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ABSTRACT

Local linear simulations of ion temperature gradient (ITG) instabilities using a gyrokinetic particle code GKD1D have been verified
by comparing with the analytic dispersion relation in the slab geometry and by benchmarking with a global gyrokinetic code GTC-X in a
realistic field-reversed configuration (FRC). Results of ITG simulations using either adiabatic or kinetic electrons exhibit excellent agreements
between the two codes for linear frequencies, growth rates, and mode structures. The ITG modes in the FRC scrape-off layer region are
mostly dominated by the poloidal m ¼ 1 harmonic. Kinetic electrons enhance the subdominant m ¼ 2 harmonic and the even parity
dominates the ITG mode structure. Kinetic electrons increase the growth rates for the low-n modes, but decrease the growth rates for the
high-n modes.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0020288

I. INTRODUCTION

A field-reversed configuration (FRC) is an elongated compact
toroid with an equilibrium magnetic field predominately along the
poloidal direction.1,2 The FRC consists of two topologically different
regions that are separated by a magnetic separatrix: an inner core with
closed field lines and an outer scrape-off layer (SOL) with open field
lines. The FRC has many advantages as a promising fusion reactor
candidate. Recent experimental advances in suppressing the macro-
instabilities (including rotational, wobble, and tilt modes)3,4 have suc-
cessfully raised the confinement time of the FRC plasma to a turbulent
transport-limited regime.

Therefore, a comprehensive understanding of the transport
process in the FRC plasma has become a high priority, which has
motivated recent experimental and computational studies of low
frequency driftwave turbulence. The experimental measurements
showed that ion-scale fluctuations are absent or strongly suppressed in
the FRC core, while ion- and electron-scale turbulences are present in
the SOL once a critical pressure gradient is exceeded.5 These experi-
mental observations have been confirmed in numerical simulations.

Linear local electrostatic gyrokinetic particle-in-cell (PIC) simulations
using the GTC code found that the ion scale driftwaves in the core are
stable and that both ion and electron scale driftwaves are unstable in
the SOL.6 The instability threshold calculated from simulations is con-
sistent with the critical gradient determined from the experimental
measurements.7,8 More recently, nonlinear electrostatic simulations
including the separatrix by the global ANC code9 found that ion-scale
driftwave instabilities are linearly unstable in the SOL and nonlinearly
spread into the core plasmas. The toroidal wavenumber spectrum
from the simulations in the steady state is consistent with experimental
measurements. Furthermore, linear global electrostatic simulations
using the GTC-X code found that the unstable driftwaves in the SOL
exhibit an axially varying structure that is the strongest in the forma-
tion exit areas with a bad magnetic curvature.10

The global gyrokinetic PIC simulations9,10 have incorporated
comprehensive physics, especially the geometry coupling between the
FRC core and SOL, and have provided important insights into drift-
wave instabilities and turbulent transport in FRC plasmas. However,
global simulations are computationally expensive and so would not be

Phys. Plasmas 27, 112504 (2020); doi: 10.1063/5.0020288 27, 112504-1

Published under license by AIP Publishing

Physics of Plasmas ARTICLE scitation.org/journal/php

https://doi.org/10.1063/5.0020288
https://doi.org/10.1063/5.0020288
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0020288
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0020288&domain=pdf&date_stamp=2020-11-04
https://orcid.org/0000-0002-3991-872X
https://orcid.org/0000-0001-7486-0407
https://orcid.org/0000-0003-2007-8983
https://orcid.org/0000-0002-6739-3684
https://orcid.org/0000-0001-8743-0430
https://orcid.org/0000-0001-9204-135X
mailto:zhihongl@uci.edu
https://doi.org/10.1063/5.0020288
https://scitation.org/journal/php


efficient for a large number of simulations. To complement these
global codes, a local gyrokinetic code capturing essential physics of
driftwave instabilities in the FRC could be an efficient tool for rapid
parameter scans and as a first-principles module in a reduced trans-
port model for assessing FRC confinement properties. Although the
ratio of kinetic pressure to magnetic pressure b ’ 1 in the FRC core,
an electrostatic model is suitable for describing the driftwave turbu-
lence in the SOL, where b� 1 due to the stronger magnetic field and
lower plasma density and temperature.

In this paper, we report verification of a one-dimensional electro-
static gyrokinetic PIC code GKD1D11,12 upgraded for radially local
simulation of a single toroidal mode number n on a flux surface in the
FRC geometry. We first show that linear frequencies and growth rates
from GKD1D simulations of ion temperature gradient (ITG) instabil-
ities in a small FRC domain are nearly identical to the analytic disper-
sion relationship in the slab limit. We then perform a careful
benchmark between GKD1D and GTC-X for the ITG instabilities in a
realistic SOL geometry of a model FRC. Results of simulations using
either adiabatic or kinetic electrons exhibit excellent agreements
between the two codes for linear frequencies, growth rates, and mode
structures. The ITG modes are mostly dominated by the poloidal
m ¼ 1 harmonics. Kinetic electrons increase the growth rates for the
low toroidal n modes, but decrease the growth rates for the high-n
modes. Kinetic electrons can excite the subdominant m ¼ 2 harmon-
ics. The mode structures can show both odd and even parities when
using adiabatic electrons, while all the mode structures are dominated
by even parities with kinetic electrons.

