co-exist and
overlap weakly in the radial domain with similar growth rates but different real frequencies. Both
RSAE and ITG growth rates decrease less than 5% when compressible magnetic perturbations
are neglected in the simulations. The ITG growth rates increase less than 7% when fast ions are
not included in the simulations. Finally, the effects of trapped electrons on the RSAE are
negligible.
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1. Introduction

Energetic particle (EP) confinement is a key physical issue for
burning plasma experiment in ITER [1, 2] since ignition relies
on self-heating by energetic fusion products [3], i.e. α-particles.
The EP population in current tokamaks can be produced by
auxiliary heating such as neutral beam injection [4] and radio
frequency heating [5]. EP pressure gradients can readily excite
mesoscale EP instabilities such as the Alfvén eigenmodes (AE)
[6], which can drive large EP transport, degrade overall plas-
mas confinement, and threaten the machines’ integrity [7].
Because EP constitutes a significant fraction of the plasma
energy density, EP could influence thermal particle dynamics
including the microturbulence [8, 9] responsible for turbulent
transport of thermal particles and the macroscopic

magnetohydrodynamic (MHD) modes potentially leading to
disastrous disruptions [10]. In return, microturbulence and
MHD modes can affect EP confinement [11, 12].

Thanks to recent progress in developing comprehensive
EP simulation codes and understanding basic EP physics,
gyrokinetic turbulence simulation has been successfully
established as a necessary paradigm shift for studying EP
confinement [13–16]. Integrated simulation incorporating
multiple physical processes and disparate temporal-spatial
scales becomes available now to address new challenges in
the EP physics such as the coupling of EP-driven AE turbu-
lence with thermal particles-driven microturbulence and
macroscopic MHD modes. The fully self-consistent gyroki-
netic turbulence simulation needs to treat both EP and thermal
particles on the same footing to address the kinetic effects of
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thermal particles and the cross-scale couplings between
microturbulence, EP turbulence, and MHD modes.

Toward such an integrated simulation of EP coupling
with thermal particles, we have initiated comprehensive
simulations of turbulent transport by low frequency electro-
magnetic instabilities (including AE and microturbulence) in
a reversed shear geometry of DIII-D tokamak with fast ions
[17] by using the gyrokinetic toroidal code (GTC) [18]. GTC
has been extensively verified and validated for global simu-
lations of AE [13–16, 19] and microturbulence [11, 18,
20–22]. As the first step in the integrated simulations of EP,
we study the linear properties of these electromagnetic
instabilities, which could provide a foundation for the next
step of nonlinear simulations of multiple physical processes.

In this paper, linear global GTC simulations using rea-
listic DIII-D magnetic geometry and plasma profiles with
kinetic electrons, thermal ions and fast ions find co-existence
of unstable reversed shear Alfvén eigenmodes (RSAE) with
low toroidal mode number <n 10 and ion temperature gra-
dient (ITG) instabilities with higher toroidal mode number
>n 12. For intermediate toroidal modes n = [10, 12], RSAE

and ITG eigenmodes overlap weakly in the radial domain
with similar growth rates but different real frequencies. The
RSAE polarization is very close to ideal Alfvénic state, while
the ITG polarization is closer to electrostatic but with sig-
nificant magnetic perturbations.

Our simulations represent the first gyrokinetic study for
the effects of compressible magnetic perturbations δB|| on the
RSAE in this DIII-D experiment. GTC simulations with δB||

have been verified for ITG, collisionless trapped electron
mode, and kinetic ballooning mode [23, 24]. Although many
gyrokinetic codes have the capability for including δB|| in the
simulations of microturbulence, most of gyrokinetic simula-
tions of RSAE neglect δB|| [9, 13, 16, 25–27]. On the other
hand, most of hybrid MHD-gyrokinetic codes do not separate
parallel and perpendicular magnetic perturbations [13, 16,
28–30]. Therefore, the effects of δB|| on RSAE are not well
understood. The δB|| can be important for low frequency
instabilities since it cancels out the stabilizing ‘drift-reversal’
effects of the guiding center B drifts associated with the
perpendicular diamagnetic current in finite-β plasmas [31].
Gyrokinetic flux-tube simulations using GS2 code [32] for
ITG in a simple s–α geometry find that the ITG growth rate
decreases by a factor of 3 when δB|| is neglected in the
simulations. However, global GTC simulations using similar
geometry and plasma β find that the ITG growth rate
decreases less than 5% when δB|| is neglected in the simu-
lations [24]. In the current GTC simulations using realistic
DIII-D magnetic geometry and plasma profiles, both RSAE
and ITG growth rates decrease less than 5% when δB|| is
neglected in the simulations. Furthermore, GTC simulations
find that the effects of trapped electrons on the RSAE are
negligible.

