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Abstract
Global gyrokinetic simulations of ion temperature gradient (ITG) and trapped electron mode
(TEM) in the LHD stellarator are carried out using the gyrokinetic toroidal code (GTC) with
kinetic electrons. ITG simulations show that kinetic electron effects increase the growth rate
by more than 50% and more than double the turbulent transport levels compared with
simulations using adiabatic electrons. Zonal flow dominates the saturation mechanism in the
ITG turbulence. Nonlinear simulations of the TEM turbulence show that the main saturation
mechanism is not the zonal flow but the inverse cascade of high to low toroidal harmonics.
Further nonlinear simulations with various pressure profiles indicate that the ITG turbulence is
more effective in driving heat conductivity whereas the TEM turbulence is more effective for
particle diffusivity.
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1. Introduction

The stellarator is increasingly becoming an attractive and
promising concept in the quest of magnetically confined
nuclear fusion due to its intrinsic advantages of not having a
toroidal current, lower levels of MHD activities, steady state
operation, and absence of disruptions [1–3]. However, these
benefits come at the cost of toroidal symmetry breaking that
leads to an increase in the neoclassical transport, and stronger
damping of zonal flows as compared to the axisymmetric toka-
maks [4, 5]. To mitigate these disadvantages, quasi-symmetry
and quasi-isodynamicity concepts have been developed as
further optimization of the stellarator configuration [6–8].
Following this trend, the Large Helical Device (LHD) has

∗ Authors to whom any correspondence should be addressed.

recently been optimized with a strong inward shift of the
magnetic axis to reduce the neoclassical transport to a level of
an advanced stellarator [9]. After the reduction of neoclassical
transport, the microturbulent transport in the stellarators still
remains a major challenge. For example, phase contrast imag-
ing (PCI) of the core plasma fluctuations shows evidence of
the ion temperature gradient (ITG) and trapped electron mode
(TEM) turbulence in the W7-X stellarator [10]. In a similar
way, characteristic signatures of the ITG turbulence [11–14]
have been observed in the LHD. Therefore, the presence of
microturbulence in stellarators remains a serious challenge and
it is of great importance to gain a proper understanding of their
nature and dynamics.

Over the past few years, some progress has been made
toward gyrokinetic simulations of microturbulence in stellara-
tors. Gyrokinetic flux-tube simulations using GKV code have
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been carried out extensively in the LHD [15–17], where the
reduction of the ITG turbulence due to zonal flow, the role
of the zonal flow on the TEM turbulence, and the effects of
isotopes and collisions on the microinstabilities in the LHD
have been studied. However, the flux-tube simulations do not
capture the linear coupling of multiple toroidal harmonics due
to the 3D structure of the magnetic field in the stellarators and
the secular radial drift of helically trapped particles across flux
surfaces.

Hence, a global gyrokinetic simulation study is required
to have a better understanding of the microturbulence in the
stellarators. The first global gyrokinetic simulations using the
EUTERPE code with adiabatic electrons were recently car-
ried out to study the effects of the radial electric field on
the ITG turbulence in W7-X and LHD [18]. The gyrokinetic
toroidal code (GTC) has been used to carry out the first global
nonlinear ITG turbulence simulations with adiabatic electrons
in the W7-X and LHD [19]. GTC has also self-consistently
calculated neoclassical ambipolar radial electric fields in the
W7-X, which were shown to suppress the ITG turbulence
more strongly in the electron-root case than the ion-root case
[20]. Furthermore, XGC-S [21] and GENE-3D [22] have per-
formed global gyrokinetic simulations of microturbulence in
the W7-X using adiabatic electrons. The adiabatic electron
model cannot address the effect of kinetic electrons on the ITG
turbulence [23, 24], and the excitation of the TEM turbulence
[25].

Kinetic electrons were first incorporated in the global
gyrokinetic simulations of the W7-X and LHD to study the
collisionless damping of zonal flow [26]. Subsequently, GTC
simulation with a sufficiently high mesh resolution found a
new helical trapped electron mode (HTEM) in the W7-X
[27]. Finally, GENE-3D with a reduced mesh resolution has
been used in recent work to perform the simulations of the
electromagnetic ITG turbulence with kinetic electrons in the
W7-X-like plasma [28].

