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ABSTRACT

A quasi-neutral blended drift-Lorentz particle model of the field-reversed configuration (FRC) has been developed and implemented in the
particle-in-cell code named ANC. A field-aligned mesh and corresponding mesh operations are constructed for solving self-consistent elec-
tric fields in FRC geometry. Particle dynamics are described in cylindrical coordinates to allow for cross-separatrix simulation coupling the
core and scrape-off layer regions of the FRC. This new model is successfully verified against analytically derived dispersion relations, and

FRC turbulence is studied using the blended model for the first time.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012439

I. INTRODUCTION

An ideal field-reversed configuration (FRC) is a compact
toroid (CT) with purely poloidal magnetic fields. It consists of two
regions separated by a separatrix: an inner, closed field-line core
region and an outer, open field-line scrape-off layer (SOL) region.
The FRC concept as a fusion reactor has several benefits: (1) f§ (the
ratio of plasma pressure to magnetic energy density) near unity
suggests more economical magnetic energy costs; (2) compact
shape simplifies the device hull and external magnetic field coils;
(3) SOL may be connected to the divertor arbitrarily far from the
FRC core; and (4) the lack of toroidal magnetic fields radically
changes the magnetic topology and the consequential stability of
the plasma.

In the C2/C2U FRC experiments at TAE Technologies, Doppler
backscattering (DBS)' measurements of density fluctuations showed
distinct qualities between the core and SOL. In the SOL, the fluctua-
tion spectrum is highest in amplitude at ion-scale wavenumbers,
decreasing exponentially toward electron-scale wavenumbers. In the
core, fluctuations are overall lower in amplitude relative to the SOL,

and the highest amplitude fluctuations are located at electron-scale
wavenumbers.”

Early efforts to understand this phenomenon in the FRC used
linear GTC [the Fortran based gyrokinetic (GK) toroidal code’] simu-
lations localized to drift-surfaces using gyrokinetic particles.” Within
gyrokinetically valid parameters ((p;/L,) < 1), these simulations
show the FRC core to be stable while various instabilities were able to
arise at a range of toroidal wavenumbers and pressure profiles in the
SOL.™*

Although consistent with experiment, the localized linear GTC
simulations were insufficient for turbulence simulations due to the
coupled nature of the core and SOL. In order to address the coupled
nature of the core and SOL regions, a new simulation model spanning
across the separatrix has been developed. The formulation described
in this paper is implemented as the particle-in-cell (PIC) code named
“ANC.” Closely related to and based on the parallelism of GTC, this
code is written in Fortran and uses OpenMP/message passing interface
(MPI) parallelization while updates for graphics processing unit
(GPU) acceleration are in progress. Unlike the more “device agnostic”
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GTC, the simulation code ANC is a microturbulence code tailored to
investigate transport in FRC geometry using a first-principles model.

In follow-up non-local nonlinear ANC and GTC simulations
using a gyrokinetic ion model with an adiabatic electron response,
instability was shown to only grow in the SOL,” ” consistent with
the local GTC results. These ANC simulations use a non-local sim-
ulation domain extending from the FRC core to the SOL within the
confinement vessel with an axial periodic boundary condition.
The non-local capability was shown to be important for allowing
the fluctuations, which arise due to SOL instability, to non-linearly
spread into the core, resulting in a fluctuation spectrum that is
qualitatively consistent and quantitatively within expectations with
experimental measurements.” As the next generation of high per-
formance computers enters exascale computing regimes, algo-
rithms and models can also be updated to accommodate more
realistic physics. Because of the low magnetic fields, the gyrokinetic
model is inadequate to fully describe the possible particle trajecto-
ries in the FRC,' such as Fig. 8 or betatron orbits. To overcome
this, the blended particle model, described in Sec. III, is imple-
mented in ANC. Furthermore, in order to calculate particle diffu-
sivity and electron thermal conductivity, the non-adiabatic electron
response must be represented. Using the blended model, the non-
adiabatic electron response is now implemented, and it is now pos-
sible to self-consistently calculate electron transport from ANC
simulations. At present, ANC is electrostatic and nonlinear, based
on the Vlasov-Poisson system of equations. With the goal of
understanding transport scaling applicable toward future reactor-
grade plasmas, effective collisionality is assumed to be low and no
collisional effects are present in the model. The particle model is
generalized, allowing gyrokinetic (GK) or blended drift-Lorentz
(“blended”) particle species. Toward the goal of experimental vali-
dation, it accepts arbitrary numerical FRC equilibria, spanning
closed and open magnetic field-line regions. In this paper, the for-
mulation of the simulation model implemented in ANC is
described: the equilibrium and coordinate system, including the
field-aligned mesh, are presented in Sec. II; the blended and gyroki-
netic particle models are described in Sec. I1I; Sec. IV is devoted to
solving for the self-consistent fields; various benchmarks are dis-
cussed in Sec. V; and preliminary FRC simulation results are shown
in Sec. VI.
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Il. EQUILIBRIUM AND COORDINATE SYSTEM
A. Equilibrium

ANC is built to use equilibrium data such as Vo #,, 1, T, and
T; on a 2D R-Z plane with quantities assumed to be azimuthally sym-
metric. Simulations use equilibria generated using the LReqMI code,’
and experimentally relevant equilibria are obtained by comparing syn-
thetic diagnostics with experimental results.