This paper is organized as follows. In Sec. II, we describe the for-
mulation of the linear electrostatic gyrokinetic simulation model, the
implementation of various operators, and the equilibrium geometry
used in the GKD1D code. We verify the linear GKD1D ITG simula-
tions using an analytic dispersion relationship in the slab limit in Sec.
III. We then perform the benchmark of ITG simulations in the FRC
geometry between GKD1D and GTC-X codes in Sec. IV. We give a
summary and discussion in Sec. V.

II. LOCAL LINEAR GYROKINETIC SIMULATION MODEL
OF GKD1D

The GKD1D code is a 1D electrostatic gyrokinetic PIC code
using the df scheme13,14 to reduce the numerical noise. It was origi-
nally developed for a dipole configuration11,12 and is upgraded in this
work for the FRC geometry.

A. Formulation of the simulation model

When considering the ion-scale and electron-scale microturbu-
lence in the FRC under the assumption of low frequency and long par-
allel wavelength x=Xs � qs=L � kk=k? � 1 but short perpendicular
wavelength k?qs � 1, the linear gyrokinetic model15–17 can be
applied. Here, x is the real frequency of the unstable drift-wave mode
and Xs and qs are the particle cyclotron frequency and Larmor radius
of species “s,” respectively. L is the scale length of equilibrium quanti-
ties, k? and kk are the wave numbers in the direction perpendicular
and parallel to the magnetic field, respectively. Although the equilib-
rium distribution function in the mirror-like magnetic field in the SOL
should be calculated from an equilibrium model, for simplicity, we
assume in this work that the equilibrium is a Maxwellian distribution
function F0s ¼ n0s ms=2pTsð Þ3=2e�ms�=Ts , where � ¼ v2=2,

l ¼ v2?=2B is the magnetic moment, Ts ¼ mv2s is the particle temper-
ature, and vs is the species’ thermal velocity; the appropriate gyroaver-
aged perturbed particle distribution function of species “s” is

fs ¼
qs
ms

@F0s
@�

/þ J0 k?qð Þhs; (1)

with the nonadiabatic perturbed gyrocenter distribution function hs
determined by

x� xDs þ ivkb � r
� �

hs ¼ � x� x�sð Þ
@F0s
@�

qs
ms

J0/: (2)

Here, J0 is the Bessel function of the first kind, b ¼ B=B, with B being
the magnetic field and qs and ms being the charge and mass of species
“s,” respectively. The diamagnetic drift frequency x�s and the mag-
netic drift frequency xDs are expressed as

x�s ¼
k? � b � $F0s
�Xs@F0s=@�

¼ k? � b � $F0s
qsBF0s=Ts

; (3)

xDs ¼ k? � vd ¼ k? � b�
l$Bþ v2kb � $b

Xs
: (4)

For the initial value simulation method, we can remove the x term on
the righthand side of Eq. (2) by defining

gs � hs �
qs
Ts

F0sJ0/; i:e:; fs ¼ �
qs
Ts

F0s 1� J20
� �

/þ J0gs; (5)

and Eq. (2) changes to (with definition of b � r ¼ @=@l; x ¼ i@=@t)

@

@t
þ vk

@

@l

� �
gs ¼ �ixDsgs � i xDs � x�sð Þ

qs
Ts

F0sJ0/

� vk
qs
Ts

F0s J0
@

@l
/� /J1

@

@l
k?qð Þ

� �
; (6)

where we have used J00 ¼ �J1.
For electrostatic perturbations, the gyrokinetic equation is closed

by the Poisson equation X
s

qs

ð
fsd

3v ¼ 0; (7)

and by substituting Eq. (5), this equation for a two-species plasma
reads

� qini
Ti

1� C0ið Þ/þ
ð
J0gid

3v ¼ � qene
Te

1� C0eð Þ/þ
ð
J0ged

3v; (8)

where C0s � I0 bsð Þe�bs and bs ¼ k?qsð Þ2.
In the df -scheme, we define the weight of the perturbed distribu-

tion ws ¼ gs=F0s. Equation (6) can be written as

dws

dt
� @

@t
þ vk

@

@l

� �
ws

¼ �ixDsws � i xDs � x�sð Þ
qs
Ts

J0/

� vk
qs
Ts

J0
@/
@l
� /J1

@

@l
k?qð Þ

� �
; (9)

and the quasi-neutrality Eq. (8) now yields
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qini
Ti

1� C0ið Þ � qene
Te

� �
/ ¼

ð
J0gid

3v �
ð
J0ged

3v: (10)

Here, the finite Larmor radius (FLR) effects are kept for ions, but are
neglected for electrons in all simulations of ion scale instabilities
reported in this paper. The guiding center equations of motion [i.e.,
propagator on the left-hand-side of Eq. (9)] for the linear local simula-
tion are

dl
dt
¼ vk; (11)

dvk
dt
¼

dvk
dl

dl
dt
¼ d

dl

v2k
2
¼ �l

dB
dl
: (12)

The perturbed electric field does not appear in Eq. (12) since only
unperturbed orbits are used in the linear simulation. Equations
(9)–(12) constitute the final equation system we solve for local electro-
static linear driftwave instabilities in an FRC.

