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ABSTRACT

The drift-tearing instability due to diamagnetic drift effects is verified using the Gyrokinetic Toroidal Code (GTC). First, the classical (2,1)
resistive tearing mode is verified in a cylindrical geometry with a fluid model. The dependence of the growth rate of the resistive tearing
mode on the beta value of the plasma is obtained and is found to qualitatively agree with the theoretical prediction. A drift-tearing mode is
subsequently generated when the equilibrium pressure gradient is significant. In this mode, diamagnetic drift effects result in a reduced
growth rate and a real frequency equal to the electron diamagnetic frequency. The scaling relation between the diamagnetic frequency and
the growth rate of the drift-tearing mode has been calculated. This relation shows good agreement with the theoretical prediction for a
relatively small resistivity; however, an obvious deviation arises when the resistivity is large.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5116332

I. INTRODUCTION

Tearing modes1–3 are among the most dangerous instabilities
related to magnetohydrodynamics (MHD) in tokamak discharges.
They are driven by the magnetic free energy, which is determined by
the form of the current profile.4 They can change the topology of the
magnetic field via magnetic reconnection and lead to the formation of
magnetic islands, thus enhancing cross field transport and degrading
the particle and energy confinement. The disruption triggered by a
tearing mode would be catastrophic in a long-pulse fusion plasma
device such as the International Thermonuclear Experimental Reactor
(ITER).5,6

The magnetic reconnection caused by a tearing mode is driven
by the magnetic energy difference between the initial and final states.
The time scale for mode growth is determined by a combination of the
resistive diffusion time sR, which is related to the diffusion of magnetic
field lines through the plasma, and the Alfv�en time sA, which is related

to the ideal plasma response.4 The reconnection time is given by
s ¼ SpsA, where S ¼ sR=sA is the Lundquist number and the power p
varies from zero to one depending on the self-consistent geometry and
the driving force. For them¼ 2, n¼ 1 resistive tearing mode, the driv-
ing forces lead to reconnection with p¼ 3/5 in the linear phase when
the island width is narrower than the resistive layer thickness.

Much effort has been directed toward studying tearing modes in
fusion plasmas over the past few decades, using both MHD1,3,7,8 and
kinetic9–11 theoretical frameworks for the linear and nonlinear phases.
To solve a singular perturbation problem near a rational surface, the
boundary layer method is usually applied to separate the problem into
two regions: an ideal MHD outer region and an inner region around
the rational surface, where the effects of plasma resistivity are signifi-
cant. The dispersion relation of the tearing mode is derived by match-
ing two solutions for the inner and outer regions. Hazeltine et al.9

developed the kinetic theory for studying the classical tearing mode
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using the guiding-center kinetic equation with a Fokker-Planck colli-
sion term in a cylindrical geometry. Later, Drake and Lee10 kinetically
investigated the transition of the tearing instability from the collisional
to the collisionless regime. Depending on the collisionality of the
plasma, the tearing instability can be divided into three regimes: colli-
sionless, semicollisional, and collisional.

It has been shown that in a hot magnetically confined plasma,
the diamagnetic drift effects on tearing modes are significant. A cross
field pressure gradient can also serve as an energy source driving tear-
ing instabilities when the diamagnetic frequency is higher than the
growth rate of the resistive tearing mode. The coupling of drift modes
to tearing modes leads to a substantial reduction in the growth rate
and the production of a real frequency; for convenience, the resulting
modes are called drift-tearing modes. These diamagnetic effects were
first investigated kinetically,9,10 leading to the discovery that the
growth rate is unaffected by the diamagnetic frequency in the colli-
sionless regime, while it is strongly modified in the semicollisional and
collisional regimes. The widths of the tearing layers are broadened in
all three regimes. Two-fluid equations in a cylindrical plasma were
also used to investigate these effects,12,13 and the results qualitatively
agreed with the kinetic results in the collisional regime when the tem-
perature gradient was neglected. Later, the temperature gradient was
considered in the fluid theory, and it was noted that neglecting
electron-electron collisions in kinetic theories may lead to overestima-
tion of the relative importance of the driving source of the temperature
gradient. The effects of perpendicular electron heat transport14 and
nonlinear effects15–17 were also studied and found to significantly
change the behavior of drift-tearing modes.