Our simulations also clarify the effects of fast ions on the
ITG in this DIII-D experiment. It is well-known that the adiabatic
responses of electrons and fast ions can have stabilizing effects

on the ITG due to the finite-β stabilization [33] and that fast ion
drift-bounce and precessional resonances [6, 34, 35] can stabilize
or destabilize low frequency drift-Alfvén instabilities, depending
on specific plasma parameters. In the current GTC simulations
using realistic DIII-D magnetic geometry and plasma profiles, the
ITG growth rate increases less than 7% when fast ions are not
included in the simulations. Finally, GTC simulations find that
the ITG eigenmodes become stable if electrons are assumed to be
adiabatic, i.e. by neglecting kinetic effects of trapped electrons.

The rest of the paper is organized as follows. In section 2,
GTC electromagnetic simulation model with compressible
magnetic perturbations δB|| is described. The simulation results
are discussed in section 3. The conclusions are provided in
section 4.

2. Gyrokinetic electromagnetic simulation model

By means of parallel symplectic gyrocenter model [36], the
nonlinear gyrokinetic equation used in GTC to study low
frequency mode could be written as [24, 37],
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speed. df, ∣∣dA , and ∣∣dB are, respectively, perturbed electrostatic
potential, perturbed vector potential, and perturbed parallel
magnetic field. v ,E vd and ∣∣vb are, respectively, ´E B drift
velocity, magnetic drift velocity of equilibrium magnetic fields,
and magnetic drift velocity of perturbed parallel magnetic
field ∣∣dB .

In order to reduce the particle noise in simulations,
df -method [38] is used for thermal ions and fast ions, by
decomposing the distribution function af of species α into an
equilibrium part af0 and a perturbed part d af , i.e.

d= +a a af f f .0 The equilibrium part is defined by:
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The perturbed part is solved by using a particle weight vari-
able /d=a a aw f f , which satisfies:
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2 is the gyro-surface

averaging of the perturbed parallel magnetic field [39] with r
the gyroradius and r the radial direction in local cylindrical
coordinate.

Particle density an and parallel velocity au are moments
of distribution functions in velocity space:
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The electron dynamics is described by the fluid-kinetic
hybrid model [37], which separates the electron response into a
dominant adiabatic part and a higher order nonadiabatic part due
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y, q, z are, respectively, poloidal flux, poloidal angle, and tor-
oidal angle in magnetic coordinates, and ( )a y q z= -q is the
magnetic field line label. The Clebsch representation for the
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The perturbed electron density is calculated by the continuity
equation:
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The electron pressure is defined as:

∣∣
∣∣

∣∣òd f
d

y
dy d= - +

¶
¶

+ vP en P
B

B

P
m v h d ,e 0 eff e0

0

e0

0
e e

2
e

∣∣
∣∣òd f

d
y

dy m d= - +
¶
¶

+^ vP en P
B

B

P
B h2 d ,e 0 eff e0

0

e0

0
e*

and the electron parallel flow is calculated from the Ampere’s
law:
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represents the double gyroaveraged elec-
trostatic potential [40]. In equation (8), b =a
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represent Bessel functions. Equations (1)–(9) are a set of
closed nonlinear system for low frequency modes. This
simulation model incorporates physics of drift wave, shear
Alfvén wave, and slow magnetoacoustic wave in general
toroidal geometry.

3. Simulation results

In this section, we use the GTC model described in section 2
to simulate low frequency electromagnetic instabilities in the
DIII-D tokamak shot #159243 at t=805 ms [17]. GTC
simulations use the same magnetic geometry and plasma
profiles of DIII-D as those in a verification and validation
benchmark of RSAE [16]. The density and temperature pro-
files for the electrons, thermal ions, and fast ions are shown in
figure 1(a). For simplicity, Maxwellian distribution function
is assumed for both fast ions and thermal particles in this
work (effects of slowing-down distribution function will be
studied in the future work). This is a reversed shear discharge

with the minimum safety factor of =q 2.94min at the poloidal
flux function y y= 0.24 X (yX is the poloidal flux function at
the magnetic separatrix) as shown in figure 1(b). Some key
plasma parameters are as follows: major radius =R 1.72 m,0

on axis electron temperature =T 1.69 keV,e density
= ´ -n 3.29 10 m ,e

19 3 magnetic field =B 1.99 T,0 and total
beta 0.9%. At y y= 0.68 ,X the characteristic lengths of
density and temperature gradients are / =R L 13.5,T0 i