B. Implementation of operators

When solving for Eqs. (9) and (10), we need to calculate @=@l, vk,
@ k?qð Þ=@l, x�s, xDs, and bs. Here, we describe the implementation of
these terms in the GKD1D code.

The flux coordinates w; h; fð Þ are used in the GKD1D, where
w ¼ w r; zð Þ is the magnetic flux function, h ¼ h r; zð Þ is the poloidal
(parallel) coordinate, f ¼ �u is the toroidal angle, and r; u; zð Þ are
the cylindrical coordinates. An ideal FRC has a purely poloidal equilib-
rium magnetic field, which enables us to write

B ¼ �$w� $f;

k? ¼ kw bew þ kf bef :

In this coordinate definition, bef is in the ion diamagnetic drift direc-
tion and bew is the direction perpendicular to the flux surface.
Although there is no toroidal coupling due to the zero magnetic shear
in the FRC, the driftwave eigenmode often forms a radially elongated
structure (kw � kf) to minimize the finite Larmor radius effects as
observed in the ANC simulation.9 Since we aim to implement a local
simulation model, all variations in the radial direction can be ignored
and we simply take kw ¼ 0 and k? ¼ kf ¼ n=r, where n is the toroi-
dal mode number. Then, we have

k?qs ¼
nmsvs
qs

1
rB
; bs ¼

nmsvs
qs

1
rB

� �2

: (13)

In order to unify the local simulation along a magnetic field line
for both the core and the SOL regions of the FRC, which are topologi-
cally different, we express the differential operator along the magnetic
field line dl as dl ¼ R0jdh, where j wð Þ is a function that maps the
parallel distance to an angle-like poloidal coordinate h 2 �p; p½ 	. As
a result,

@

@l
¼ 1

R0j
@

@h
: (14)

Considering l conservation and vk ¼ dl=dt, we have

@

@h
k?qð Þ ¼ � nms

qs

ffiffiffiffiffi
2l
p

a2
@a
@h

� �
w¼w1

; (15)

dh
dt
¼

vk
R0j

; (16)

where we define a � r
ffiffiffi
B
p

.
For a typical FRC equilibrium, we can express n0 ¼ n0 wð Þ and

T ¼ T wð Þ; so, we have

$F0s ¼
$n0s
n0s
þ $Ts

Ts

ms�

Ts
� 3
2

� �	 

F0s

¼ �$w
w0

jns þ jTs
ms�

Ts
� 3
2

� �	 

F0s;

where jns � �w0@lnn0s=@w, jTs � �w0@lnTs=@w for each species
and w0 ¼ B0R2

0. Insert the upper expression into Eq. (3), and noting
that k? � bð Þ � rw ¼ nrf� b½ 	 � rw ¼ �nB, yields

x�s ¼ xd0s jns þ jTs
ms�

Ts
� 3
2

� �	 

; (17)

where xd0s � nTs
qsw0

.
The bef component of gradient drift velocity vg, curvature drift

velocity vc, and total drift velocity vd are

vg � bef ¼ l
Xcs

b� $Bð Þ � bef ¼ lBg hð Þ
XsR0

;

vc � bef ¼ v2k
Xcs

$� bð Þ � bef ¼ 2 �� lBð Þc hð Þ
XsR0

;

vd � bef ¼ vg þ vcð Þ � bef ¼
1

XsR0
lBg þ 2c �� lBð Þ½ 	;

where we define g hð Þ � R0 b� $Bð Þ � bef=B and c hð Þ � R0

$� bð Þ � bef . Inserting the upper expression into Eq. (4) yields

xDs ¼ xd0s
R0B0

rB
lBg
v2s
þ 2c �� lBð Þ

v2s

� �
: (18)

C. Equilibrium and flux line domain

All simulations in this paper use a model FRC geometry reported
by earlier GTC simulations.6–8,18 The FRC magnetic geometry in
Boozer coordinates was constructed using equilibrium data from the
LR_eqMI code,19 which is an axisymmetric force balance solver
including realistic wall and coil geometry. Figure 1 shows the poloidal
magnetic flux w contour of this equilibrium, where the black dashed
line represents the separatrix between the core and SOL. The

FIG. 1. Contour plot of the magnetic flux function on a poloidal plane of a represen-
tative FRC equilibrium.6–10,18 The red line denotes the flux surface w1 used by all
simulations in this paper.
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separatrix radius Rsep ¼ 38 cm is the distance from the cylindrical axis
to the separatrix on the z ¼ 0 midplane and the major radius R0 ¼ 27
cm is the distance from the cylindrical axis to the null-point on the
midplane.