Many simulations of tearing modes and drift-tearing modes have
been performed. A hybrid model consisting of a resistive MHD back-
ground plasma and kinetic energetic particles was used to investigate
the kinetic effects on resistive tearing modes using the M3D code18

and NIMROD.19 Using the Gyrokinetic Toroidal Code (GTC)20–22

and VirtEx,23 a linear simulation of a resistive tearing mode in a cylin-
drical geometry in the fluid limit has been conducted to verify the rela-
tionship between the growth rate and the resistivity derived through
theoretical analysis. A linear gyrokinetic model in a toroidal geometry
implemented in the GKW code24 and a gyrokinetic-ion drift-kinetic-
electron model in a cylindrical geometry implemented in the
GEM code25 have been utilized to study collisionless and semicolli-
sional drift-tearing modes. Fluid simulations14,17,26,27 have also been
performed using reduced two-fluid equations to investigate the ther-
mal transport effects and nonlinear effects on a collisional drift-tearing
mode.

In previous work, a physical model for tearing mode simulations
using GTC has been established by beginning with the gyrokinetic
equations in an inhomogeneous magnetic field,21 building up a fluid
model for electrons by integrating the electron gyrokinetic equation in
the drift-kinetic limit,28 and introducing a parallel electron force
balance equation to capture the tearing mode mechanism with
dEkðkk ¼ 0Þ 6¼ 0,23 thus forming a hybrid model of gyrokinetic ions
and fluid electrons. Finally, the two-component equations are reduced
to MHD equations in the linear long-wavelength limit by neglecting
ion finite Larmor radius (FLR) effects. In this paper, a cross field pres-
sure gradient term is considered in the parallel electron force balance
equation to derive a drift-tearing mode model for the first time on the
GTC platform. Our reduced MHD model for drift-tearing mode

simulations is different from the previous two-fluid simulation model
in several respects. The vorticity equation is not needed in our system,
but the gyrokinetic Poisson equation is included. We theoretically
derive the dispersion relation of a drift-tearing mode based on our
MHDmodel in order to benchmark the simulation results.

Linear simulations of resistive tearing modes and drift-tearing
modes with m¼ 2 and n¼ 1 in a cylindrical geometry are performed
using GTC with the gyro-MHD equations. The simulations of resistive
tearing modes are first verified by a scan of be values, which shows
good agreement with the theoretical predictions and reflects the effects
of pressure perturbations. Then, a diamagnetic frequency scan is per-
formed for the drift-tearing modes to verify the theoretically predicted
dispersion relation. The scaling relation between the growth rate
and the diamagnetic frequency shows quantitative agreement with the
theoretical results when the resistivity is relatively small. However, we
observe an obvious deviation when the resistivity is large; this devia-
tion arises because the constant-w assumption results in a larger error
for a wider tearing layer.

This paper is organized as follows: in Sec. II, we describe the
physics model used to simulate drift-tearing modes in GTC, and we
derive the dispersion relation for a drift-tearing mode. In Sec. III, the
simulation parameters are introduced. In Sec. IV, the simulation
results for resistive tearing modes are presented. In Sec. V, the simula-
tion results for drift-tearing modes are reported. In Sec. VI, a conclu-
sion and prospects for future research are presented.

II. PHYSICAL MODEL

Through the work of previous researchers, a model for simulat-
ing resistive tearing modes in GTC has been established. Starting from
a previous electromagnetic gyrokinetic model in a toroidal geometry,21

a parallel electron force balance equation was introduced for the simu-
lation of tearing modes.23 Thus, a hybrid model with gyrokinetic equa-
tions for ions and fluid equations for electrons was derived. Finally,
gyro-MHD equations were derived by reducing the two-component
equations in the linear long-wavelength limit.

Based on this previous simulation model for resistive tearing
modes, we introduce a cross field pressure gradient term into the
parallel electron force balance equation to capture the effects of dia-
magnetic drift on tearing modes, which lead to the emergence of drift-
tearing modes, for the first time. Since a fluid simulation is the first
step of our work, the gyro-MHD equations are used as the simulation
model. The kinetic effects on tearing modes will be a subject of our
future research. Moreover, we analytically solve the MHD equations
in a cylindrical geometry using the boundary layer method for com-
parison to the simulation results, and the dispersion relation for a
drift-tearing mode is derived.

