
 

Data Management Challenges of Exascale Scientific Simulations: 
A Case Study with the Gyrokinetic Toroidal Code and ADIOS 

 
†Lipeng Wan¹, Kshitij V. Mehta¹, Scott A. Klasky*1, Matthew Wolf¹, H. Y. Wang2,  

W. H. Wang2, J. C. Li2, and Zhihong Lin2 
1Computer Science and Mathematics Division, Oak Ridge National Laboratory, USA. 

2Department of Physics and Astronomy, University of California Irvine, USA. 

*Presenting author: klasky@ornl.gov  
†Corresponding author: wanl@ornl.gov 

Abstract 
The push towards exascale computing and the recent introduction of multi-petascale 
supercomputers have enabled science applications to run complex simulations. However, the 
gap between compute and I/O has grown wider, even as applications seek to generate and 
persist increasing amounts of data. Optimizing I/O is challenging and remains a bottleneck at 
scale. In this paper, we present initial I/O performance results of running Gyrokinetic Toroidal 
Code (GTC) on Summit, a 200 Petaflop system at Oak Ridge National Laboratory. To 
manage the complex data in GTC, we use ADIOS, an I/O and data management middleware 
that provides a rich set of APIs to manage and interact with scientific data. We discuss 
optimizations performed to obtain improvements in I/O performance and identify a set of 
challenges that will drive the design and development of next generation data management 
libraries. 
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Introduction 

With the recent push towards exascale computing, the arrival of systems such as Summit[12], 
Sierra[22], and Sunway TaihuLight[21] has broken the 100 Petaflop peak performance barrier. 
This has paved the way for science applications to run more complex simulations. 
Supercomputer architects are putting more focus on making systems more power efficient, in 
addition to increasing the memory per core on a node. However, the evolution of I/O 
technologies has not kept up with other architectural innovations, and the gap between 
compute capability and I/O bandwidth continues to grow wider. 
 
Science applications that look towards exploiting the compute capabilities of modern systems 
tend to generate increasing amounts of data. It is common for applications running at full 
scale to write half the size of system memory for checkpointing. For example, the Chimera 
molecular modeling and simulation system [15] creates 160 TB checkpoints on the Titan 
supercomputer at Oak Ridge National Laboratory. On Summit, which has 512 GB of main 
memory per node, checkpoint data would be close to a Petabyte in size. 
 
The Gyrokinetic Toroidal Code (GTC)[1] is a well-known particle-in-cell application that 
simulates the movement of magnetic particles in a confined fusion plasma. It generates a 
variety of data that differ in volume and velocity. Checkpoint and particle data generated over 
the course of a running simulation are projected to be in the range of a few Petabytes. 
Management of this data is a daunting task; both the file system capacity and the available I/O 
bandwidth are limiting factors. The GPFS parallel file system on Summit provides a 
theoretical peak bandwidth of 2.2 TB/s. Writing a Petabyte of data at near peak bandwidth 
would take over 500 seconds. The use of non-volatile memory, such as the local NVME chips 



on Summit nodes, can help in reducing the time to write bursty, high volume data, but the 
efficient utilization of NVME is not straight-forward.  In combination with high volume and 
high frequency particle data, I/O can easily become a bottleneck. In addition, projects on 
Summit have a quota of only 100 TB on the parallel file system, which means the application 
cannot store all the data it generates to persistent storage. Thus, applications need to make 
smart decisions about how to write data and what data must be preserved. 
 
ADIOS (Adaptable I/O System) [20] is a well-known I/O framework that is used across many 
science domains for optimizing I/O and data management. ADIOS provides a self-describing 
data format and a log-based data organization. As part of its data model, ADIOS generates 
metadata to preserve the logical ordering of a file. It provides a rich set of APIs to tune 
various parameters related to I/O to obtain optimal performance. As part of this work, the I/O 
component of GTC has been adapted to utilize ADIOS. ADIOS provides optimized ways to 
store data which are comprised of physics variables recorded over thousands of timesteps. In 
this paper, we present preliminary results of using GTC with ADIOS on Summit. We discuss 
the optimizations performed in ADIOS that lead to performance improvements in GTC. We 
highlight the challenges that are faced with increasing data volumes and metadata overhead, 
and discuss the design of a new metadata format in ADIOS for exascale data. The findings of 
our study provide valuable insight into the I/O characteristics of scientific simulation codes 
and help us estimate the areas where bottlenecks can occur when applications are run at 
exascale. Moreover, we also investigate and evaluate some potential approaches to improving 
the efficiency of scientific data management and discuss the future research directions. 