In this paper, we present global gyrokinetic simulations
with kinetic electrons of microturbulent transport in the LHD
stellarator. The GTC code [29] is employed for this purpose
in order to investigate the growth rate, nonlinear turbulent
transport, as well as the linear and nonlinear spectra of the
ITG and TEM turbulence. ITG turbulence simulations show
that the kinetic electron effects increase the growth rate of
the most unstable mode and the turbulent transport. GTC
simulations indicate that the zonal flow leads to a decrease in
the ITG transport levels by the zonal flow, hence the zonal flow
acts as the ITG dominant saturation mechanism. The TEM
simulations show that the linear eigenmode is localized on the
outer mid-plane of the LHD, opposite to the W7-X HTEM
localization in the inner mid-plane [27]. However, the self-
generated zonal flow is found to have an insignificant effect
on the dynamics of the TEM transport. Rather, the inverse
cascade of the high poloidal and toroidal harmonics to the
lower harmonics is the dominant saturation mechanism. The
role of zonal flow in TEM turbulence suppression has been
widely discussed for axisymmetric tokamaks [30–37] and has
been shown that the zonal flow effects are typically weaker
in the TEM turbulence than in the ITG turbulence. However,

the strength of the zonal flow in regulating the TEM turbulence
depends on detailed plasma profiles and parameter regimes for
both tokamaks [37] and stellarators [38]. A comparison of the
transport coefficients between different cases for η = 0, 1, and
∞, where η is the ratio of the ion temperature gradient to the
density gradient, shows that the ITG turbulence is more effec-
tive in driving the heat conductivity whereas TEM turbulence
is more effective for the particle diffusivity.

This paper is discussed as follows: in section 2, the three-
dimensional geometry and simulation model are presented. In
section 3, ITG and TEM turbulence simulations with kinetic
electrons are presented. Finally, conclusions are made in
section 4.

2. Stellarator geometry and simulation model

Gyrokinetic toroidal code (GTC) is a global 3D code to study
the physics of microturbulent transport [25, 39], Alfvén waves
[40], energetic particles [41], and radio frequency waves [42]
in toroidally confined plasmas. To reduce the particle noise due
to Monte Carlo sampling of particle distribution, GTC uses a
low noise δ f method [43] in which only the perturbed part of
the particle distribution is evolved with time. GTC simulations
performed in this paper use the non-axisymmetric equilibrium
of the LHD stellarator [18] constructed by the ideal MHD
code VMEC assuming closed magnetic surfaces [44]. The
equilibrium geometry and the magnetic field are described
as the Fourier series in both poloidal and toroidal directions
on a discrete radial mesh that is equidistant in the toroidal
flux. These equilibrium quantities are then transformed to the
Boozer coordinates as the Fourier series in the toroidal direc-
tion on discrete grid points on the 2D poloidal plane [45]. The
3D quadratic spline interpolation is used in GTC to represent
the equilibrium magnetic field and metric tensor on an equilib-
rium mesh [45]. The 3D LHD equilibrium used in this paper
corresponds to the ‘outward shifted’ configuration and has
been used in earlier work for self-consistent GTC simulations
[19, 26]. The LHD device has a symmetry with a field period
of Nfp = 10, which means all the equilibrium quantities have
a periodicity of 2π/Nfp in the toroidal direction. Therefore, for
turbulent transport, there are ten drift wave eigenmode families
corresponding to the ten field periods. Earlier GTC simulations
had found similar ITG growth rates for these ten eigenmodes,
each coupling all toroidal n harmonics [19]. The equilibrium
magnetic field on the flux surface with ψ = 0.36ψw is shown
in figure 1, where ψw is the poloidal flux on the last closed flux
surface. Due to the field symmetry of the LHD, one-tenth of
the torus is simulated which is represented by the dashed lines
in figure 1. The ‘eye’ in figure 1 indicates the point of view of
the following 3D figures.

The field-aligned mesh is used to represent the fluctuat-
ing quantities in GTC and provides the maximum numerical
accuracy and computational efficiency without making any
geometry approximation [39]. As the particles are pushed
maximally in the direction of the field lines, the perturbed
quantities vary slowly in the parallel direction as compared
to the perpendicular to the field lines. So, only a few parallel
grid points are required to resolve the particle dynamics in
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Figure 1. The 3D real space contour plot of magnetic field
amplitude on the flux surface with ψ = 0.36ψw.

the parallel direction. The 5D-gyrokinetic equation [46, 47]
describing the ion dynamics is

d f
dt

=

[
∂

∂t
+ �̇X · ∇+ v̇‖

∂

∂v‖

]
f = 0, (1)

where
�̇X = v‖b̂ + �vE + �vd

and

v̇‖ = − 1
m

�B∗

B
· (μ∇B + Z∇φ),

where �B∗ = �B + Bv‖/Ωi(∇× b̂) is the equilibrium magnetic
field at the guiding center position of the particle, B is the equi-
librium magnetic field at particle position, b̂ = �B/B is the unit
vector along the magnetic field, Ωi is the ion gyro-frequency.
f = f (�X,μ, v‖, t) is the particle distribution function with �X
being the coordinates of the gyro-center, μ is the magnetic
moment of the ion and v‖ is the ion velocity parallel to the
magnetic field. �vE is the �E × �B drift and �vd is the magnetic
drift velocity. φ is the electrostatic perturbed potential, Z and
m are the charge and mass of the ion.