A. Gyrokinetic equations

The original model is based on a gyrokinetic equation in an inho-
mogeneous magnetic field with the gyrocenter coordinates (X; l; vk),

d
dt

faðX;l; vk; tÞ �
@

@t
þ _X � r þ _vk

@

@vk

" #
fa ¼ 0: (1)

Here, X is the position of the gyrocenter, l is the magnetic moment,
and vk is the particle velocity along the magnetic field. The collision
term is omitted here to consider a collisionless plasma. The index a
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represents different particle species (i for ions or e for electrons). The
velocity of the gyrocenter consists of both parallel and perpendicular
components; the perpendicular component includes the E�B drift,
magnetic curvature drift, and magnetic gradient drift velocities,

_X ¼ vk
B
B0
þ vE þ vc þ vg

¼ vk
B
B0
þ cb0 �r/

B0
þ

v2k
Xa
r� b0 þ

l
maXa

b0 �rB0; (2)

and the parallel acceleration is

_vk ¼ �
1
ma

B�

B0
� ðlrB0 þ Zar/Þ � Za

mac

@Ak
@t

: (3)

Here, Za and ma denote the particle charge and mass, respectively; /
and Ak denote the electrostatic potential and parallel vector potential,
respectively; Xa is the gyrofrequency; B � B0 þ dB is the total mag-
netic field, with B0 � B0b0; and

B� ¼ B�0 þ dB ¼ B0 þ
B0vk
Xa
r� b0 þ dB; (4)

where dB ¼ r� dAkb0, which is obtained by excluding the compres-
sional component of the perturbed magnetic field. The perturbative df
method is utilized to rewrite the perturbed part of Eq. (1) for ions in
order to minimize the discrete particle noise,

dxi

dt
¼ ð1�xiÞ � vk

dB
B0
þ vE

� �
�rf0i
f0i

"

þ l
dB
B0
�rB0þZi

B�

B0
�rd/þZi

c

@dAk
@t

� �
� 1
mi

1
f0i

@f0i
@vk

#
; (5)

where xi � dfi=fi is the particle weight for ions. The perturbed elec-
trostatic potential and parallel vector potential are derived via the
gyrokinetic Poisson equation and the gyrokinetic Ampère’s law,

ðd/� d~/Þ 4pZ
2
i n0i
Ti

¼ 4pðZi
�dni � edneÞ; (6)

n0eeduke ¼
c
4p
r2
?dAk þ n0iZiduki: (7)

Here, d~/ is the second gyroaveraged potential,20 the left side of Eq. (6)
represents the ion polarization density, �dni is the gyroaveraged per-
turbed ion density, and duki and duke are the perturbed parallel veloci-
ties of ions and electrons, respectively.

B. Fluid model for electrons

Since we adopt a relatively large resistivity, the electron gyrora-
dius is much smaller than the width of the tearing layer. The perturbed
electron continuity equation is derived by integrating Eq. (1) in the
drift-kinetic limit while retaining only the linear perturbation terms,

@dne
@t
þ B0b0 � r

n0eduke
B0

� �
þ B0vE � r

n0e
B0

� �

�n0eðdv� þ vEÞ �
rB0

B0
þ dB � r

n0euk0e
B0

� �

þ cr� B0

B2
0
� ð�rdpke þ n0erd/Þ ¼ 0; (8)

where dv� ¼ b0 �rðdpke þ dp?eÞ=ðn0emeXeÞ is the perturbed elec-
tron diamagnetic drift, dpke ¼

Ð
dvmv2kdfe; dp?e ¼

Ð
dvlB0dfe, and

Xe is the electron cyclotron frequency. Note that the fifth term,
induced by the gradient of the parallel equilibrium flow, is the driving
source of the classical tearing mode, and the sixth term, associated
with a finite r� B0, is also important in our case. Nonlinear terms
are ignored in this paper for simplicity; however, nonlinear effects will
be studied in the future. The following parallel electron force balance
equation is introduced to close the field equations:

dEk ¼ �gen0eðduki � dukeÞ �
1

en0e
b0 � rdpe �

1
en0e

dB
B0
� rp0e; (9)

where g ¼ �eime=ðe2n0eÞ is the plasma resistivity, �ei is the electron-
ion collision frequency, dpe ¼ dpke ¼ dp?e with the application of
adiabatic approximation, and p0e is the equilibrium electron pressure.
Together with the relation dEk ¼ �b0 � rd/� ð1=cÞð@dAk=@tÞ, this
equation can be used to derive a simulation form for calculating the
perturbed parallel vector potential as follows:

@dAk
@t
¼ �cb0 � rd/þ cgen0eðduki � dukeÞ

þ c
en0e

b0 � rdpe þ
c

en0e

dB
B0
� rp0e: (10)

Thus far, Eqs. (2)–(8) and (10) form a closed system with gyrokinetic
ions and fluid electrons for tearing mode simulations.