Background 

Summit 
 
Summit is an IBM system located at the Oak Ridge Leadership Computing Facility [12]. With 
a theoretical peak double-precision performance of approximately 200 PF, it is currently rated 
as the fastest supercomputer in the world as of this writing [13]. The basic building block of 
Summit is the IBM Power System AC922 node. Each of the approximately 4,600 compute 
nodes on Summit contains two IBM POWER9 processors and six NVIDIA Volta V100 
accelerators and provides a theoretical double-precision capability of approximately 40 TF. 
Each POWER9 processor is connected via dual NVLINK bricks, each capable of a 25GB/s 
transfer rate in each direction. Nodes contain 512 GB of DDR4 memory for use by the 
POWER9 processors and 96 GB of High Bandwidth Memory (HBM2) for use by the 
accelerators. Additionally, each node has 1.6TB of non-volatile memory that can be used as a 
burst buffer. Summit mounts a POSIX-based IBM Spectrum Scale parallel file system called 
Alpine. It consists of 77 IBM Elastic Storage Server (ESS) GL4 nodes and has a maximum 
capacity of 250 PB. Each IBM ESS GL4 node is constituted by two dual-socket IBM 
POWER9 storage servers, and a 4X EDR InfiniBand network for up to 100 Gbit/sec of 
networking bandwidth. The maximum performance of the final production system is about 
2.5 TB/s for sequential I/O and 2.2 TB/s for random I/O. 
 
 
Gyrokinetic Toroidal Code 
 
As a particle-in-cell code, GTC [1] tracks individual charged particles in a Lagrangian frame 
in a continuous phase-space, whereas the moments (number density, charge density and 
current density etc) of particle distribution of different species (thermal ion, thermal electron, 
fast ion, fast electron, etc.) are simultaneously computed on a stationary Eulerian field mesh. 
The electromagnetic fields are then solved on the field mesh using proper combinations of 
Poisson equation, Ampere’s law, Faraday’s law and force-balance equations with finite 



difference and finite element methods. This field mesh is also used to interpolate the local 
electromagnetic fields at the particle positions in phase-space. GTC has been extensively 
applied to study collisional transport [2], energetic particle transport [3], microturbulence [4], 
Alfven eigenmodes [5], kink modes, and tearing modes in fusion plasmas. 
 
GTC carried out the first fusion production simulations at tera-scale on the Seaborg computer 
at NERSC in 2001 [6] and at peta-scale in 2008 as an early science application on the Jaguar 
computer at OLCF [7] GTC is a key production code in the DOE SciDAC ISEP Center [8] 
and one of the two fusion codes selected by the Center for Accelerated Application Readiness 
(CAAR) [9], a DOE ASCR program to prepare prominent codes across all DOE supported 
research portfolio for the emerging exascale computers. GTC is also one of the production 
codes in the Summit acceptance benchmark suite. 
 
GTC uses MPI domain decomposition, particle decomposition, and OpenMP shared memory 
partitioning to scale up to millions of CPU cores to take advantage of the memory hierarchy. 
Thanks to closed collaborations with computational scientists through ASCR CAAR and 
SciDAC ISEP projects, GTC has been ported to GPU-based supercomputers including Titan 
and Summit early access systems at OLCF. The computationally expensive particle and field 
subroutines are fully ported and optimized on GPU using OpenACC and CUDA.  Using 
realistic fusion simulation parameters [10], GTC shows near-ideal weak scaling performance 
up to the full capacity of Titan computer with GPU. GTC has recently demonstrated good 
scalability on more than 20% of Summit and achieved an unprecedented speed of one trillion 
particle pushes in 2 seconds wall-clock time using 928 nodes on Summit [11]. 
 
Preparing GTC for large simulations that generate large volumes of data requires special 
consideration. GTC generates a combination of diagnostics data, field data, checkpoint-restart 
files, and particle data. These data components differ vastly in terms of their output frequency, 
number of variables contained within, and size. Table 1 provides a summary of the various 
data items along with some of their important characteristics in a typical large simulation.  
 