/ =R L 2.64,n0 e / =R L 14.1,T0 e / =R L 42.39,nf0 and
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and the minor radius r is defined as the distance from
magnetic axis on the outer mid-plane. The boundaries of the
radial simulation domain are y y= 0.02 Xinner and
y y= 0.95 Xouter for the ITG simulations, and y y= 0.88 Xouter

for the RSAE simulations. The simulation time step size is
Dt= 0.0025R0/C ,s with /=C T m ,s e i and Cs/R0=
1.24×105 s−1. For linear simulations, we use 250 radial grid
points, 1500 poloidal grid points, 32 parallel grid points, and
100 particles per cell each for electrons, thermal ions and
fast ions.

The fast ion density and temperature gradients have been
shown [16] to drive an unstable RSAE near q .min The strong
temperature gradients of thermal ions and electrons are
expected to excite the ITG instabilities. To study these
instabilities, we have performed a series of linear simulations,
each with a single toroidal mode number n. We have found
unstable toroidal modes for n> 2. The branches of these
modes can be identified by the frequencies and polarizations.
The real frequencies and growth rates for these unstable
modes are shown in figure 2(a). For n=[3, 9], the instabil-
ities are dominated by the RSAE driven by the fast ions. For n
 10, the instabilities are dominated by the ITG excited by
the thermal ions and electrons. A sub-dominant RSAE can
also be identified for n=[10, 12], where the RSAE growth
rates are smaller than the ITG growth rates. Both RSAE and
ITG propagate in the ion diamagnetic direction (i.e. negative
real frequencies). The RSAE real frequency increases with the
toroidal mode number n until n=8, where it reaches a pla-
teau. The RSAE real frequencies are much larger than the
growth rates, indicating a resonant excitation by the fast ions.
The most unstable RSAE with n=4 (which corresponds to
r =qk 0.51f ) has a growth rate of g = ´ -3.24 10 s4

4 1 and

real frequency = = ´w
p

-f 6.86 10 s .4 2
4 14 The ITG growth

rates are comparable to the real frequencies for all the n-
modes, indicating mostly non-resonant instabilities due to the
strong temperature gradients of the thermal ions and elec-
trons. The most unstable ITG with n=20 (which
corresponds to r =qk 0.33i ) has a growth rate of
g = ´ -5.23 10 s20

4 1 and real frequency = = ´w
p

f 1.3720 2
20

-10 s ,4 1 i.e. g w~ .20 20 The RSAE and ITG growth rates
decrease for higher n modes due to the finite Larmor radius
effects of the fast ions and thermal ions, respectively.

Besides the fact that the RSAEs have much higher fre-
quencies than the ITGs, they have different polarizations. The
RSAE polarization is Alfvénic, where the inductive parallel
electric fields are nearly canceled out by the electrostatic
parallel electric fields, i.e. f df.eff On the other hand, the

Figure 1. Equilibrium plasma profiles of DIII-D shot #159243 at 805
ms. (a) Radial profiles of densities (dashed lines, normalized to the
electron on axis value n0=3.29×1019 m−3) and temperatures (solid
lines, normalized to the electron on-axis value Te0=1.69 keV) for the
electron (red), thermal ion (blue), and fast ion (black). Fast ion density
is multiplied by 10 and temperature divided by 10. (b) Radial profile
of safety factor q with qmin=2.94 at poloidal flux function y=0.24
y .X Data are taken from [16].
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ITG polarization is electrostatic, where the net parallel electric
fields are dominated by the electrostatic components, i.e.
f df~ .eff The ratio of effective potential over electrostatic
potential /f dfeff is shown in figure 2(b). For toroidal modes
n = [3, 9], the ratio /f df < 5%,eff which indicates that
unstable RSAE is indeed Alfvénic. The ratio /f dfeff increases
for larger toroidal mode number n. For n>12, the ratio
/f df > 40%,eff which indicates that ITG instability is closer to

electrostatic but with significant electromagnetic perturbations.
The generation and effects of compressible magnetic

perturbations have been studied. The ratio of perturbed par-
allel magnetic field over perturbed perpendicular magnetic
field ∣∣/d d ^B B is shown in figure 2(b). For the ITG,

∣∣/d d <^B B 15%, indicating that ∣∣dB is not significantly gen-
erated by the ITG with b = 0.9%. The ratio ∣∣/d d ^B B slightly
increases for RSAE with smaller n with ∣∣/d d >^B B 20% for
n=3 and 4, indicating that the effects of ∣∣dB is more strongly
generated by the RSAE. Overall, the effects of ∣∣dB are not
important for both RSAE and ITG since the growth rates only
decrease less than 5% and the frequencies barely change
when ∣∣dB is removed in the simulation of n=4 and n=20
modes, as shown in figure 2(a). We have also studied the
effects of fast ions on the ITG and found that the growth rate
and frequency of the n=20 ITG increase by less than 7%
when the fast ions are not included in the simulations.