C. Reduction to the MHD limit

In the linear long-wavelength limit, the two-component equa-
tions reduce to MHD equations. We assume that ions and electrons
have the same charge, Zi ¼ �Ze ¼ e, and that equilibrium quasineu-
trality is enforced, n0i ¼ n0e ¼ n0. The notations dn ¼ dni � dne and
duk ¼ duki � duke are defined for simplicity. The Poisson equation
given in Eq. (6) becomes

c2

4pev2A
r2
?d/ ¼ dn: (11)

Ampère’s law in Eq. (7) is similarly rewritten as

n0eduk ¼
c
4p
r2
?dAk: (12)

The ion continuity equation is derived by integrating the gyrokinetic
equation given in Eq. (1) in the linear limit. In particular, terms associ-
ated with ion FLR effects are ignored here because the ion gyroradius
is also smaller than the width of the current layer in our case. Then,
subtracting the ion continuity equation from the electron continuity
equation results in the MHD continuity equation, as follows:

@dn
@t
þ B0b0 � r

n0duk
B0

� �
� n0v� �

rB0

B0

þdB � r
n0uk0
B0
� cr� B0

B2
0
� rdpk ¼ 0: (13)

Similarly, the parallel generalized Ohm’s law can be obtained from the
perturbed ion and electron momentum equations in the parallel
direction,

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 092512 (2019); doi: 10.1063/1.5116332 26, 092512-3

Published under license by AIP Publishing

https://scitation.org/journal/php


dEk ¼ �gen0duk �
1
en0
rkdp�

1
en0

dB
B0
� rp0; (14)

and Eq. (10) becomes

@dAk
@t
¼ �cb0 � rd/þ cgen0eduk

þ c
en0

b0 � rdpþ c
en0

dB
B0
� rp0: (15)

Equations (11)–(13) and (15) can be used for linear fluid simulations
of resistive tearing modes and drift-tearing modes.

D. The solution of the MHD equations

For comparison with the simulation results, we analytically solve
the MHD equations in a cylindrical geometry (rB0 ¼ 0). The MHD
equations are simplified to the following form:

@dn
@t
þ n0rkduk þ

dB
eB0
� rJk0 ¼ 0; (16)

duk ¼
c

4pn0e
r2
?dAk; (17)

c2

v2A
r2
?d/ ¼ 4pedn; (18)

1
c

@dAk
@t
þrkd/ ¼ g

c
4p
r2
?dAk þ

1
en0
rkdpþ

1
en0

dB
B0
� rp0: (19)

To analyze the linear drift-tearing mode, the perturbed quantity
hðx; tÞ is assumed to vary as h0ðrÞ þ dhm;nðrÞ exp½imhþ inz � ixt�
in cylindrical coordinates. dhm;nðrÞ satisfies the following boundary
conditions: dhm;nð0Þ ¼ 0 and dhm;nð1Þ ¼ 0. The compressional com-
ponent of the magnetic field perturbation is excluded by assuming
dBk ¼ 0. The isothermal model is used, i.e., T ¼ const, p ¼ nT. Then,
we adopt the substitutions @=@t ! �ix and b0 � r ! ikk from linear
normal mode theory, and the equations become

�ixdnþ n0ikkduk þ
ikhdAk
eB0

J 0k0 ¼ 0; (20)

duk ¼
c

4pn0e
ðdA00k � k2hdAkÞ; (21)

c2

v2A
ðd/00 � k2hd/Þ ¼ 4pedn; (22)

�ix
c

dAk þ ikkd/ ¼ g
c
4p
ðdA00k � k2hdAkÞ

þ 1
en0

ikkT0dnþ
ikhT0

eB0

n00
n0

dAk; (23)

where a prime symbol indicates a radial derivative and kk and kh are
the parallel and perpendicular wave numbers, respectively. Equations
(20)–(23) yield the following coupled equations for d/ and dAk:

ðdA00k � k2hdAkÞ þ iðx� x�Þ 4p
c2g

dAk ¼ ikk
4p
cg

x� x�

x
d/; (24)

c2

v2A

x
4pe
ðd/00 � k2hd/Þ ¼

kkc

4pe
ðdA00k � k2hdAkÞ þ

khJ 0k0
eB0

dAk; (25)

where x� ¼ �ðkhT0=eB0Þðn00=n0Þ is the diamagnetic frequency. We
solve these equations in the singular layer (internal region,

r � rs < rc � 1). We assume that dAk ¼ const (equivalent to the
constant-w approximation) in a narrow layer and that

dA00k 	 k2hdAk; (26)

d/00 	 k2hd/: (27)