To reduce the particle noise, δ f method [43] is used, in
which the particle distribution function is written as the sum
of equilibrium part and the perturbed part as, f = f0 + δ f.
Writing equation (1) as L f = 0, where the propagator L can
be written as L = L0 + δL, with

L0 =
∂

∂t
+
(
v‖b̂ + �vd

)
· ∇ − μ

m
�B∗ · ∇B

B
∂

∂v‖
, (2)

and

δL = �vE · ∇ − Z
m
�B∗ · ∇φ

B
∂

∂v‖
. (3)

The equilibrium distribution satisfies L0 f0 = 0 and the per-
turbed distribution can be calculated as (L0 + δL)δ f = −δL f0.
An additional dynamical variable, ‘w’ the particle weight is
defined as w = δ f/ f , that satisfies

dw
dt

= (1 − w)

[
−�vE · ∇ f0

f0
+

Z
m f0

�B∗

B
· ∇φ

∂ f 0

∂v‖

]
. (4)

The electrostatic potential φ is also decomposed into a zonal
part and a non-zonal part as φ = 〈φ〉+ δφ, where the angle
bracket 〈. . .〉 represents the flux-surface averaging. To con-
sider the effect of kinetic electrons on turbulence, kinetic
description of electrons is required. However, being lighter,
the electron has a fast parallel motion that puts a constraint
on the time step size to be used due to the ‘ωH’ mode [48],
that, in turn, makes the simulations computationally expensive.
To overcome this limitation, the electrons are described by the
hybrid model [24] in which the electron distribution function
that satisfies the drift kinetic equation, can be written as

fe = f0e + δ f (0)
e + δhe.

The electron equilibrium distribution satisfies L0 f0 e = 0. To
the lowest order, the electron response is adiabatic with δ f (0)

e =

f0 e
eδφ(0)

Te
, and the term δhe represents the higher order correc-

tion which is nonadiabatic in nature. The non-zonal potential
is further expressed as the sum of adiabatic and nonadiabatic
parts, δφ = δφ(0) + δφ(1). The nonadiabatic parts δφ(1), δhe

are smaller than the adiabatic parts δφ(0), δ f (0)
e by a factor

of δ, where δ is the fraction of magnetically trapped elec-
trons. The electrostatic potential is obtained from the following
gyrokinetic Poisson equation [48]

eτ
Te

(φ− φ̃) =
δn̄i − δne

n0
, (5)

where δn̄i, δne are the ion and electron guiding center charge
density, n0 is the equilibrium electron density, and τ = Te/Ti.
The term on the left-hand side is the ion polarization term [48].
The gyrokinetic Poisson equation for non-zonal component of
the electrostatic potential in the lowest order electron response
can be written as

(τ + 1)eδφ(0)

Te
− τeδφ̃(0)

Te
=

δn̄i − 〈δn̄i〉
n0

, (6)

where δφ̃(0) is the second gyro-averaged perturbed potential
defined as

δφ̃(0)(�x ) =
1

2π

∫
d3�v

∫
d3�X f 0(�X)δφ̄(0)(�X)δ(�X + �ρ− �x ),

where �x and �X are the coordinates of particle position and the
particle guiding center position respectively and �ρ is the gyro-
radius vector. δφ̄(0) is first gyro-averaged perturbed potential
given by

δφ̄(0)(�X) =
∫

d3�x
∫

dα
2π

δφ(0)(�x)δ(�x − �X − �ρ ),

and similarly

δn̄i(�x ) =
∫

d3�X
∫

dα
2π

δ f (�X)δ(�x − �X − �ρ )

is the ion perturbed density at the guiding centers, where α is
the gyro-phase. The contribution of ‘1’ in the factor (1 + τ )
multiplied to the first term on left-hand side of equation (6)
comes from the adiabatic part of the electron density. The
particle orbits and fields are updated iteratively in a time
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stepping sequence. With all field quantities known at kth time
step, ion orbits are pushed to (k + 1)th time step using the
ion gyrokinetic equation. A finite difference method is used
to obtain the lowest order solution of the non-zonal potential
from equation (6). The higher order term in the electron distri-
bution which is related to the nonadiabatic electron weight as
we = δhe/ fe, is calculated from the following first order drift
kinetic equation

dwe

dt
=

(
1 − δ f (0)

e

f0e
− we

)[
−�vE · ∇ ln f0e|v⊥

− ∂

∂t

(
eδφ(0)