We have also studied the effects of trapped electrons on
the RSAE and found that the n=4 RSAE growth rate

decreases by less than 1% when trapped electrons are not
included in the simulations. On the other hand, GTC simu-
lations find that the ITG mode in this DIII-D discharge
becomes stable if electrons are adiabatic, i.e. when kinetic
effects of trapped electrons are neglected.

The eigenmode structures for toroidal mode numbers
n=4 and n=10 are compared in figure 3. The perturbed
electrostatic potential df and parallel vector potential dA for
the n=4 RSAE in figures 3(a) and (b) are localized near the
qmin flux surface with a narrow radial width. The RSAE
structure is weakly ballooning and the radial symmetry is
broken, i.e. forming triangular shapes due to the non-pertur-
bative effects of fast ions [13, 15, 16, 41]. The phase shift
between df and dA is close to /p 2 as expected for the shear
Alfvén wave. The structures of the perturbed electrostatic
potential df and parallel vector potential dA for the n=10
mode in figures 3(c) and (d) are much more complicated due
to the co-existence of RSAE and ITG with similar growth
rates. In addition to the RSAE mode still visible around the
flux surface with q ,min the ITG modes appear in both positive
shear (outer) and negative shear (inner) regions [42]. The
growth rates of these three modes are similar, however, the
frequencies are quite different: the RSAE frequency is much
larger than that of the ITG in the outer region (positive shear),
as shown in figure 2(a). The ITG in the inner region (negative
shear) has the smallest frequency, which is much smaller than

Figure 2. Dispersion relation and polarization: toroidal mode number n dependence of (a) growth rates g (dashed lines) and frequencies
/w p=f 2 (solid lines) for RSAE (blue) and ITG (red), and (b) ratio of volume-averaged /d d ^B B (blue solid line) and /f dfeff (red dashed

line). Black cycles and black squares are, respectively, frequencies and growth rates from simulations without dB .
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the growth rate. Compared to the n=4 RSAE, the weaker
n=10 RSAE has a stronger ballooning structure. The ITG
modes are also strong ballooning. The phase shift between df
and dA is close to /p 2 for both RSAE and ITG eigenmodes.
These linear RSAE and ITG eigenmodes overlap weakly in
the radial domain. In the future study, we will study the
nonlinear interactions of these RSAE and ITG eigenmodes.
The spatial overlap of these modes could be even stronger due
to turbulence spreading in radial domain [43].

4. Conclusions

In summary, global GTC linear simulations using realistic DIII-
D tokamak geometry and plasma profiles with kinetic electrons,

thermal ions, and fast ions find co-existence of unstable RSAE
with low toroidal mode number n and ITG instabilities with
higher toroidal mode number n. For intermediate toroidal modes
n = [10, 12], RSAE and ITG eigenmodes overlap in the radial
domain with similar growth rate but different real frequencies.
The RSAE polarization is very close to ideal Alfvénic state,
while the ITG polarization is closer to electrostatic but with
significant magnetic perturbations.

Our simulations represent the first gyrokinetic simulation
for the effects of compressible magnetic perturbations ∣∣dB on
the RSAE. In the current GTC simulations using realistic
DIII-D magnetic geometry and plasma profiles, both RSAE
and ITG growth rates decrease less than 5% when ∣∣dB is
neglected in the simulations. The effects of trapped electrons

Figure 3. Poloidal mode structures of (a) perturbed electrostatic potential df and (b) parallel vector potential dA of RSAE with n=4, and (c)
perturbed electrostatic potential and (d) parallel vector potential of ITG with n=10. Red and yellow represent positive values, while blue
and cyan represent negative values.
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on the RSAE are negligible. Furthermore, ITG growth rates
increase less than 7% when fast ions are not included in the
simulations. Finally, GTC simulations find that the ITG in this
DIII-D discharge become stable if electrons are adiabatic, i.e.
by neglecting kinetic effects of trapped electrons.

The survey and understanding of the linear properties of
these electromagnetic instabilities described in this paper
provide a foundation for the next step of fully self-consistent
gyrokinetic turbulence simulations treating both fast ions and
thermal particles on the same footing to address the kinetic
effects of thermal particles and the cross-scale coupling
between microturbulence and mesoscale EP turbulence.
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