Equations (24) and (25) become

dA00k þ iðx� x�Þ 4p
c2g

dAk ¼ ikk
4p
cg

x� x�

x
d/; (28)

c2

v2A

ix
4pe

d/00 ¼
ikkc

4pe
dA00k �

ikhJ 0k0
B0

dAk: (29)

We substitute Eqs. (28) into (29) and define dAk ¼ dAð0Þk ¼ const;
kk ¼ khðr � rsÞ=ls; ls ¼ B0=ð@Bh0=@rÞ, and J 0k0 
 B00h 
 0, thus
obtaining

ix
c2

v2A
d/00 þ 4p

g
k2h
l2s
ðr � rsÞ2

x� x�

x
d/

¼ 4p
cg
ðx� x�Þ kh

ls
ðr � rsÞdAð0Þk ; (30)

with the definitions

kh

ls
ðr � rsÞ ¼

c2gk2h
i4pv2Al

2
s

 !1
4

x2

x� x�

� �1
4

z; (31)

d/ðrÞ ¼ � i4pv2Al
2
s

c2gk2h

 !1
4 x� x�

x2

� �1
4

cxdAð0Þk vðzÞ; (32)

Equation (30) becomes

v00ðzÞ � z2vðzÞ ¼ z: (33)

The solution to this equation is

vðzÞ ¼ � z
2

ð1
0
� expð�lz2=2Þ
ð1� l2Þ1=4

dl: (34)

Therefore, the solutions for d/ and dAk in the internal region are

d/ ¼ � i4pv2Al
2
s

c2gk2h

 !1
4 x� x�

x2

� �1
4

cxdAð0Þk vðzÞ; (35)

dAk ¼ dAð0Þk : (36)

Thus, we obtain

D ¼ 1

dAð0Þk

ð1
�1

dA00kdr

¼ cx
v2A

1

dAð0Þk

ð1
�1

d/00

kk
dr

¼ � c2x2

v2A

i4pv2A
c2g

� �3
4 ls

kh

� �1
2 x� x�

x2

� �3
4
ð1
�1

v00ðzÞ
z

dz; (37)
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where
Ð1
�1

v00ðzÞ
z dz ¼ pCð3=4Þ=Cð1=4Þ. The dispersion relation is

derived by matching the expressions for the internal region and the
outer region, D ¼ D0,

x2ðx� x�Þ3 ¼ ic5c ; (38)

where cc ¼ ðCð1=4Þ=pCð3=4ÞÞ4=5D04=5ðg=4pÞ3=5ðvAkh=clsÞ2=5. The
limiting values of x are

x ¼

3
5
x� þ icc; if x� � cc;

x� þ icc
c2c

x�2

� �1
3

; if x� 	 cc:

8>>>><
>>>>:

(39)

This result is qualitatively consistent with Biskamp’s theoretical
derivation.12 The differences mainly lie in the lack of x�i and the

FIG. 1. Radial safety factor profile, q ¼ 1:5þ 1:2w=ww þ 0:7ðw=wwÞ
2. The

dashed line shows the position of the q¼ 2 rational surface at r=R0 ¼ 0:152.
FIG. 2. Radial profile of the equilibrium density, n0 ¼ naeð�w=ww Þ, for the simulation
of drift-tearing modes.

FIG. 3. Mode structure of the ðm; nÞ ¼ ð2; 1Þ resistive tearing mode on the poloidal plane and in the radial direction. Panels (a) and (c) show the contours of the perturbed
electrostatic potential d/ and the perturbed vector potential dAk on the poloidal cross section, respectively. Panels (b) and (d) show the radial profile of d/ and dAk, respec-
tively. The red dashed lines in panels (b) and (d) indicate the position of the q¼ 2 rational surface.
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coefficient of 1/2 before the imaginary part of x in the x� 	 cc case,
which result from neglecting the ion FLR effects and the ion viscosity
term, respectively.

III. SIMULATION SETUP

Both the (m, n) ¼ (1, 1) and (2, 1) tearing modes are known
to be important MHD instabilities in tokamak discharges. The (1, 1)
tearing modes are also called kink-tearing modes due to the strong
coupling between the kink mode and the tearing mode and are distinct
from the m> 1 tearing modes.3 To eliminate the effects of kink cou-
pling, our work focuses on the (2, 1) modes. A safety factor profile of
q ¼ 1:5þ 1:2w=ww þ 0:7ðw=wwÞ

2 is used to contain the q¼ 2 ratio-
nal surface in the simulation region, as shown in Fig. 1, where w is the
poloidal flux, w ¼ 0 at the magnetic axis, and w ¼ ww at the plasma
boundary. The inverse aspect ratio is � � a=R ¼ 0:3, where a and R
are the minor and major radii, respectively, of the tokamak device; the
on-axis major radius is set to R0¼ 1m.