Table 1: Summary of the different types of data generated by GTC 
Data Type Frequency of Output Size of the data per output Number of 

variables 

Diagnostics Every timestep or every few 
timesteps 

Megabytes 50 - 100 

Snapshot Once every hour Megabytes up to many 
Gigabytes 

50 - 100 

Checkpoint Once every hour Terabytes, potentially up to 
Petabytes 

< 20 

Restart Once Terabytes, potentially up to 
Petabytes 

< 20 

Field data Every timestep Gigabytes < 20 

Particles Every timestep Few hundred terabytes up to 
petabytes 

< 20 

 



In general, diagnostics data are high velocity data that are written frequently, and read back 
multiple times for analysis, both online as well as offline. Checkpoint data are write-once; that 
is, they are written for resilience purposes with the intention of simulation restarts. 
Checkpoint and particle data are high volume and writing them usually consumes significant 
resources. Furthermore, checkpoint and restart data are high variety data, as their underlying 
variables are comprised of scalars, vectors, and multi-dimensional arrays. 
 
GTC traditionally uses POSIX I/O, where data are written to binary files. Based on historical 
knowledge, multiple processes writing data to the same file generally yields poor performance. 
To circumvent this commonly known N-1 write pattern, all high-volume data in GTC are 
written such that each process writes its data to an independent file. For many outputs such as 
field data, data are written into new files per process per output timestep. However, such an 
approach typically suffers from two issues. One, the metadata overhead for parallel file 
systems on supercomputers is a massive challenge and often forms the bottleneck for 
intensive I/O. At extreme scales, this will be one of the most important challenges. Two, a 
logical file being split into multiple sub-files to improve I/O performance puts additional 
burden on the developers to ensure that data is read back correctly. Inspecting such data 
offline can be highly prohibitive without specialized tools. 
 
For the different types of outputs in GTC, optimizing I/O is challenging as there is no ‘one-
size-fits-all’ approach that can be used to optimize I/O. Different strategies need to be adopted 
for different components. At the exascale, the sheer size of the data can be an issue as many 
Petabytes of data can be generated over the course of a few hours. 
 
 
ADIOS 
 
ADIOS is an I/O framework which provides a simple and flexible way for scientists to 
describe the data in their code. ADIOS provides highly optimized I/O routines that allow 
users to read and write data in an optimal fashion for the target architecture. In the ADIOS 
design, variables and steps are first-class concepts. ADIOS provides the API to define a 
variable which may be a simple scalar or a global array partitioned amongst processes. It 
provides the ability to write variables to a file and append “steps” to it, so that a single file can 
contain information about a physical quantity as it evolves over time. ADIOS stores data in a 
proprietary, log-based, file format named BP (current version 3). For every process that writes 
data to a file, it creates an independent sub-file and writes metadata in the global file container 
to reconstruct the original order of the file. The log-based data organization allows ADIOS to 
write each process’s output into a separate chunk of file or aggregate several processes’ 
outputs into a smaller number of files, which can maximize the I/O bandwidth. These 
operations are kept transparent from the end user. The self-describing nature of the file allows 
users to inspect the file outside the scope of the running simulation using pre-bundled tools 
that come with the library.  
 
The ADIOS API is designed as a publish-subscribe library. Applications can write data 
directly to the underlying storage or publish data so that it can be read by processes that 
subscribe to it. This allows various applications to couple through in-memory transports, 
which plays an important role in providing the ability to analyze data in situ. This is done 
through the use of built-in ADIOS “engines” that provide users with a way to select how data 
must be published. For example, there are engines to read/write data from/to underlying 
storage, communicate with other applications through in-memory data exchange, as well as 
perform a wide area network transfer of data to remote sites. ADIOS also provides the ability 
to transform data through various compression and reduction methods. Users may set these 



options directly in their code or in an XML file. Furthermore, ADIOS provides ways to tune 
parameters for different engines and operations to optimize I/O performance. 

Data Management in GTC using ADIOS 

In this section, we discuss our efforts at improving I/O performance in GTC through the use 
of ADIOS and present results from experiments run on the Summit supercomputer. 
 