Currently, simulations are confined to a nonlocal domain span-
ning the confinement vessel region of the reactor with periodic bound-
aries in the axial directions and neglect parallel outflow effects. This
assumption limits the model to investigations of perpendicular trans-
port only. As shown in Fig. 1, the magnetic field null region is excluded
in simulations using the gyrokinetic particle model to preserve gyroki-
netic validity.

A true equilibrium distribution function is of the following form:

7 _ ”(;ﬁ) —E/T(})
Fo(W,E)=———"2 ¢ , (1)
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where = (R, Z) — mZCR = —P;/q is the modified poloidal flux
function, which is a constant of motion due to its dependence on only
the canonical angular momentum. Currently, equilibria generated by
LReqMI are spatially dependent but not velocity dependent. While
questionable for ions in the FRC, this function can be expanded with
the assumption of /(R, Z) > mf;R, a necessary step to match currently
available experimentally relevant pressure profiles,
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where f, is an analytic distribution function dependent on only the
spatially dependent i and the particle energy E. Taking f; to be a local
Maxwellian with spatially dependent temperatures and densities,
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the first three terms of the expansion from (2)can be written as
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FIG. 1. The simulation mesh in (a) real-space (b) field-aligned space. The SOL region is represented by red, and the core region is represented by green. The two regions are
topologically separated by the separatrix, represented by the black dashed line. Only a subset of the usual grid is plotted for clarity in visualization. When the gyrokinetic model
is used, a gap in the core region is made to avoid the magnetic null region due to gyrokinetic validity; however, this gap is not required when using the blended particle model
and is not shown.
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For the time-advance of the weight, i.e., Eq. (19), the quantity used is

actually the partial derivative with respect to velocity. Assuming an
expansion
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To estimate the comparative largeness of the different terms of the
expansion, the azimuthal velocity can be assumed comparable to the
thermal velocity, and the average ratio for ions is |q/|/mvmR ~ 2,
while the average ratio for electrons is |q|/mevm R = 300.
Currently, ANC uses only the lowest order expansion, which reduces
to the expected form in the drift-kinetic limit as described in Sec. III.
For ions, the large second order term is a departure from the usual
gyrokinetics due to large finite Larmor radius, and further exploration
of this effect is in progress.

B. Field aligned mesh

Although the physics of the code is formulated in cylindrical
coordinates in order to couple regions across the magnetic separatrix,
the simulation mesh itself is generated such that grid points lie along
the magnetic field-lines. This allows for a coarser resolution in the
direction parallel to the field-lines.

The field-aligned mesh is generated by picking points along the
separatrix, then using the magnetic field directional unit vectors to
assemble lines perpendicular to the magnetic field (along ) and lines
parallel to the magnetic field (along S). Because of the differences
between the two regions, the coordinate parallel to the field-line is
defined differently for the core and SOL. These coordinates are only
used in the interpolation of particles-to-mesh or mesh-to-particles.

For the core, S = *1 is the location of the inner mid-plane where
the mesh is periodically bound both physically and numerically while
§=0 is the location of the outer mid-plane. The field-aligned coordi-
nate S(, Ogeo) = S(W/(R, Z), Ogeo (R, Z)) is defined by the two inde-
pendent variables, 1/ (the poloidal flux label) and 0,,, (the geometric
angle about the null-point).

For the SOL, S= —1 and S=1 are the locations of the left and
right boundaries, respectively, and S=0 is the location of the outer
mid-plane. The field-aligned coordinate S(\,Z) = S(¥/(R,Z),Z) is
defined by the two independent variables, i (the poloidal flux label)
and Z (the position along the axial direction).

geo
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In ANC, the mesh is field-aligned while the coordinate system is
cylindrical with an unconventional signing, i.e.,

RxZ=t. (6)
Vector operations are obtained via chain rule and are numerically dis-
cretized via an assumed quadratic interpolant. In Secs. 1B 1-11B 3,
mesh operations are detailed, where X, and X; refer to physical spac-
ing in the directions of Y/ and § = b,.