The GKD1D code uses a single flux-surface geometry to study the
local linear properties of the FRC core and SOL separately. Since the ion
scale driftwaves are more easily driven unstable in the SOL, the verifica-
tion is done at a single flux surface which passes through r; zð Þ
¼ 1:93; 0ð ÞR0 (the red line shown in Fig. 1). The magnetic field at the
point of z ¼ 0 on this flux surface is B1 ¼ 966 G. The ratio of kinetic
pressure to magnetic pressure b ¼ 0:021 � 1 on this flux surface,
which justifies the electrostatic simulation model described in this work.
This flux surface is chosen to be at the maximal mode amplitude of the
ion-scale instabilities in previous simulations by GTC,6–8 GTC-X,10 and
ANC9 codes using model plasma profiles.5 The turbulences driven at this
SOL location can spread across the separatrix and cause transport in the
FRC core.9 In the parallel direction, only the segment between z=R0 ¼
�9:33; 9:33½ 	 is used. This segment is chosen because the whole FRC
core can be included in a global simulation and the magnetic field is
roughly parallel to the z-axis at the boundary for applying periodic
boundary conditions in the parallel direction. The finite difference
method is applied in the parallel direction. In the toroidal direction, a sin-
gle toroidal mode number n is selected using the spectral method to sim-
plify the flux surface into a field line. Although the neutral beam injection
(NBI) may be extensively applied in the modern FRC, the NBI’s contribu-
tion to the driftwave instabilities is not considered in this work, because
the NBI ions cannot be simulated by the gyrokinetic model.

Before verifying the dispersion relation and benchmarking with
the GTC-X code, the numerical convergence of the upgraded GKD1D
code has been studied with regard to particle convergence, space grid
convergence, and time step convergence, respectively. This is done
based on a typical case of the following equilibrium: Ti ¼ Te ¼ 80 eV,
jni ¼ jne ¼ 0:71, jTi ¼ 1:42, jTe ¼ 0:00, n ¼ 20, kr ¼ 0, and deute-
rium ions. Table I shows several characteristic length scales at the
simulation location. The ion gyroradius is much smaller than the equi-
librium length scales, which corroborated the validity of the gyroki-
netic model applied to this FRC simulation. The variations of
simulation results decrease to <0:5% when using npart=ngrid ¼ 1600,
ngrid ¼ 64, Dt ¼ 0:005 cs=R0, where cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the sound

velocity, which will be used in all following simulations. The character-
istic lengths of plasma profiles and magnetic fields are listed in Table I
to justify the conservation of the magnetic moment and the gyroki-
netic simulation model.

III. VERIFICATION OF GKD1D USING THE ANALYTIC
DISPERSION RELATION

In the slab geometry, the gyrokinetic model Eqs. (9) and (10) can
readily be solved for kk ¼ 0 modes, yielding the following integral dis-
persion relation:

X
s¼i;e

1
Ts

1�
ð

x� x�s
x� xDs

J20F0sd
3v

� �
¼ 0: (19)

For the Maxwellian distribution function, F0s ¼ ms=2pTsð Þ3=2

eð�msv2=2TsÞ; this yields the dispersion relation

D x; k?ð Þ ¼
X
s¼i;e

1
Ts

1� 1ffiffiffiffiffi
2p
p

ð
x� x�s
x� xDs

J20 k?qð Þ
�

� exp � y2

2

� �
y?dy?dyk

�
¼ 0; (20)

where y ¼ v=vs; y? ¼ v?=vs; yk ¼ vk=vs. For an adiabatic electron
model, Eq. (20) reduced to

1
Ti

1� 1ffiffiffiffiffi
2p
p

ð
x� x�i
x� xDi

J20 k?qð Þ exp � y2

2

� �
y?dy?dyk

" #
þ 1
Te
¼ 0:

(21)

The accuracy of the GKD1D code is verified using this theoretical
dispersion relation. By limiting the parallel domain to a small size of
z ¼ �0:05; 0:05½ 	R0 and applying periodic boundary conditions in
the parallel direction, we can regard the resulted configuration as a
slab geometry and thereby compare the simulation results with the
Eqs. (20) and (21) solved by the mgk0d code implemented in
MATLAB.11 We show the comparison for the adiabatic electron case
in Fig. 2 for a large range of toroidal mode numbers n ¼ 25; 60½ 	,
which corresponds to k?qi ¼ 0:91; 2:18½ 	. The comparison for the
kinetic electron case is shown in Fig. 3 for a range of toroidal mode
numbers n ¼ 60; 120½ 	, which corresponds to k?qi ¼ 3:45; 6:91½ 	.
All modes are dominated by the kk ¼ 0 component, consistent with
the assumption of Eq. (20). The simulation results show excellent
agreement with analytic theory, which gives a verification of the
GKD1D simulations.