Te

)
− (�vd + δ�vE) · ∇

(
eφ
Te

)]
, (7)

where δ�vE = (c/B∗)b̂ ×∇δφ, the gradient operator on ln fe 0

inside the square brackets on right-hand side is taken with
v⊥ held fixed. While writing equation (7), the exact perturbed
potential δφ on right-hand side is approximated by the lowest
order solution δφ(0). Also, it is also assumed that the equilib-
rium pressure gradient scale length is much longer than the per-
turbation scale length and the wavelength of electrostatic fluc-
tuations is much longer than the electron gyro-radius. Using all
the field quantities at kth time step in equation (7), the electron
orbits are now pushed from the kth time step to (k + 1)th
time step. Using the expansion of electrostatic potential and
the electron distribution function, the non-zonal component of
electrostatic potential to the first order is obtained from

eeδφ/Te = eeδφ(0)/Te − δne − 〈δne〉
n0

, (8)

with δne =
∫
δhe d3�v. Equations (7) and (8) are solved itera-

tively to reach the higher-order depending upon the trapped
fraction. Usually, the second-order iteration is sufficiently
accurate for typical device parameters. However, the equations
for ions are solved only once. Finally, all the particle orbits and
non-zonal components of field quantities are updated at (k + 1)
th time step and the zonal component of the electrostatic
potential at (k + 1)th time step is obtained by solving

τe
(
〈φ〉 −

〈
φ̃
〉)

Te
=

〈δn̄i〉 − 〈δne〉
n0

. (9)

The cycle of equations (6)–(9) can be repeated at the next time
step. Collisions have been discarded from the present study to
focus on the effect of zonal flow on the turbulent study. Since a
finite boundary is implemented in the simulations, the energy-
conserving boundary condition is implemented in GTC for the
particles facing the simulation boundary.

3. Microinstabilities in LHD

Drift-wave instabilities arise in fusion plasmas due to the non-
uniformities of the plasma profile. In this section, the microin-
stabilities responsible for most of the anomalous turbulent
transport observed in fusion plasmas, mainly ITG and TEM,
are studied in LHD with the GTC code. Various temperature
and density profiles are used in order to analyze the different

instabilities. Thus, the ratio η = ∇ln Ti/∇ln n will be different
for each simulation. In section 3.1, an ion temperature gradient
is set to excite the pure ITG turbulence (η = ∞), then in
section 3.2 the pure TEM instability can be analyzed when a
density gradient is applied (η = 0). Finally, in section 3.3 both
density and ion temperature gradients are applied (η = 1) and
the resultant turbulent transport is analyzed. The profiles used
in the simulations have been chosen to excite these microin-
stabilities in LHD plasma and are not meant to be the same
as experimental profiles or previous gyrokinetic simulations
[16, 17]. In the entire study, a uniform electron temperature
profile is set and no equilibrium radial electric field is taken
into account.

3.1. ITG

As mentioned in section 1, global gyrokinetic simulations of
ITG turbulence with adiabatic electrons have been carried
out in non-axisymmetric devices as the LHD and/or W7-X
stellarators using GTC [19], EUTERPE [49], XGC-S [50] and
GENE-3D [22] codes. More recently, GENE-3D performed
simulations of ITG in W7-X with kinetic electrons but reduced
the mesh resolution to solve the fastest growth rate [28]. Here,
we expand the GTC work done in reference [19] by including
kinetic electrons in ITG simulations using the model described
in section 2.

The plasma profile used for the pure ITG turbulence sim-
ulations is shown in figure 2. The on-axis ion temperature
is 2 keV, the electron temperature is 1 keV, and the maxi-
mum normalized ion temperature gradient is R0/LTi ∼ 47.2
at ψ ∼ 0.33ψw where the rotational transform is ι ∼ 0.5. The
inverse ion temperature gradient scale length is defined as
1/LTi = − ∂(ln Ti)

∂r , where r is the local minor radius. The
dashed black lines represent the simulation domain with
ψinner = 0.08ψw, ψouter = 0.7ψw. A uniform density profile is
set so η = ∞. After a convergence test, we use 200 radial
grid points, 2700 poloidal grid points and nine parallel grid
points. The number of particles per cell is 50, the time step
size is 0.016R0/Cs, where Cs/R0 = 7.82 × 104 s−1 and Cs =√

Te/mi is the speed of the ion acoustic wave. To resolve elec-
tron dynamics a time step 40 times lower is used. The linear
instability threshold for the ITG turbulence is (R0/LTi )cr ∼
23.0.