Using the field-aligned mesh, a comparison of the growth-rate,
frequency, and mode structure of a linear instability was performed
and found to be consistent with results obtained via the cylindrically
regular mesh.” Some benchmarks regarding the field-aligned mesh
operations are also shown in the Appendix.

1. Partial derivatives

The mesh is generated by finding points along the magnetic field
direction and along the direction, that is perpendicular to the magnetic
field. The gradient, in this mesh, is then

f f s+%s )

Vi = ORI

lﬁ-i—

Using this relation, the real space partial derivatives can be calcu-
lated by taking the scalar dot product

g}fz—ﬁ f—ﬁ +ﬁ SR,

(8)
0 3
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2. Gradient

Using the definitions of the partial derivatives, the real space gra-
dient in cylindrical coordinates is

of f 1 of of f
Vf = h R+ 2 +ﬁa—§cf( ‘”ﬁa_st)

HERE e

3. Laplacian

Using the definition of the gradient, the Laplacian can be calcu-
lated from the following relation:

Vf =997 =20 (v V1)

+§Z(z f)+ Ra—C(c vf). (10)

Using the real space gradient operator given by (9) and some math,
this relation becomes

Phys. Plasmas 27, 082504 (2020); doi: 10.1063/5.0012439
Published under license by AIP Publishing

Pf  Pf 10 Pf
2 —_— —_ —_—
V- prel + X2 TR ar RS + 2252) 5 JOXs
Ny | Oy ‘PR) of (aSR 0S8y ) of
“r &z .1
+(8R oz TR)ax, \or "oz TR) o Y
27, 082504-3



Physics of Plasmas ARTICLE

Finally, a perpendicular Laplacian operator can found by drop-
ping the parallel derivatives, i.e., d‘)—){s — 0, or by 61 =V (byx V),

Ff 1S <<9l//R Ny 1//R)
2 —J 4 -7 R Z¥Z | TR
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C. Toroidal wedge

Taking advantage of the symmetry of the FRC toroidal direction
C (azimuthal about the machine axis), ANC simulations use a trun-
cated toroidal wedge based on the lowest common denominator,
nrcps of the toroidal mode numbers kept in the simulation, i.e., going
from a full torus [0,27] to a truncated toroidal wedge [0, 27/n;cp.
This allows for physics of short toroidal wavelength modes to be fully
resolved without waste in the case where simulations are focused on
subsets of toroidal modes.

D. Magnetic field

To ensure that numerical heating or cooling of particles due to
magnetic fleld quantities does not occur, a divergence-free magnetic
field is ensured by representing all magnetic field related quantities
through the derivatives of the poloidal flux. Through cubic spline rep-
resentation of the poloidal flux, the magnetic field, defined as

. 10y
BR = — =T,
ROZ
5 _lov )
2= ROR’

will have a divergence that is analytically zero.

lll. PARTICLE DYNAMICS

The particle-in-cell (PIC) method is conceptually simple: repre-
sent physical particles with simulation marker particles and follow
their trajectories in the electrostatic (or electromagnetic) fields self-
consistently  calculated  from  these particle  distributions.
Mathematically, the marker particles follow the characteristics such
that the phase-space volume represented by each particle does not
change. Different models can be used to describe the particle dynamics
suitable for different particle species. In ANC, particles can be
described by a blended drift-Lorentz perturbative Jf model or by a
gyrokinetic perturbative df model.

A. Blended drift-Lorentz particle model

Based on blended drift-Lorentz particle pusher introduced by
Cohen et al.,'” a drift-Lorentz perturbative Jf particle model has been
developed and implemented in ANC. Briefly described, the drift-
Lorentz particle pusher is a Boris-push algorithm with corrections for
time-steps large relative to the local cyclotron oscillation. These modi-
fied velocity and position updates are defined as

2 = o2 A+ (1 - ) AT, (14)
X = g Ax”“/z + oAx "“/2 +(1— oc)AxZH/Z7 (15)

where Av; = q(E + B x By)At is the change in velocity due to the
normal Lorentz force, Av,vp = fu%At is the change in velocity
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due to the magnetic mirror force, Ax| = ] |At and Ax, = U At are
the changes in position due to parallel and perpendicular velocities,
and Axy = (U + U, + ,)At is the change in position due to drift
velocity (composed of the drifts due to electric fields v = E x By /

LLL (BO X vBo)/lBo|

|Bo|*, magnetic field gradlents Ug =35 and mag-

netic field curvature ¥, = qT%‘)‘ (R. x Bo)/R%|By|). The blended param-

eter used in the position and velocity update equations is defined as

1

1 (gc,sm)z ' (16)
T\

Together, the particles described by this model follow a modified
Vlasov equation:

o =

d
I (567571')5 |:§t+veﬁ' V+aeﬁ' V :|f (17)

where the effective velocity and acceleration are shown in (14) and (15).