IV. BENCHMARK BETWEEN GKD1D AND GTC-X

In this section, the GKD1D code is benchmarked with the
Gyrokinetic Toroidal Code-X (GTC-X code),10 which has been devel-
oped using many advanced physics and numerical capabilities from
GTC20 and is specially developed for nonlinear global simulations of

TABLE I. Characteristic lengths (unit: cm) used in the simulations. LTi and Ln are the
ion temperature and density scale length, respectively. qi is the ion gyroradius. LB and
Rc are, respectively, the scale length and inverse of the curvature of the magnetic field.

LTi Ln qi LB Rc

5.4 10.8 1.3 81.2 141
FIG. 2. ITG linear frequency (xr ) and growth rate (c) comparison between the
GKD1D simulation results and the analytic dispersion relation for different mode
numbers (n) using an adiabatic electron model.
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the FRC10 and tokamak21 including magnetic separatrix using cylin-
drical coordinates.

In order to benchmark with the 1D gyrokinetic PIC code
GKD1D, we make some simplifications in the simulation model of the
3D gyrokinetic PIC code GTC-X. First, we limit the GTC-X simulation
radial domain to the vicinity of the selected flux surface w1 (the red
line shown in Fig. 1) in the GKD1D simulation, i.e., the GTC-X simu-
lation radial domain is w ¼ 0:998; 1:002½ 	w1. Second, a single toroidal
n mode is selected using a spectral method in the GTC-X simulations.
The parallel domain is also identical in the two codes. The simulation
domain used by these two codes is confirmed by comparing the differ-
ence of several important equilibrium variables, e.g., B; rB=B;rn=n,
and rT=T, all of which give a relative difference of less than 2%. The
main discrepancy comes from the different types of discretization in
parallel coordinates implemented in the two codes.

Since the ITG parallel wavelength is expected to be much longer
than the perpendicular wavelength, we first perform convergence stud-
ies on the number of poloidal harmonics needed to represent the ITG
eigenmode. The simulation parameters are listed here: Ti ¼ Te

¼ 80 eV, jni ¼ jne ¼ 0:71, jTi ¼ 1:42, jTe ¼ 0:00, n ¼ 20, kr ¼ 0,
and deuterium ions. A parallel mode filter is implemented in both
GKD1D and GTC-X to select the poloidal harmonics kept in the
simulations to be m ¼ 0;mmax½ 	. The linear simulation results using
gyrokinetic electrons for the convergence with respect to mmax are
shown in Fig. 4 for both GKD1D and GTC-X, which agree very well.
The case for mmax ¼ 0 is stable. It can be seen in Fig. 4 that the real
frequency and growth rate of the n ¼ 24 ITG mode show almost no
changes when mmax increases from 2 to 7, which suggests that the
dominant parallel harmonics are m ¼ 0; 1; 2. Therefore, only the par-
allel harmonics of m ¼ 0; 4½ 	 are kept in the following simulations.
The ITG eigenmodes are formed by linear couplings of these poloidal
harmonics because of variations in the magnetic field amplitude along
the field line with dominant poloidal harmonics m ¼ 0; 1; 2.

The results of linear ITG simulations by GKD1D and GTC-X
using adiabatic electrons are compared in Fig. 5 with the toroidal
mode n ¼ 12; 36½ 	, which corresponds to k?qi ¼ 0:44; 1:31½ 	.
Figures 5(a) and 5(b) show that both the real frequencies and the
growth rates from these two codes agree very well with a relative dif-
ference less than 5%. These are weak ITG instabilities propagating in

the ion diamagnetic direction with c=xr < 20%. Figure 5(c) shows
that these two codes give a nearly identical ITG parallel mode structure
of the electrostatic potential for the n ¼ 24 case. These ITG eigenmo-
des are odd with respect to the outer midplane (z ¼ 0 or h ¼ 0) and
dominated by the m ¼ 1 harmonics.

The linear results of ITG simulations by GKD1D and GTC-X
using kinetic electrons show that kinetic electrons increase the growth
rate of the low-n modes (n ¼ 12 and 16), but decrease the growth rate
for high-n modes (n 
 20). The modes still propagate in the ion dia-
magnetic direction similar to that in the adiabatic electron cases.

FIG. 3. ITG linear frequency (xr ) and growth rate (c) comparison between the
GKD1D simulation results and the analytic dispersion relation for different mode
numbers (n) using the kinetic electron model.

FIG. 4. Dependence of ITG linear frequency (xr ) and growth rate (c) on the maxi-
mal poloidal harmonics (mmax) kept in simulations. Each simulation keeps n ¼ 24
and m ¼ 0; mmax½ 	 harmonics. The case for mmax ¼ 0 is stable.