At large scale, GTC suffers from issues arising due to sub-optimal I/O patterns and the 
metadata overhead on the file system. To overcome these limitations, ADIOS is now being 
used to manage data in GTC. The core design features of ADIOS lead to performance 
improvements out of the box for various data output by GTC. As timesteps can be appended 
to existing files, new files per output timestep are no longer required. Additionally, the 
number of writers, and thus the number of sub-files for different outputs in GTC has been 
tuned to obtain good performance by alleviating the metadata overhead on the file system. 
Table 2 lists the number of output files that were created by the original POSIX I/O version of 
GTC and the ADIOS version of GTC for a run that simulated 10,000 timesteps using 3072 
processes on Summit. No particle data was generated was generated for these experiments. 
 

Table 2: Number of output files created by GTC when using POSIX vs. using ADIOS. 

 
It can be seen that the POSIX I/O version of GTC creates almost 50,000 files, whereas the 
ADIOS version creates just over 6000 files on storage with 4 writers per node, with further 
potential to reduce the number of sub-files. This leads to significant improvements in the 
overall I/O performance. This is further demonstrated by the performance improvements in 
writing snapshot data, as shown in Figure 1. Recall from Table 1 that snapshot data are 
written to a new file at every output step. Using ADIOS, snapshot data are appended to an 
existing file which leads to 50x improvement over the POSIX version of the application. 
 

Output filename Number of files in the 
POSIX I/O module 

Corresponding 
ADIOS output file 
container 

Number of files 
created by the 
ADIOS module 

equilibrium.out 1 equilibrium.bp 1 

data1d.out 1 data1d.bp 1 

history.out 1 history.bp 1 

snapshot#.out 10,000 snapshot.bp 1 

phi#.out 32,000 phi3d.bp 2048 

restart1.# 3072 restart1.bp 2048 

restart2.# 3072 restart2.bp 2048 



 
Figure 1: Comparison of the time taken to write one snapshot of GTC on Summit to the 

GPFS parallel file system for POSIX vs. ADIOS 
 
Figure 2 shows the I/O performance for writing checkpoint data from GTC to the GPFS 
parallel file system using ADIOS. The simulation was run on 512 nodes with 6 processes per 
node, for a total of 3072 processes. The aggregate size for each checkpoint was 2.6 Terabytes. 
For our tests, we compute 5000 simulation timesteps and write 50 checkpoints. We show 
results for varying number of writers per node in ADIOS. The figure shows that a peak 
performance of 2.27 TB/s is observed when we use 6 writers per node. Using 6 writers per 
node displays high variability in I/O performance with an average bandwidth of 1.1 TB/s, 
whereas using 4 writers per node shows a more consistent average of 1.5 TB/s. 
 

 
Figure 2: Using ADIOS to write checkpoint data from GTC to the GPFS parallel file 

system on Summit. Results show the effect of tuning ADIOS options to control the 
number of sub-files created on the parallel file system for checkpoint data. 

 



I/O variability is common on large-scale computing facilities since the I/O bandwidth is 
shared by hundreds of running jobs simultaneously. Previous studies [16] [17] have shown 
significant I/O performance variability on DoE’s Titan [18] and Cori [19] supercomputers. 
This can be mitigated to an extent by the use of the local non-volatile memory on Summit 
nodes. An in-depth study to model the performance of NVME for use in GTC and effective 
ways to utilize it is an important future work for this research. 
 

Metadata Optimizations in ADIOS for Large Data 

An ADIOS file is a collection of sub-files created by writer processes and metadata 
information required to recreate the file in its original intended form. With increasingly large 
output data, the overhead of this metadata is no longer negligible. This will be an important 
consideration as we move towards the exascale. In this section, a study of the metadata 
overhead in ADIOS for different types of output data is discussed, along with a design of the 
next generation file format in ADIOS. 
 
Factors that affect metadata overhead 
 
Experiments have been performed to study the impact of the data size, number of variables, 
number of processes writing data, and the number of timesteps generated by GTC. To study 
the impact of data volume, the simulation was run on 64 compute nodes on Summit (6 
processes per node) for 100 simulation timesteps. In each step, the size of the variables is 
varied, while the number of variables is kept constant. As shown in Figure 3, an increase in 
data size leads to an increase in the overall write time but does not show a significant increase 
in metadata overhead. This is expected, as ADIOS generates metadata for every write issued 
to the underlying file by every writer process. Thus, for a constant number of write operations, 
the metadata overhead remains constant. The increase in overhead seen in the figure is 
attributed to variability in the I/O bandwidth as the size of the metadata is small. However, 
from the figure, we can observe that if the size of GTC output data is relatively small, the 
metadata overhead dominates the total I/O overhead.   
 