For the resistive tearing mode simulations, the equilibrium den-
sity and temperature are uniform, with the same values for electrons
and ions: n0e ¼ n0i and T0e ¼ T0i. The plasma resistivity is set to a
constant value of g ¼ 1:8� 10�6 X �m. For the case of showing the
mode structure on the poloidal plane, the equilibrium density and
temperature are n0e ¼ 1:0� 1020 m�3 and T0e ¼ 3 keV, respectively,
and the magnetic field is B0¼ 2T, resulting in be¼ 3%, where
be ¼ 8pnaT0e=B2

a is the plasma on-axis beta for electrons, with na and
Ba denoting the on-axis equilibrium values. We choose a radial profile
similar to the eigenmode structure as the initial perturbation of the
vector potential to reduce the simulation time.

For the drift-tearing mode simulations, most of the simulation
parameters are the same as those for the previous (2, 1) resistive
tearing mode case, except for the introduction of a nonuniform equi-
librium density distribution of n0 ¼ naeð�w=wwÞ, as shown in Fig. 2,
where n0 ¼ n0e ¼ n0i and na is the equilibrium on-axis density. The

FIG. 4. Variations in the growth rate of the (2,1) resistive tearing mode with four dif-
ferent b values: 0.75%, 1.5%, 3%, and 6%. The red line shows the results obtained
when varying the density. The blue line shows the results obtained when varying
the temperature. The yellow line shows the results obtained when varying the mag-
netic field.

FIG. 5. Scaling relation between the growth rate of the (2,1) resistive tearing mode
and the electron beta value when the equilibrium magnetic field is varied.

FIG. 6. The perturbed electrostatic potential and perturbed parallel current profiles
with four different b values (0.75%, 1.5%, 3%, and 6%) when the density is varied.
The dashed line in each panel indicates the position of the q¼ 2 rational surface.
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density on the q¼ 2 rational surface is set to ns ¼ 1:0� 1020 m�3.
The equilibrium temperature is still treated as uniform.

IV. SIMULATION OF RESISTIVE TEARING MODES

Linear simulations of resistive tearing modes are carried out to
verify the capabilities of the code and benchmark the results against
previous simulation work based on GTC.22 For simplicity, the reduced
MHDmodel is used, while ignoring the equilibrium pressure gradient,
the kinetic effects of ions, and the effects of the toroidal geometry. The
mode structure of the (2, 1) resistive tearing mode is shown in Fig. 3,
with the contours of d/ and dAk on the poloidal cross section and the
corresponding radial profile at h ¼ 0. All curves are normalized with
respect to their maximum absolute values. In the simulations, only
mode numbers of m¼ 2 and n¼ 1 are retained; other modes are
filtered out via Fourier transformation.

The contour plots in Figs. 3(a) and 3(c) show the symmetry in
the radial direction in a simulation with a cylindrical geometry. The
radial profile plot in Fig. 3(b) shows a steep variation in the perturbed
electrostatic potential that is concentrated near the q¼ 2 rational sur-
face, while the perturbed parallel vector potential in Fig. 3(d) is globally
distributed in the radial direction. The nonzero value of dAk on the

q¼ 2 rational surface corresponds to the perturbed parallel current
due to the finite resistivity, djk 
 r2

?dAk. For the specific parameters
given previously, the pure tearing eigenmode has a growth rate of
c¼ 1.71� 104Hz.

Since the scaling relation between the growth rate and the resis-
tivity has been benchmarked against theory before,22 we perform a
scan of various plasma beta values to obtain the growth rate and mode
structure for further verification. The relative trend of variation
between the beta value and the tearing mode growth rate can help us
to study the drift-tearing mode, which will be discussed in the next
section. The magnetic reconnection caused by the tearing mode is
driven by the magnetic energy difference between the initial and final
states. The time scale of mode growth is determined by a combination
of the resistive diffusion time, which is related to the diffusion of the
magnetic field lines through the plasma, and the Alfv�en time, which is
related to the ideal plasma response. For a linear collisional tearing
mode, theory predicts4 that the growth rate should follow the relation
c / s�3=5R s�2=5A , where sR ¼ a2=g is the resistive diffusion time,
sA ¼ ðn0MÞ1=2a2m=Bh0R is the Alfv�en time, M ¼ mime=ðmi þmeÞ
is the reduced mass, and Bh0 is the equilibrium poloidal magnetic field,
which satisfies Bh0 / B0 for a fixed q value. Thus, we can derive the

FIG. 7. The perturbed electrostatic potential and perturbed parallel current profiles
with four different b values (0.75%, 1.5%, 3%, and 6%) when the temperature is
varied.