FIG. 5. Comparison of GKD1D and GTC-X simulation results using adiabatic elec-
trons. (a) Dependence of ITG linear frequency (xr ) on the toroidal mode number
(n), (b) dependence of ITG growth rate (c) on the toroidal mode number (n), and
(c) real (solid lines) and imaginary (dashed lines) part of electrostatic potential (/)
for the n ¼ 24 ITG mode as a function of the parallel coordinate (z).
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Figures 6(a) and 6(b) show good agreement for the real frequency and
the growth rate with a relative error of � 5%, except for the n ¼ 20
case. The difference in the real frequency of the n ¼ 20 case from these
two codes seems to be related to the difference in the eigenmode struc-
ture: the m ¼ 1 harmonics dominates in the GKD1D simulation, but
the m ¼ 2 harmonics dominates in the GTC-X simulation of the
n ¼ 20 mode. For all other n modes, the m ¼ 1 harmonics dominates
in both GKD1D and GTC-X simulations. For example, the n ¼ 24
ITG parallel mode structures of the electrostatic potential are shown in
Fig. 6(c), which demonstrates very good agreements between these
two codes. But the mode structure changes to even parity, i.e., sym-
metric with respect to the outer midplane (z ¼ 0 or h ¼ 0) in this
case, compared to the odd parity, i.e., antisymmetric with respect to
the outer midplane, in the adiabatic electron case [Fig. 5(c)].
Comparison of Figs. 5(c) and 6(c) shows that amplitudes of the m ¼ 2
harmonics in the simulations using kinetic electrons are significantly
higher than those in the simulations using adiabatic electrons.

We list the parity of the ITG eigenmodes for toroidal modes
n ¼ 12; 36½ 	 using both the adiabatic electron model and the kinetic
electron model in Table II. These two codes produce identical parities
for the mode structures of the electrostatic potential. Interestingly, the
mode structures show both odd and even parities when using adiabatic
electrons, while all the mode structures only show even parities with
kinetic electrons. We have tested different initial perturbations and
found that the results in Table II are robust. Since the magnetic geom-
etry is nearly up-down symmetric, the growth rates of even parity
and odd parity modes should be similar. We conjecture that the small

up-down asymmetry of the magnetic geometry breaks the symmetry
between the odd and even modes.

To clarify the effects of kinetic electrons on the ITG mode struc-
ture, we have simulated each toroidal mode n with a single poloidal
harmonic of m ¼ 1 or m ¼ 2. Figure 7 shows the dependence of the
linear frequency and growth rate for each (m, n) harmonic from simu-
lations using the GKD1D with adiabatic or kinetic electrons. The
m ¼ 2 harmonic is stable for adiabatic electrons, but is unstable for
kinetic electrons, especially for n � 24 modes. The growth rate of the
m ¼ 2 harmonic is smaller than that of the m ¼ 1 harmonic for all
toroidal mode numbers. This explains the results in Figs. 5 and 6 that
the m ¼ 2 harmonic is significantly enhanced with kinetic electrons,
but the mode structure is still dominated by the m¼ 1 harmonic. For
the n ¼ 20 mode, the growth rates of the two harmonics are close to
each other and the amplitudes of the two harmonics are similar, so
that the m ¼ 1 harmonic dominates in the GKD1D simulation but
the m ¼ 2 harmonic dominates in the GTC-X simulation. Since mag-
netic field amplitude variations along the field line contain a significant
component of the m ¼ 2 harmonic, the perturbation with the m ¼ 2
harmonic is likely excited by trapped electrons, as all frequencies are
much smaller than the electron bounce frequency. The perturbation
with the m ¼ 2 harmonic would presumably prefer an even parity
due to the bounce-average by the trapped electrons. This could lead to

FIG. 6. Comparison of GKD1D and GTC-X simulation results using kinetic elec-
trons. (a) Dependence of ITG linear frequency (xr ) on the toroidal mode number
(n), (b) dependence of growth rate (c) on the toroidal mode number (n), and (c) real
(solid lines) and imaginary (dashed lines) parts of electrostatic potential (/) for the
n ¼ 24 ITG mode as a function of the parallel coordinate (z).

TABLE II. Parity for ITG mode structures of electrostatic potential for various toroidal
mode numbers with adiabatic or kinetic electrons.

Toroidal mode n

Adiabatic electrons Kinetic electrons

GKD1D GTC-X GKD1D GTC-X

12 Even Even Even Even
16 Even Even Even Even
20 Even Even Even Even
24 Odd Odd Even Even
28 Odd Odd Even Even
32 Odd Odd Even Even
36 Even Even Even Even

FIG. 7. Dependence of ITG linear frequency (xr ) and growth rate (c) on the toroi-
dal mode number (n) from GKD1D simulations using a single poloidal harmonic
m ¼ 1 or m ¼ 2 with adiabatic or kinetic electrons.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 112504 (2020); doi: 10.1063/5.0020288 27, 112504-6

Published under license by AIP Publishing

https://scitation.org/journal/php


a preferred even parity of the ITG mode structure because of the cou-
pling between the m ¼ 1 and m ¼ 2 harmonics.