Figure 3 shows the time history of ion heat conductiv-
ity (averaged over ψ ∈ [0.19, 0.38]ψw) of the four nonlinear
simulations discussed in this subsection. They correspond to
simulations with (blue lines) and without (red lines) kinetic
electrons where the self-generated zonal flow has been kept
(solid lines) or numerically removed (dashed lines). Ion heat
conductivity is normalized by the gyro-Bohm value, where
χGB = χBρ

∗, χB = cTe/eB, and ρ∗ = vimic/eBa with vi =√
Ti/mi, and a is the local minor radius. Nonlinear simula-

tions show that turbulent transport grows exponentially in the
linear phase and then it saturates. Simulations with zonal flow
saturate at lower transport levels indicating the important role
of zonal flow in turbulence saturation which is supported by
the earlier gyrokinetic simulations. The effect of zonal flow
is much more prominent in the case with adiabatic electrons
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Figure 2. Radial profiles for the equilibrium ion temperature Ti
(blue solid line), the electron temperature Te (blue dashed line),
normalized ion temperature gradient R0/LTi (red solid line), used for
the simulations of ITG turbulence with η = ∞. The black dashed
lines represent the simulation boundary with ψinner = 0.08ψw and
ψouter = 0.7ψw.

Figure 3. The comparison of the time history of the ion heat
conductivity averaged over ψ ∈ [0.19, 0.38]ψw in gyro-Bohm units
for adiabatic and kinetic electrons, with and without zonal flow.

(about 5 times higher). As the adiabatic electron response to
the non-zonal potential does not drive a radial particle flux,
the adiabatic electrons have no response to the zonal potential.
However, the nonadiabatic part of the electron distribution
leads to a radial particle flux that leads to zonal density, par-
tially cancelling the ion zonal density. This reduces zonal flow
and hence provides a mechanism to increase ITG turbulent
transport by the kinetic electrons. These results are similar to
the earlier investigations made for tokamaks [23, 24].

Figure 4(a) shows the electrostatic potential in a poloidal
cross-section in the simulation with kinetic electrons during
the linear phase at time t = 9.6R0/Cs. The eigenmode is local-
ized at the outer mid-plane in the region of low magnetic
field strength where the curvature is bad, similar as in toka-
maks and it peaks around ψ ∼ 0.26ψw. Figure 4(b) shows
the potential at the nonlinear stage at time t = 11.2R0/Cs

during the simulation where the zonal flow has been kept
(solid blue line in figure 3). In the nonlinear phase where the
zonal flow is artificially removed (see figure 4(c)), the linear
eigenmode structure starts smearing up due to the nonlinear
mode coupling. Whereas, when the zonal flow is included in
the simulations, the shear caused by the zonal flow leads to
the breaking of these eddies even into finer structures. This

behavior was also observed in LHD simulations with adiabatic
electrons in a previous GTC work [19]. Figure 5 shows the
real space 3D contour plot of the electrostatic potential on the
diagnosed flux surface with ψ ∼ 0.28ψw in the linear stage
at time t = 9.6R0/Cs (figure 5(a)) and in the nonlinear stage
at time t = 11.2R0/Cs (figure 5(b)). Due to k‖ � k⊥ property
of the microturbulence, the eddies are elongated along the
field lines. The flux surface variation of root-mean-squared
electrostatic perturbed potential with and without zonal flow,
and the radial electric field resulting from the turbulence in the
nonlinear stage at time t = 11.2R0/Cs are shown in figure 6.
A noticeable difference between the turbulence potential with
and without zonal flow can be seen by comparing red and blue
lines that indicate the suppression of ITG turbulence due to the
zonal flow.

Figure 7 shows the toroidal spectrum, for m = n/ι, in
the linear (blue) and nonlinear (red) phase of the simulation
with kinetic electrons with zonal flow. The spectrum in the
linear phase is narrow in the toroidal mode number with a
maximum at n = 50 and an approximate width of Δn ∼ 20.
Linear simulations (not shown here) indicate that the most
dominant eigenmode is n = 50, m = 100 with a frequency of
ω = 4.10Cs/R0, propagates in the ion diamagnetic drift direc-
tion and has a growth rate of γ = 1.47Cs/R0 which is approx-
imately 1.5 times larger than in adiabatic electron simulations
(γ = 0.96Cs/R0 and ω = 3.40Cs/R0). As there is no resonant
interaction of the trapped electrons with the ITG modes, the
response of trapped electrons to the ITG turbulence is almost
zero, rather than adiabatic. Therefore, the dielectric constant in
the gyrokinetic Poisson equation decreases when the trapped
electron population increases. This provides a mechanism
for increasing the ITG growth rate. The normalized perpen-
dicular wavenumber corresponding to the dominant mode is
k⊥ρi = 1.1. In the nonlinear phase, the toroidal spectrum in
figure 7 (averaged over time from 14.4R0/Cs to 17.6R0/Cs),
after an inverse cascade [19], becomes broader due to the
nonlinear mode coupling.