In the perturbed 6f model,''" the distribution function is split
into f = fy + Jf, where f; is a known analytic equilibrium distribution
such as the Maxwellian distribution and Jf is the perturbation to this
equilibrium distribution. When considering the moments of the distri-
bution function as the main quantities of interest, the PIC method is
essentially a series of Monte Carlo calculations, where the Jf approach
is a case of the control variates method."” Equation (17) can then be
reformulated into the weight equation,

o =5
Cdv_ L dh (18)
Tar fodt’

where w = W and g(t) is the marker distribution. Substituting

from (17) and noting that portions due to the equilibrium distribution
function are zero by definition, the weight equation becomes

div 10f,
at fhov

Assuming an expansion of the equilibrium distribution function
based on the local Maxwellian via Eq. (5),

8Fogi E) (Bgf Doy fM) ( ?;M+%fM) (o
~ fu(Bo+ B+ B+ --), (20)

where fB, are terms of (9(("’5;‘5)0), By are terms of O((W;Ri;‘f)l), and

so on, with ordering defined in Sec. II. More explicitly, the first order

term is
miR L%%ﬂ é) 1 9To0);
qi Mj0 31// ]0 TJO 3‘//
(21)

where the subscript j refers to the particle species. In the explicit form
of fo, it can be seen that the contributions to the change in the

~(1—#)LE- (19)
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perturbed distribution function is due to three effects: (1) the first
term relates to the motion of the particles, most strongly the parallel
direction; (2) the second term relates to the density gradient; (3) the
third term relates to the temperature gradient. The current usage in
ANC only includes the lowest order f3, as a first step. Understanding
the effect of the next order f8;, which is relatively large for ions, is in
progress. It is also important to note the «; factor in the velocity,
which allows for the weight equation to reach its correct form in the
two limits: (1) in the fully kinetic limit, the velocity is just the normal
particle velocity; (2) in the drift-kinetic limit, the velocity reduces to
just the parallel velocity.

B. Gyrokinetic particle model

Due its lineage from GTC, ANC has also implemented the stan-
dard gyrokinetic particle model. The dynamics of gyrokinetic particles
are described by the Vlasov equation for guiding centers

d_ o o 3 = )
X H=|S+X- | ——
/Ky = |5+ XV 4 oo, f (22)
with the velocity given by
% = vybo + Ui + v58 + R, (23)
and the acceleration given by
. 1 /- v N
| = —%<bo+a“cv x b0> - (UVBy + V). (24)

Again, splitting the distribution function into perturbed and
equilibrium components, the electrostatic gyrokinetic weight equation
can be found:

W_ e Y (b v x by ) v ) LL 2
(25)

This is equivalent to the form given by Holod et al.” in the electro-
static approximation. The linear trajectories of gyrokinetic and drift-
kinetic particles are equivalent. A difference between the gyrokinetic
and drift-kinetic models comes from the particle-to-grid interpolation
to calculate density. For gyrokinetic particles, the gyro-averaged density
is calculated by using a four-point average approach, based on a ring
with radius equal to gyroradius.">'” For drift-kinetic particles, the ring
is reduced to the guiding center, and no gyro-averaging is performed. A
second difference between the two models arises in the inclusion of a
polarization density for gyrokinetic particles in the field solver as seen
in (28).

IV. SELF-CONSISTENT FIELDS

Aside from the particle model, the other component of the PIC
method is the self-consistent calculation of the electrostatic (or electro-
magnetic fields) fields arising from the particle distributions. Currently
in ANC, only the electrostatic approximation is considered.

A. Blended Poisson equation

To obtain the electric fields used to advance particle velocities,
the electrostatic potential is found through solving the Poisson equa-
tion in ANC.

scitation.org/journal/php

The form of the Poisson equation, complementary to the blended
mover,12 is

e¢
—[2aVi o+ (1= 0)peVi + (1 - ) V] o
e

o Nio + 5?’!1' . ne"o =+ 5ne (26)
o no no ’

where the first term on the LHS is Debye shielding, the second and
third terms on the LHS are electron and ion polarization densities,
respectively, and the two terms on the RHS are the electron and ion
densities. Note that the blended parameter modifies the polarization
densities because the polarization densities are self-consistently con-
tained within the RHS densities when the blended model approaches
the fully kinetic representation.