V. SUMMARY AND DISCUSSION

In this paper, we report the implementation and verification of a
one-dimensional gyrokinetic PIC code GKD1D upgraded for efficient
local simulation of FRC geometry. We show that linear frequencies
and growth rates from GKD1D simulations of ion temperature gradi-
ent (ITG) instabilities in a small FRC domain are nearly identical to
the analytic dispersion relationship in the slab limit. We perform a
careful benchmark between GKD1D and GTC-X for the ITG instabil-
ities in a realistic SOL geometry of a model FRC. Results of simulations
using either adiabatic or kinetic electrons exhibit excellent agreements
between the two codes for linear frequencies, growth rates, and mode
structures. The ITG mode structures are mostly dominated by the
poloidal m ¼ 1 harmonic. The subdominant m ¼ 2 harmonic can be
excited by kinetic electrons. Kinetic electrons also increase the growth
rates for the low toroidal n modes, but decrease the growth rates for
the high-n modes. The mode structures show both odd and even pari-
ties when using adiabatic electrons, while all the mode structures only
show even parities with kinetic electrons.

The successful benchmark between GKD1D and GTC-X
reported in this paper has verified an efficient local simulation model
for driftwave instability in the FRC, which will be utilized for parame-
ter scans and sensitivity studies of confinement properties in existing
FRC experiments and in the design of future FRC experiments. The
current simulations also extend our earlier simulations11 of the long
wavelength ITG instability in the FRC SOL to including effects of
kinetic electrons.

In future work, a fully kinetic ion simulations model22 will be
implemented to study the effects of fast ions on the driftwave
instabilities.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Sean Dettrick, Dr. Laura
Galeotti, Dr. Calvin Lau, and Dr. Jian Bao for providing the
equilibrium data shown in Fig. 1. This work was supported by the
China National Magnetic Confinement Fusion Science Program
(Grant Nos. 2018YFE0304100 and 2017YFE0301303), the ENN
Science and Technology Development Co. Ltd., and the U.S. DOE
Scientific Discovery through the Advanced Computing (SciDAC)
program under Award No. DE-SC0018270 (SciDAC ISEP Center).
Part of the work was done while Shuying Sun was working at ENN.
GKD1D simulations were performed on the High Performance
Computing Platform of Peking University, China and the
computational resources of ENN. GTC-X simulations used
resources on the Oak Ridge Leadership Computing Facility at Oak
Ridge National Laboratory (DOE Contract No. DE-AC05-
00OR22725) and the National Energy Research Scientific
Computing Center (DOE Contract No. DE-AC02-05CH11231).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1L. C. Steinhauer, Phys. Plasmas 18, 070501 (2011).
2M. Tuszewski, Nucl. Fusion 28, 2033 (1988).
3M. W. Binderbauer, T. Tajima, L. C. Steinhauer, E. Garate, M. Tuszewski, L.
Schmitz, H. Y. Guo, A. Smirnov, H. Gota, D. Barnes, B. H. Deng, M. C.
Thompson, E. Trask, X. Yang, S. Putvinski, N. Rostoker, R. Andow, S. Aefsky,
N. Bolte, D. Q. Bui, F. Ceccherini, R. Clary, A. H. Cheung, K. D. Conroy, S. A.
Dettrick, J. D. Douglass, P. Feng, L. Galeotti, F. Giammanco, E. Granstedt, D.
Gupta, S. Gupta, A. A. Ivanov, J. S. Kinley, K. Knapp, S. Korepanov, M.
Hollins, R. Magee, R. Mendoza, Y. Mok, A. Necas, S. Primavera, M. Onofri, D.
Osin, N. Rath, T. Roche, J. Romero, J. H. Schroeder, L. Sevier, A. Sibley, Y.
Song, A. D. Van Drie, J. K. Walters, W. Waggoner, P. Yushmanov, and K.
Zhai, Phys. Plasmas 22, 056110 (2015).

4H. Gota, M. W. Binderbauer, T. Tajima, S. Putvinski, M. Tuszewski, B. H.
Deng, S. A. Dettrick, D. K. Gupta, S. Korepanov, R. M. Magee, T. Roche, J. A.
Romero, A. Smirnov, V. Sokolov, Y. Song, L. C. Steinhauer, M. C. Thompson,
E. Trask, A. D. Van Drie, X. Yang, P. Yushmanov, K. Zhai, I. Allfrey, R.
Andow, E. Barraza, M. Beall, N. G. Bolte, E. Bomgardner, F. Ceccherini, A.
Chirumamilla, R. Clary, T. DeHaas, J. D. Douglass, A. M. DuBois, A.
Dunaevsky, D. Fallah, P. Feng, C. Finucane, D. P. Fulton, L. Galeotti, K.
Galvin, E. M. Granstedt, M. E. Griswold, U. Guerrero, S. Gupta, K. Hubbard, I.
Isakov, J. S. Kinley, A. Korepanov, S. Krause, C. K. Lau, H. Leinweber, J.
Leuenberger, D. Lieurance, M. Madrid, D. Madura, T. Matsumoto, V.
Matvienko, M. Meekins, R. Mendoza, R. Michel, Y. Mok, M. Morehouse, M.
Nations, A. Necas, M. Onofri, D. Osin, A. Ottaviano, E. Parke, T. M. Schindler,
J. H. Schroeder, L. Sevier, D. Sheftman, A. Sibley, M. Signorelli, R. J. Smith, M.
Slepchenkov, G. Snitchler, J. B. Titus, J. Ufnal, T. Valentine, W. Waggoner, J.
K. Walters, C. Weixel, M. Wollenberg, S. Ziaei, L. Schmitz, Z. Lin, A. A.
Ivanov, T. Asai, E. A. Baltz, and J. C. Platt, Nucl. Fusion 59, 112009 (2019).