3.2. TEM

Trapped electron mode (TEM) driven turbulence is another
dominant channel for transport in fusion plasmas which is
destabilized due to the presence of density and/or electron
temperature gradient. TEM turbulence simulations are mostly
performed in LHD with flux-tube code GKV [16, 17] where
the effects of isotopes and collisions on microinstabilities and
the role of zonal flow on TEM turbulence in LHD have been
studied, as discussed in section 1. In this section, the global
nonlinear pure TEM turbulence simulations have been carried
out using GTC.

The plasma profile used for the simulations is illus-
trated in figure 8. The maximum normalized density gradient
is R0/Ln ∼ 47.2, where 1/Ln = − ∂(ln n)

∂r , and also peaks at
ψ ∼ 0.33ψw. Temperature profiles are homogeneous along the
plasma, Ti = Te = 1 keV, so η = 0. The simulation domain,
represented by dashed black lines, is kept the same as in
section 3.1. Based on the convergence studies, mesh and num-
ber of particles are the same as described in section 3.1 but the
time step used is 0.016Cs/R0.
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Figure 4. Contour plots of the electrostatic perturbed potential in the linear phase at t = 9.6R0/Cs (a), in the nonlinear phase at
t = 11.2R0/Cs with zonal flow (b) and in the nonlinear phase without zonal flow (c), of ITG turbulence simulation with kinetic electrons on
a poloidal plane.

Figure 5. The real space 3D contour plots of the electrostatic potential on the diagnosed flux surface with ψ = 0.28ψw in the linear phase at
time t = 9.6R0/Cs (a) and in the nonlinear phase at time t = 11.2R0/Cs with zonal flow (b).

Figure 9 shows the time history of two TEM simulations:
one where the self-generated zonal flow has been kept (solid
lines) and another where the zonal flow has been removed
(dashed lines). The three quantities represented are the ion
diffusivity averaged over ψ ∈ [0.19, 0.45]ψw normalized by
the gyro-Bohm value (red lines), radial electric field resulting
from the turbulence (black line) and the root-mean-squared
perturbed electrostatic potential (blue lines). It has been con-
firmed that De ∼ Di. First, turbulent transport exponentially
grows during the linear phase, and then, due to mode coupling,
inverse cascade from high to low mode number, and zonal flow
interaction, it finally saturates. However, the zonal flow is not
acting as the dominant saturation mechanism as can be seen
from the simulations with and without zonal flow. In other
words, the zonal flow in TEM simulations is not as important
as it was for ITG saturation. The role of zonal flow in TEM
turbulence suppression has been widely discussed for axisym-
metric tokamaks [30–37] and it is shown that the role of zonal
flow is usually weak in TEM turbulence regulation. Although
the TEM turbulence regulation by zonal flow depends upon

the parameters such as magnetic shear, electron to ion tem-
perature ratio, electron temperature gradient and ηe [33–35].
Additionally, the conclusions drawn for tokamak may or may
not be consistent for LHD as the neoclassical radial electric
field may have a considerable effect on the turbulent transport
in stellarators [18, 51]. It could be a future study to explore this
complex parameter landscape.

Figure 10(a) shows the electrostatic potential on a poloidal
plane during the linear phase at time t = 3.2R0/Cs, TEM
eigenmode shows a thinner mode structure than ITG sim-
ulations. Like ITG turbulence, TEM turbulence is extended
along the magnetic field lines and localized in the region
of low magnetic field strength where the normal curvature
is unfavorable and peaks at ψ ∼ 0.30ψw. Figures 10(b) and
(c) shows the potential during the nonlinear phase at time
t = 6.4R0/Cs for a simulation with and without zonal flows
respectively. Turbulence spreading is observed during the non-
linear phase but the turbulent eddies are barely affected by
zonal flows. Unlike ITG turbulence, the zonal flow is not
playing an important role in the case of TEM turbulence. That
is consistent with figure 9 where we previously discussed the
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Figure 6. The flux surface variation of the root-mean-squared
electrostatic perturbed potential (δφRMS) with (red line) and without
(blue line) zonal flow and the radial electric field (Er) (black line)
resulting from the turbulence during the nonlinear stage of ITG
turbulence simulations at time t = 11.2R0/Cs. The electrostatic
potential is normalized with Te/e, and the radial electric field
resulting from the turbulence is normalized with

√
Te/e.