B. Quasi-neutral blended Poisson equation

For the turbulence studies that is the focus of ANC, space-charge
waves, such as the electron plasma wave, constrain the simulation
time step but are not physically interesting. In gyrokinetics, the quasi-
neutrality equation, sometimes called the gyrokinetic Poisson equa-
tion, is solved instead of the full Poisson equation

—[(1 = a)p2V% + (1 — o) p? V2 ] _ (%) - (%) (27)
T. Mo o
where the Debye shielding term is dropped and the equilibrium ion
and electron densities are assumed to be equal due to quasi-neutrality.
This removes the space-charge waves from the simulation model and
is sufficient only if there is a particle species away from the fully kinetic
limit to provide a finite polarization term. This equation is insufficient
when this is not the case and is discussed in Sec. IV C.
In the case, where the gyrokinetic model, described in Sec. I1I, is
used for the ions, the quasi-neutrality equation” solved depends on the
ion polarization term only. That is,

_ g2 & [om\ _ [one
inlTe_<n0> <n0>7 (28)

where the (---) represents the gyro-averaged (via gyro-sampling)
quantities. This equation can be seen as (27) in the limit of relevant
time-scales being slower than cyclotron oscillations (Q.At, Q,A > 1
— o, o; ~ 1) and relevant length scales being larger than electron
gyroradii (kK p? < K2 p?).

C. Quasi-neutral blended Poisson equation with partial
adiabatic response

In the FRC, there are regions of extremely low magnetic field
strength. As such, there are locations where the blended particle model
will effectively be a fully kinetic representation for all simulated particle
species. In such case, the polarization terms on the LHS of (27) will
decrease to zero due to the blended parameter. On the other hand,
there is no guarantee for the densities on the RHS to cancel to zero as
well. Without the Debye shielding term, trying to solve (27) for the
electrostatic potential ¢ in this limit is a source of numerical issues. To
avoid this problem while maintaining quasi-neutrality, a portion of
the electron response is assumed adiabatic:
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The assumption of a cutoff velocity is essentially an assumption of a
cutoff frequency based on

(U > Ucuffajff) (29)

o < kchutfvffa (30)

where the condition is based on kj of the mode structure and the
selected cutoff velocity. For the turbulence studies of interest, this cut-
off frequency is unlikely to affect the possible wave-particle resonances,
and variation of the assumed cutoff velocity will be used to confirm
convergence on resultant physics. With this partial adiabatic assump-
tion and assuming the equilibrium particle densities to be equal, the
form of the quasi-neutrality equation changes to

kj #0
[~ 229+ (1 - )i g, LEEO ré )

()2,
no no

where 4 and yn4 are the fractions of the electrons assumed to be adia-
batic and non-adiabatic, calculated by

YNa = erf(vcutfaff/vth)»

(32)
Ya=1—"na

where vy, is the local thermal velocity. Note that this equation is only
valid for the component of electrostatic potential with finite k| due to
the adiabatic response. A second quasi-neutrality equation without the
adiabatic response must now be solved for the component of electro-
static potential with k| = 0,

_< [(1 = 0)p2V2 + (1 — o) p?V? ] > ed’(@;o)

{(2)-()

where (- - -) denotes a field-line average. Because the magnetic field is
not uniformly small along the field-lines in the problematic null mag-
netic field regions of the FRC, this field-line average is sufficient to
ensure that the LHS remain finite. The scenario that the LHS falls to
zero due to small simulation time-steps requires the Debye shielding
term but is outside of the interest of this model. The total electrostatic
potential is then found by combining the results of the two equations:

d(ky) = d(kj = 0) + (k) #0). (34)

V. BENCHMARKS

Several benchmarks against analytic theory have been performed
with ANC. These benchmarks use a simple uniform magnetic equilib-
rium for analytic simplicity. The routines and functions called within
ANC are almost exactly the same set as in more complicated FRC
equilibria; thus, these benchmarks provide some measure of confi-
dence in the implementation of the physics outlined in Secs. I-IV.

A. Drift-wave

Using a simple straight magnetic field with varying density, the
drift-wave dispersion is found from simulation and compared to ana-
Iytic theory.

scitation.org/journal/php

With (1) the gyro-kinetic ion model and drift-kinetic electron
model; (2) flat temperatures but non-uniform density; and (3) a simple
straight uniform magnetic field, the dispersion of the drift wave is

1+0b Kn 0/Q;
( b ) <_kLpi V2k) Ao(b)Z (ﬁkﬂi>

1 S 0/Q Ko T ©/Q;
NP (ﬂkpi) MRV (ﬂkﬂ‘)

IT,‘ , w/Qcﬁ,-
. (\/fkwe))} o

where Z(%I? p‘) is the plasma dispersion function, Ag(b) = Io(b)

exp(—b) is the exponentially scaled modified Bessel function of the
first kind, b = k% p?, and k, = —Vn/n is the density gradient inverse
scale length.