 
Figure 3: Impact of increasing data volume on metadata overhead 

 
 
At larger scales, an increase in output data also corresponds to an increase in the number of 
physical quantities written by the application. Figure 4 shows the impact of an increase in the 
number of variables generated by GTC. Increasing the number of variables causes a 



significant increase in the metadata overhead. The amount of metadata generated increases 
with an increase in the number of variables, as does the time complexity of constructing and 
writing those metadata items. 

 
Figure 4: Impact of increasing number of variables on metadata overhead 

 
 
In order to fully utilize the available I/O bandwidth of parallel file systems, ADIOS allows 
MPI processes of large-scale simulation runs to write data to separate files, which requires 
metadata to associate data chunks with processes, and recording the offset of the data chunk 
in the global file. To study the impact of increasing writers, experiments were run with a 
constant number of variables and timesteps, but varying number of MPI processes. Figure 5 
shows that increasing the number of writers shows almost a linear increase in the metadata 
overhead. 
 

 
Figure 5: Impact of increasing the number of writer processes on metadata overhead 

 
 



Recall that applications can append “steps” to an ADIOS file. In addition to metadata 
associated with variables and writer processes, ADIOS also needs to maintain metadata about 
the steps in the file. At large scale, GTC can run tens of thousands of time steps. To study the 
impact of increasing number of timesteps in the simulation, experiments were run with a fixed 
number of variables, output data sizes, and MPI process count, while increasing the number of 
timesteps simulated by the application. Figure 6 shows that the average metadata overhead 
per simulation step increases with an increase in the total number of simulation steps. This is 
because when ADIOS constructs the metadata at each simulation step, it needs to reorganize 
and serialize metadata of current and all previous steps in memory, and write the serialized 
metadata to file.  
 

 
Figure 6: Impact of increasing number of timesteps in GTC on the metadata overhead 

 
 
When combined with a large number of variables, process counts, and simulation timesteps, 
the metadata overhead in ADIOS can grow quickly. To alleviate the pressure of increasing 
number of processes, users can tune ADIOS parameters to reduce the number of writers. 
However, the overhead due to increasing timesteps is a primary concern as reconstructing the 
full metadata for every step written to an ADIOS file can lead to an exponential increase in 
metadata overhead. At extreme scale, this is projected to be a major limiting factor in 
obtaining good I/O performance. In the next section, we discuss performance improvements 
obtained through a re-designed metadata format for ADIOS that mitigates this issue. 
 
 
BP4: The next generation ADIOS file format with improved metadata capabilities 
 



 
 

Figure 7: Per-step metadata overhead of current and new metadata construction 
approach 

 
 
The BP4 file format is the next generation file format for ADIOS that is targeted towards 
exascale simulations that generate high volumes of data. Emphasis has been put on 
redesigning the metadata schema to optimize for increasing timesteps. The central concept is 
the introduction of an index table that stores the metadata offsets that represent timesteps in 
the global metadata file. Using an index table removes the need to sort the metadata and parse 
it serially to retrieve information when timesteps are appended to a file. Figure 7 shows that 
the metadata overhead per step with BP4 is constant for an increasing number of timesteps. 
Consequently, the total metadata overhead during the entire simulation run is also 
significantly reduced. 

Conclusions 

In this paper, we use Gyrokinetic Toroidal Code (GTC) as a concrete example to demonstrate 
the data management challenges that arise when we run pre-exascale scientific simulations. 
We use ADIOS to optimize I/O and data management in GTC. Initial experiments on the 
Summit supercomputer show a peak performance in excess of 2 TB/s for writing checkpoint 
data to the GPFS parallel file system. An improvement of 50X is obtained for writing 
snapshot data in GTC with ADIOS. A novel file format named BP4 for ADIOS is introduced 
with the objective of reducing metadata overhead at extreme scale. Preliminary results show 
significant improvement in metadata performance of ADIOS with the new file format. 
Optimizing I/O on leadership class machines is challenging and further research is required to 
efficiently utilize the evolving complex storage hierarchy that includes non-volatile memory 
along with new parallel file systems. 
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