Figure 7. The comparison of toroidal mode spectrum along m = n/ι
in the linear and nonlinear phase of the ITG turbulence simulation
using kinetic electrons.

little differences of the simulations with and without zonal
flow. Figure 11(a) shows the contour plot of the electrostatic
potential on the diagnosed flux surface ψ ∼ 0.28ψw in the 3D
real space during the linear phase at time t = 3.2R0/Cs. Like
ITG turbulence, the eddies are elongated along the field lines.
Figure 11(b) shows the contour plot of electrostatic potential
in 3D real space in the nonlinear stage at time t = 6.4R0/Cs,
with zonal flow. Figure 12 shows the flux surface variation of
root-mean-squared electrostatic perturbed potential with and
without zonal flow, and the radial electric field resulting from
the turbulence. The red and blue lines are almost overlapping
with each other, re-affirming that the zonal flow is not playing
an important role in the TEM turbulent transport.

The toroidal mode spectrum, for m = n/ι, at the linear
(blue line) and nonlinear (red line) phases during a nonlin-
ear TEM simulation is represented in figure 13. The linear
spectrum indicates that the dominant eigenmode is n = 140,
m = 280 with a linear growth rate γ = 3.96Cs/R0, frequency
ω = 0.55Cs/R0 and normalized perpendicular wavenumber

Figure 8. Radial profiles for the equilibrium ion temperature Ti and
electron temperature Te (blue dashed line), the ion and electron
density profile (blue solid line), the normalized density gradient
R0/Ln (red solid line), used for the simulations of TEM turbulence
with η = 0. The black dashed lines represent the simulation
boundary with ψinner = 0.08ψw and ψouter = 0.7ψw.

Figure 9. Time history of the ion diffusivity averaged over
ψ ∈ [0.19, 0.45]ψw (red) and non-zonal electrostatic perturbed
potential (blue) with zonal flow (solid) and without zonal flow
(dashed) and zonal electric field (black). The diffusivity is
normalized by the gyro-Bohm diffusivity and the electrostatic
potential is normalized by Te/e, the radial electric field resulting
from the turbulence is normalized with

√
Te/e.

k⊥ρi = 2.7. The ratio |ω/γ| < 1 implies that this TEM sim-
ulation may be reactive turbulence [52]. During the nonlinear
saturation (averaged over time from 6.4R0/Cs to 9.6R0/Cs),
the nonlinear poloidal and toroidal mode coupling leads to an
inverse cascade from high to low mode numbers [53].

We have carried out further TEM simulations with dif-
ferent normalized density gradients R0/Ln. Figure 14 shows
the variation of the linear growth rate and frequency of the
dominant TEM turbulent mode for each simulation. The linear
instability threshold for the TEM turbulence is found for values
of the normalized density gradient around (R0/Ln)cr ∼ 4.0.
The growth rate increases almost linearly with the gradi-
ent although the frequency barely increases. As the gradient
increases the spectrum also shifts to higher toroidal mode num-
bers. The nonlinear physics of the TEM turbulent transport
show similar features as has been previously discussed in this
section.
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Figure 10. Contour plots of the electrostatic perturbed potential in the linear phase at t = 3.2R0/Cs (a), in the nonlinear phase at
t = 6.4R0/Cs with zonal flow (b) and in the nonlinear phase without zonal flow (c), of TEM turbulence simulation with kinetic electrons on
a poloidal plane.

Figure 11. The real space 3D contour plots of the electrostatic potential on the diagnosed flux surface with ψ = 0.28ψw in the linear phase at
time t = 3.2R0/Cs (a), and in the nonlinear phase with zonal flow at time t = 6.4R0/Cs (b).

Figure 12. The flux surface variation of the root-mean-squared
electrostatic perturbed potential (δφRMS) with (red line) and without
(blue line) zonal flow and the radial electric field (Er) (black line)
resulting from the turbulence during the nonlinear stage of TEM
turbulence simulations at time t = 6.4R0/Cs. The electrostatic
potential is normalized with Te/e, and the radial electric field
resulting from the turbulence is normalized with

√
Te/e.

3.3. Turbulence for η = 1 case

In the previous sections, the microturbulences studied are
pure ITG and pure TEM in which either the ion temperature
gradient or density gradient is present. But in general, both the
temperature and density gradients are present in an experiment
[16, 17]. In this section, an additional case is studied by taking
into account the gradient in both the ion temperature and the
plasma density while keeping the electron temperature profile
uniform, and a comparison of the nonlinear turbulent transport
for the cases with η = 0, 1, and ∞ is made. Figures 2 and 8
show the profiles used for the cases with η = ∞ and η = 0
that are discussed in sections 3.1 and 3.2 corresponding to
the ITG and TEM turbulence respectively. For η = 1 case, the
maximum of normalized ion temperature and density gradients
are R0/LTi ∼ 47.2 and R0/Ln ∼ 47.2. The shape of the plasma
profile is the same as is used for the cases with η = ∞ and 0.
The maximum of gradients in profile is present atψ ∼ 0.33ψw.
The on-axis ion and electron temperature are 2 keV and 1 keV
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Figure 13. The comparison of toroidal mode spectrum along
m = n/ι in the linear and nonlinear phase of the TEM turbulence
simulation.