In Fig. 2, the numerical solutions of the analytic theory (35) is
plotted as the dashed line, while the normalized 2D spectral power
shows the ANC simulation results. Three models in ANC are tested
and shown: (a) gyrokinetic ions with drift-kinetic electrons, (b) gyroki-
netic ions with adiabatic electron response, and (c) blended drift-
Lorentz ions with adiabatic electron response. The simulation results
agree with the theoretical dispersion relation at long wavelengths due
to better numerical resolution and because shorter wavelengths (for
the blended drift-Lorentz case (c), |kjp;| > 4.2 x 107%) are numeri-
cally smoothed. This verifies the capability to simulate drift-waves in
ANC.

0=1-—

B. lon acoustic wave

Using a simple straight magnetic field without pressure gradients,
the ion-acoustic wave dispersion is found from simulation and com-
pared to analytic theory.

With (1) the fully kinetic ion model with an adiabatic electron
response; (2) flat temperatures and density; (3) a simple straight uni-
form magnetic field; and (4) the assumption of k| = 0, the dispersion
of the ion acoustic wave is

1Te Qci
0=1 ———Z(L), (36)

where Z (\%g ‘p) is the plasma dispersion function.

In Fig. 3, the numerical solution of the analytic theory (36) is
plotted as dashed lines, while the normalized 2D spectral power shows
the ANC simulation results. The simulation results using the blended
ion and adiabatic electron response agree with the theoretical disper-
sion relation. This verifies the capability to properly simulate waves in
the parallel direction in ANC.

C. lon Bernstein wave

Using a simple straight magnetic field without pressure gradients,
the ion Bernstein wave dispersion is found from simulation and com-
pared to analytic theory.

With (1) the fully kinetic ion model with an adiabatic electron
response; (2) flat temperatures and density; (3) a simple straight
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Drift-Acoustic Wave: Spectral Power
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FIG. 2. Analytic theory (dashed line) of the drift-wave is plotted on top of spectral power found from ANC simulation using three different models: (a) gyrokinetic ions with drift-
kinetic electrons, (b) gyrokinetic ions with an adiabatic electron response, and (c) blended ions with an adiabatic electron response. The 3|mulat|on results are conS|stent with

theory, tracking along the drift-wave frequency which is shifted away from zero. At shorter wavelengths (for example, in the blended case (|

o), [kypi| > 4.2 x 10" %), simulation

deviates from theory due to the lower numerical resolution as well as numerical smoothing which was used in this simulation.
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FIG. 3. Analytic theory (dashed line) of the ion acoustic wave is plotted on top of
spectral power found from ANC simulation. The simulation results are consistent
with theory, tracking along the correct slope of the ion acoustic wave.

uniform magnetic field; and (4) the assumption of k| ~ 0 << k., the
dispersion of the so-called neutralized Ion Bernstein mode'*

071—2—2/\

’nl

ZQZ

nZQZ ' (37)
where A, (b) = I,(b) exp(—b) is the exponentially scaled modified
Bessel function of the first kind and b = k2 p?. In the simulation, the
electron response is explicitly set to be adiabatic while the ions use the
blended particle model. Although only the component with &k = 0 is
kept, the adiabatic electron response assumption is consistent between
the shown dispersion relation and within this simulation. This bench-
mark is designed to show the fully kinetic physics capability of the
blended model in the perpendicular direction whereas the previous
gyrokinetic model would not include such physics.

In Fig. 4, the numerical solution of the analytic theory (37) is
plotted as dashed lines, while the normalized 2D spectral power shows
the ANC simulation. While the higher frequency branches are cap-
tured by the simulation, the resolution used only roughly resolves the
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lon Bernstein Wave: Spectral Power
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FIG. 4. Analytic theory (dashed line) of the so-called neutralized lon Bernstein
mode is plotted on top of spectral power found from ANC simulation. The simulation
results are consistent with theory, tracking along the frequencies which are shifted
away from the cyclotron harmonic resonances.

first branch at longer wavelengths. This verifies the capability to prop-
erly simulate waves available only in the fully kinetic model in ANC.

Note that the same benchmark was also performed with the
fully-kinetic ion model. In that benchmark, a much smaller time step
must be used; otherwise, numerical instability arises from the under-
resolved higher frequency branches. On the other hand, in the blended
ion model benchmark, larger time steps can be taken because the
blended ion model becomes more drift-kinetic-like and the physics of
the Bernstein mode will be unavailable to under-resolve. This high-
lights a benefit of the blended model in which the relevant physics can
be chosen by choosing the simulation time step.

D. Lower-hybrid wave

Using a simple straight magnetic field with non-uniform density,
the lower-hybrid wave is probed by external antenna excitation to
compare the plasma response from simulation with analytic theory.