FIG. 8. The perturbed electrostatic potential and perturbed parallel current profiles
with four different b values (0.75%, 1.5%, 3%, and 6%) when the magnetic field is
varied.
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relation c / n�1=50 B2=5
0 , indicating that the growth rate c depends on

b�1=5 for a fixed T0.
To benchmark the simulation results in GTC, the relationship

between the growth rate and the electron beta, b, is calculated. We
scan four different b values: 0.75%, 1.5%, 3%, and 6%. There are three
parameters we can vary to obtain different b values, namely, the equi-
librium density n0, the temperature T0, and the magnetic field B0, thus
leading to different and even opposite results. As shown in Fig. 4,
when the density and magnetic field are varied, the growth rate
decreases with an increase in b, whereas when the temperature is
varied, the growth rate slightly increases with an increase in b.

These differences arise from the influence of the perturbed
pressure in Ohm’s law, that is, the third term on the right-hand side of
Eq. (14), ð1=en0Þrkdp. From the expression for this term, we can see
that the driving force from the perturbed pressure term increases as
the equilibrium temperature increases and as the equilibrium density
decreases.

In Fig. 5, the simulated and predicted scaling relations are com-
pared by taking the logarithms of the growth rates and electron beta
values for the “Varying B0” curve. The slope of the fitted line is –0.214,
which agrees well with the theoretically predicted value of –�1/5.

Theory also predicts that the width of the tearing layer should be

Dc ’ ð�ei=ckÞ2=5q
2=5
i D3=5

k for a linear collisional tearing mode,10 where

ck � ðvte=lsÞðk0aÞ�2 and Dk � ðk0aÞ�1 denote the growth rate and
layer width, respectively, of the collisionless tearing mode; and k�10
¼ c=xpe is the collisionless skin depth. Through some standard analy-
sis, we derive the dependencies Dk 
 k�10 
 n0; ck 
 vtek�20


 T1=2
0 n0, and qi 
 T1=2

0 B�10 ; thus, the width of the collisional tearing

layer obeys the following relation: Dc 
 c�2=5k q2=5
i D3=5

k 
 n0B
�2=5
0 .

Since precisely measuring the width of the tearing layer is diffi-
cult, we present only a qualitative comparison here. Figures 6–8 show
the radial mode profiles for different b values when the density, tem-
perature, and magnetic field, respectively, are varied. The changes in
the width of the tearing layer are qualitatively consistent with the lin-
ear collisional theory of tearing modes, i.e., the width of the tearing
layer increases with an increase in n0, decreases with an increase in B0,
and changes slightly with different values of T0.

V. SIMULATION OF DRIFT-TEARING MODES

In this section, the effects of the equilibrium pressure gradient on
the resistive tearing instability are investigated. The equilibrium pres-
sure gradient can affect the tearing modes in both the inner and outer
regions, and the coupling of drift modes to tearing modes results in
so-called drift-tearing modes, which will lead to significant changes in
the mode structure and dispersion relation.

FIG. 9. Mode structure of the (2,1) drift-tearing mode on the poloidal plane and in the radial direction. Panels (a) and (c) show the contours of the perturbed electrostatic poten-
tial d/ and the perturbed vector potential dAk on the poloidal cross section, respectively. Panels (b) and (d) show the radial profile of d/ and dAk, respectively. The red
dashed lines in panels (b) and (d) indicate the position of the q¼ 2 rational surface.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 092512 (2019); doi: 10.1063/1.5116332 26, 092512-8

Published under license by AIP Publishing

https://scitation.org/journal/php


The mode structure of the (2,1) drift-tearing mode is shown in
Fig. 9, with the contours of d/ and dAk on the poloidal cross section
and the corresponding radial profile at h ¼ 0. Mode number filtering
is again applied to keep only the (2,1) mode. The contours of d/ and
dAk in Figs. 9(a) and 9(c) rotate along the poloidal direction due to the
diamagnetic drift motion of the electrons, with a rotation frequency
equal to the electron diamagnetic frequency. Notably, the poloidal
mode structure of d/ in Fig. 9(a) also shows radial symmetry breaking
relative to the resistive tearing mode case in Fig. 3(a). This symmetry
breaking is due to the effects of radial variations of the pressure gradi-
ent; thus, the radial mode structure is also slightly deformed near the
q¼ 2 rational surface, as shown in Fig. 9(b).