Figure 14. The variation of the real frequency and growth rate of
the most dominant TEM mode with the normalized density gradient
R0/Ln.

respectively. Based on the convergence studies, simulation
parameters and mesh are the same as described in section 3.2.

The linear spectrum shows that the dominant mode is
n = 160, m = 325 with the growth rate γ = 3.72Cs/R0,
frequency ω = 4.74Cs/R0 and normalized perpendicular
wavenumber k⊥ρi = 3.5, propagating in the ion diamagnetic
drift direction. So, the simulation is dominated by ITG tur-
bulence. The electrostatic potential looks like the typical ITG
mode structure localized on the outer mid-plane side. In the
nonlinear phase, the zonal flow regulates the turbulent trans-
port by reducing it by almost two times. The comparison of
the turbulent transport levels for the three cases is shown in
figure 15. The ion transport coefficients (χi, Di) are averaged
over ψ ∈ [0.19, 0.45]ψw. It has been confirmed that De ∼ Di.
The zonal flow physics has been included in all three cases. For
η = 1, two distinct saturations have been observed. The first
saturation happens at t ∼ 3.7R0/Cs and the second saturation
happens at t ∼ 5.0R0/Cs. Unlike the cases η = ∞ and η = 0,
the spectrum for the η = 1 case is quite broad, comprising
low and high numerical modes. The high numerical modes
saturate first in the nonlinear phase while the low numerical
modes saturate later which leads to two distinct saturations.
The volume averaged ion diffusivity and conductivity are
almost the same for the η = 1 case. The transport with η = ∞

Figure 15. The time history comparison of the transport averaged
over ψ ∈ [0.19, 0.45]ψw for η = 0, 1, and ∞.

case is the highest, while η = 0 has the lowest transport level.
From this comparison, it is concluded that in the present
scenario for similar plasma profile gradients, the ITG turbu-
lence acts as the primary drive for the heat conductivity trans-
port, whereas the TEM turbulence is effective for the particle
diffusivity.

4. Conclusion and discussion

In this work, we have presented global gyrokinetic simulations
of transport induced by microturbulence arising from the pure
ITG and pure TEM instabilities in the LHD stellarator. The
pure ITG turbulence is excited by the gradient in ion temper-
ature while keeping the other profiles uniform. The effect of
kinetic electrons on the ITG turbulence is studied using the
hybrid model which is well-benchmarked in GTC. The kinetic
electrons increase the linear growth rate of the ITG turbulence
by ∼1.5 times and the turbulent transport by ∼2.5 times as
compared to the case with adiabatic electrons. The pure TEM
turbulence is excited by the density gradient in the plasma
species. The eigenmode structure in the linear phase for the
TEM turbulence is localized on the outer mid-plane side where
the curvature is bad, similar to that in tokamaks and ITG turbu-
lence. The TEM linear mode structure is thinner and radially
localized as compared to the ITG linear eigenmode. The non-
linear simulations of TEM turbulence with and without zonal
flow show that, unlike in ITG turbulence, zonal flow is not
playing an important role in regulating the transport by TEM
turbulence. In tokamaks, the regulation of TEM turbulence by
zonal flow is weak although different works by independent
codes have shown significant effect of zonal flow when some
parameters are changed such as magnetic shear, electron to
ion temperature ratio, electron temperature gradient and ηe

[33–35]. For example, the lower magnetic shear has negligible
effect on transport due to TEM turbulence. However, at larger
magnetic shear, the radial streamer is easier to be broken by
zonal flow due to turbulence elongation in the radial direction
[33]. For cold ions and steeper electron temperature gradient,
shear caused by zonal flow is weak in tokamaks [34] and
also with the realistic plasma profiles, for ηe > 1, zonal flow
effect is weak [35]. It could be a future study to explore
this complex parameter space for the effect of zonal flow on
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TEM turbulence in LHD. Further, the comparison between
different cases with η = 0, 1, and ∞ in LHD shows that the
turbulent transport levels in the nonlinear saturation is highest
for η = ∞ case and lowest for η = 0 case. Thus, in the present
scenario for similar plasma profile gradients, the ITG turbu-
lence acts as the primary drive for the heat conductivity trans-
port whereas the TEM turbulence is effective for the particle
diffusivity.
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