With the fully kinetic ion model with non-adiabatic kinetic elec-
tron model and assumption of k| < k_, the dispersion of the lower-
hybrid wave is

me k2

K
o =wly| 1 I | , (38)

where the lower-hybrid frequency is defined by

-2
1 1
W, = + : (39)
LH wﬁi + wﬁe Q.Qc,

An external electrostatic potential (¢,,, < cos(wot)) is imposed on
the plasma and causes the self-consistent electrostatic potential to
grow linearly when the antenna frequency is near an eigenfrequency,
much like forced harmonic oscillation. In this case, a range of eigenfre-
quencies exists and the response is not as sharp as might be expected,
though the largest response lies in the range defined by the standard
deviations of the mean frequency from (38). Due to the non-uniform

ARTICLE scitation.org/journal/php

density and non-local domain (k; = n/R), there is a range of possible
solutions to the dispersion (38), depicted as the shaded region in
Fig. 5. In the same figure, plasma response from external antenna exci-
tation at five different frequencies is shown. This verifies the capability
to properly simulate waves available only in the fully kinetic model in
ANC with both blended ions and electrons.

VI. INITIAL BLENDED FRC SIMULATION RESULTS

Recently, simulations using blended thermal ions and electrons
have been performed, and the preliminary results are reported here.
Eight toroidal modes are kept (n = [0, 10, ..., 60, 70]) in the simula-
tions shown. Similar results were obtained (but not shown here) for
simulations with only four toroidal modes kept (n = [0, 25, 50, 75]).
As a first step, no equilibrium electric field profile is used in these simu-
lations despite the existence of equilibrium electric fields in experiment.

The density profile used in these simulations is shown in Fig. 6.
The temperature profiles follow the shape of the density profiles, i.e.,
ni=n,=1 where n;=Ly}/L," and n,=L;./L,', and the
maximum jon and electron temperatures are Tju. = 400 and
Temax = 80 eV. Although the density and temperature profiles are
assumed to be flux-functions in these simulations, true FRC equilib-
rium profiles are surface-functions which may differ from flux-
functions after accounting for toroidal rotation.

From the simulation parameters, ions are effectively represented
as fully kinetic particles with o; =1 throughout the simulation
domain such that the correction terms are negligible. For non-
adiabatic electrons, however, o, is much more interesting and shown
in Fig. 7: in the core along the region of lowest magnetic field, o, ~ 1
such that electrons are represented as fully kinetic particles; in the
SOL, o ~ 0-0.5 such that electrons are represented as drift-kinetic
particles.

A. Initial results

Consistent with previous work, instability only forms in the SOL.
This instability has higher toroidal mode numbers (n = [60, 70],

Lower-hybrid Wave: plasma response
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FIG. 5. Analytic theory (range depicted by cyan shaded region) of the lower-hybrid
wave is plotted on top of plasma response found from ANC simulation (represented
by fits to the initial linear rate of increase in potential due to resonance with the
antenna). The simulation results are consistent with theory with strongest response
in the range of frequencies expected by analytic theory.
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FIG. 6. The density profile used in the simulation is shownT in the top while the
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inverse scale length normalized by ion gyro-radius (p; = o8B, ) is shown in the bot-
tom. The dashed gray line represents the separatrix.

corresponding to (k;p;) > 10), and is shown in Fig. 8. During the ini-
tial linear growth stage, the instability for mode numbers n = [60, 70]
has real frequency w,/Q., =[0.52,0.56] and linear growth-rate
7/Qcp = [0.11,0.11]. The mode rotates in the direction of the ion dia-
magnetic drift, and the frequency is comparable to the so-called
unconventional short wavelength ion temperature gradient (SWITG)
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mode.'” " Initial analysis of the non-adiabatic electron response peaks
when the mode frequency is roughly equal to the electron magnetic
gradient drift frequency, suggesting that this mode is, at least, partially
driven by the electron grad-B motion.

As the instability saturates, there is an inverse spectral cascade
from the higher to lower toroidal wavenumbers. This can be seen as
the change from the shorter wavelength mode structure in Fig. 8 to the
larger eddies in Fig. 9. Compared with the previous gyrokinetic turbu-
lence simulations,” there is less inward spread from SOL to core; how-
ever, it is difficult to discern whether this is due to the correct
representation of particle trajectories or the change in the nature of the
instability due to the inclusion of the non-adiabatic electron response.
After saturation, the amplitude of fluctuations in the core are about
two orders of magnitude below the SOL at longer wavelengths, similar
to the gyrokinetic turbulence simulations.

Simulations using more realistic profiles (including equilibrium
electric fields) reconstructed from experimental shots are ongoing and
will be reported on, in detail in future work.