The radial profiles of the perturbed electrostatic potential and the
perturbed parallel current for the resistive tearing mode and the drift-
tearing mode are compared in Fig. 10, which shows that the effects of
diamagnetic drift lead to broadening of the radial mode width and the
current layer.

For a linear drift-tearing mode, the theoretically predicted width
of the current layer is D ’ ðx�=ccÞ2=3Dc, where cc and Dc are the
growth rate and layer width, respectively, of the corresponding

collisional resistive tearing mode. The diamagnetic drift causes the cur-
rent layer to broaden when x� > cc. For our chosen simulation
parameters, the diamagnetic frequency is calculated to be
x� ¼ 3:86cc. Thus, the change in the mode width is consistent with
theory.

As shown in Fig. 11, we scan different values of the diamagnetic
frequency by varying the equilibrium density gradient to verify the
theoretically predicted scaling relation between the growth rate and
the diamagnetic frequency, i.e., c 
 x��2=3; note that all values are
plotted as their logarithms. Since previous simulation results presented
in Fig. 4 show that the tearing mode growth rate decreases with
increasing density when the gradient of the density is fixed at zero, we
fix the local equilibrium density on the q¼ 2 rational surface here to
ensure that the density gradient is the only variable. First, we choose a
relatively large resistivity of g ¼ 1:8� 10�6 X �m (blue points), for
which the sampled points deviate from the theoretically predicted
straight line with a slope of �2/3 as the diamagnetic frequency
increases. Then, we consider a smaller resistivity of g ¼ 4:5� 10�7 X �
m (yellow points), for which the sampled points essentially coincide
with the theoretically predicted line.

We know that the width of the tearing layer is related to the resis-
tivity as follows: D 
 g2=5. When the resistivity is sufficiently large, the
error introduced by the constant-w assumption cannot be ignored. To
gain a deeper understanding of this phenomenon, the widths of the
tearing layer in the two different resistivity cases are compared in Fig.
12, where the half-width of the perturbed current profile is treated as
the width of the tearing layer. Since a narrow current layer is the main
restriction of the constant-w assumption, this assumption obviously
introduces larger error for a larger resistivity and a wider layer.

VI. CONCLUSIONS

Based on a previously developed simulation model for resistive
tearing modes on the GTC platform, we introduce a cross field

FIG. 10. Comparison of the radial profiles of the perturbed electrostatic potential
d/ and the perturbed parallel current dJk between the resistive tearing mode and
the drift-tearing mode. The blue lines represent the results for the resistive tearing
mode, and the yellow lines represent the results for the drift-tearing mode. The
dashed line in each panel indicates the position of the q¼ 2 rational surface.

FIG. 11. Scaling relation between the growth rate c of the (2,1) drift-tearing mode
and the diamagnetic frequency x�. The straight yellow line, with a slope equal to
�2/3, represents the theoretically predicted scaling relation; the blue points are the
sample points when g ¼ 1:8� 10�6 X � m, and the yellow points are the sample
points when g ¼ 4:5� 10�7 X � m.
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pressure gradient term into the parallel electron force balance equation
to capture the effects of diamagnetic drift on tearing modes, which
lead to the emergence of drift-tearing modes, for the first time. The
reduced MHD version of this model, i.e., the gyro-MHD equations,

which are different from the previous two-fluid simulation model, is
verified through simulations of linear resistive tearing modes and
drift-tearing modes in a cylindrical geometry. We verify the resistive
tearing mode simulations by scanning the values of the plasma beta to
observe the corresponding changes in the growth rate and radial mode
width. The scaling relation between the growth rate and the beta value
when the equilibrium magnetic field is varied agrees well with the the-
oretically predicted relation c 
 b�1=5. The influence of the equilib-
rium pressure gradient, which results in drift-tearing mode formation,
is also investigated. Drift-tearing modes arise from the coupling of
drift modes and tearing modes, which leads to a real frequency equal
to the electron diamagnetic frequency and a reduction in the growth
rate. The width of the current layer is also broadened by the effects of
the equilibrium pressure gradient. The scaling relation between the
diamagnetic frequency and the growth rate of the drift-tearing mode
agrees well with the theoretical prediction when the resistivity is rela-
tively small, while a distinct discrepancy arises at larger resistivity val-
ues. In a sense, this discrepancy originates from the error introduced
by adopting the constant-w assumption in the theoretical derivation
when the width of the tearing layer is large. The effects of kinetic ions
and a toroidal geometry on drift-tearing modes will be studied in
future work.
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