5L. Schmitz, D. P. Fulton, E. Ruskov, C. Lau, B. H. Deng, T. Tajima, M. W.
Binderbauer, I. Holod, Z. Lin, H. Gota, M. Tuszewski, S. A. Dettrick, and L. C.
Steinhauer, Nat. Commun. 7, 13860 (2016).

6D. P. Fulton, C. K. Lau, I. Holod, Z. Lin, and S. Dettrick, Phys. Plasmas 23,
012509 (2016).

7D. P. Fulton, C. K. Lau, L. Schmitz, I. Holod, Z. Lin, T. Tajima, and M. W.
Binderbauer, Phys. Plasmas 23, 056111 (2016).

8C. K. Lau, D. P. Fulton, I. Holod, Z. Lin, M. Binderbauer, T. Tajima, and L.
Schmitz, Phys. Plasmas 24, 082512 (2017).

9C. K. Lau, D. P. Fulton, J. Bao, Z. Lin, T. Tajima, L. Schmitz, and S. Dettrick,
Nucl. Fusion 59, 066018 (2019).

10J. Bao, C. K. Lau, Z. Lin, H. Y. Wang, D. P. Fulton, S. Dettrick, and T. Tajima,
Phys. Plasmas 26, 042506 (2019).

11H. S. Xie, Y. Y. Li, Z. X. Lu, W. K. Ou, and B. Li, Phys. Plasmas 24, 072106
(2017).

12H. Xie, Y. Zhang, Z. Huang, W. Ou, and B. Li, Phys. Plasmas 24, 122115
(2017).

13S. E. Parker and W. W. Lee, Phys. Fluids B 5, 77 (1993).
14T. Tajima, Computational Plasma Physics: With Applications to Fusion and
Astrophysics (CRC Press, 2018).

15E. A. Frieman and L. Chen, Phys. Fluids 25, 502 (1982).
16W. W. Lee, Phys. Fluids 26, 556 (1983).
17P. J. Catto, W. M. Tang, and D. E. Baldwin, Plasma Phys. 23, 639 (1981).
18C. Lau, “Electrostatic turbulence and transport in the field-reversed configu-
ration,” Ph.D. dissertation (UC Irvine, 2017).

19L. Galeotti, D. C. Barnes, F. Ceccherini, and F. Pegoraro, Phys. Plasmas 18,
082509 (2011).

20Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Science 281,
1835 (1998).

21S. De, T. Singh, A. Kuley, J. Bao, Z. Lin, G. Y. Sun, S. Sharma, and A. Sen, Phys.
Plasmas 26, 082507 (2019).

22C. K. Lau, D. P. Fulton, J. Bao, Z. Lin, S. Dettrick, M. Binderbauer, T. Tajima,
and L. Schmitz, Phys. Plasmas 27, 082504 (2020).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 112504 (2020); doi: 10.1063/5.0020288 27, 112504-7

Published under license by AIP Publishing

https://doi.org/10.1063/1.3613680
https://doi.org/10.1088/0029-5515/28/11/008
https://doi.org/10.1063/1.4920950
https://doi.org/10.1088/1741-4326/ab0be9
https://doi.org/10.1038/ncomms13860
https://doi.org/10.1063/1.4930289
https://doi.org/10.1063/1.4948285
https://doi.org/10.1063/1.4993630
https://doi.org/10.1088/1741-4326/ab1578
https://doi.org/10.1063/1.5087079
https://doi.org/10.1063/1.4990435
https://doi.org/10.1063/1.5011271
https://doi.org/10.1063/1.860870
https://doi.org/10.1063/1.863762
https://doi.org/10.1063/1.864140
https://doi.org/10.1088/0032-1028/23/7/005
https://doi.org/10.1063/1.3625275
https://doi.org/10.1126/science.281.5384.1835
https://doi.org/10.1063/1.5108684
https://doi.org/10.1063/1.5108684
https://doi.org/10.1063/5.0012439
https://scitation.org/journal/php

	s1
	s2
	s2A
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	s2B
	d18
	s2C
	f1
	s3
	d19
	d20
	d21
	s4
	t1
	f2
	f3
	f4
	f5
	f6
	t2
	f7
	s5
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22