VIl. DISCUSSION

To address the coupled nature of the core and edge regions of
field-reversed configuration plasmas, a formulation for electrostatic
particle simulation across the separatrix is presented. A field-aligned
simulation mesh and corresponding mesh operations have been devel-
oped and verified. A formulation for efficient particle pushing, free
from gyrokinetic validity and based on the blended particle model, is
also established. A corresponding quasi-neutrality equation for self-
consistent fields is also detailed. Using about 2.5 x 10° cells and 19 x
10° particles, a total wall-time of roughly 2500 node-hours was
required for this numerically converged blended FRC simulation run,
comparable to previous gyrokinetic FRC simulation runs. For mag-
netic geometry with large variations in magnetic field magnitude, this
model is an improvement in simulation time over the fully kinetic par-
ticle model and an improvement in model validity over the gyrokinetic
model. The efficient use of the blended model for turbulent transport
simulations will aided by the upcoming exascale computing platforms.
All of these new features have been implemented in ANC and bench-
marked in simple cylindrical geometry. Nonlinear simulations in FRC
geometry have also been performed.

1.0
0.8
0.6
0.4
0.2
0.0

FIG. 7. The electron o, calculated by (16) for the simulation parameters, is shown. Electrons are fully-kinetic-like (o ~ 1) where the magnetic field is low but are drift-kinetic-

like (ot < 1) where the magnetic field is larger.
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-5e-2 0.0 5e-2

Electrostatic potential: e¢ /T,

FIG. 8. The 3D electrostatic potential during linear growth is shown. The top (a)
shows full (R,Z, () view where the gray region shows the extent of the simulation
domain, and the purple shell represents the separatrix surface marking the separa-
tion of the core and SOL regions. The cut on the left side of (a) is shown in the 2D
slice on the bottom right (b). A zoomed in view on the bottom left (c) shows the
short wavelength mode structure where the dashed line represents the separatrix.

-3e-1 0.0 3e-1

Electrostatic potential: e¢ /T,

FIG. 9. The 3D electrostatic potential after nonlinear saturation is shown. The top
(a) shows full (R, Z, () view where the gray region shows the extent of the simula-
tion domain, and the purple shell represents the separatrix surface marking the sep-
aration of the core and SOL regions. The cut on the left side of (a) is shown in the
2D slice on the bottom right (b). A zoomed in view on the bottom left (c) shows the
turbulent eddies where the dashed line in purple represents the separatrix.
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Previous results from GTC and ANC represent, to date, the only
first principles gyrokinetic turbulence simulations’ ” in realistic FRC
geometry. The non-local simulation domain spanning across the sepa-
ratrix represented an extension from the earlier local linear gyrokinetic
simulations. The initial FRC blended model simulation results pre-
sented in this paper are another step in the progress toward more real-
istic FRC turbulence simulations. The effects of fully kinetic ion orbits
and non-adiabatic electron response are observed. Magnetic perturba-
tions, which can affect the field-line structure of the FRC, are not yet
included in this model.

In agreement with past work, no linear ion-scale instabilities
develop in the FRC core, likely suppressed by the large ion orbits
(finite Larmor radius effect). Overall fluctuation levels are also much
lower than in the SOL, though details of inward spread are still under
consideration. In the SOL, a linear instability develops at short wave-
lengths, eventually leading to an inverse spectral cascade to longer
wavelengths as well as an inward spread from SOL to core. These pre-
liminary results are consistent with previous findings.

The goal of these first principles FRC simulations is understand
transport scaling for the realization of a fusion reactor based on the
FRC concept. This is the motivation for the inclusion of the non-
adiabatic electron response, which enables the calculation of particle
diffusivity and electron thermal conductivity. Electron heat flux due to
the self-consistent fluctuations can be calculated within the simulation
via g, - = [ 0f.(dme |5 — 3 T.0)(Fx - )dv, noting that this only
takes into account the effect of the collisionless fluctuations. This heat
flux can then be used to calculate the conductivity from Fick’s law
Le=10q, ¥/ (11e0V Top - /). Finally, from the conductivity, the
perpendicular core energy confinement time can be estimated by
T = R3/{).), where Rg is the separatrix radius and (y,) is the con-
ductivity averaged over the post-saturation duration, in the toroidal
direction, and in the field-line direction. Despite lacking several effects
known to exist in the experiment, perpendicular energy confinement
time in the core is estimated to be ~1 ms in the preliminary FRC sim-
ulations shown in this paper, a surprisingly reasonable estimate when
compared with the experiments.””*” It should be noted that the simu-
lations shown have not incorporated beam ions and equilibrium elec-
tric fields, both of which can significantly modify the properties of
possible instabilities and the saturated level. These estimates will be
reevaluated as further effects are included.

Validating the fluctuation spectra and transport calculations
against the current experiments is a necessary step before transport
scaling can be understood. Immediate efforts in the future are toward
ongoing FRC blended model simulations based on reconstructed
experimental equilibria. These ongoing simulations also feature the
effect of equilibrium electric field, an important experimentally avail-
able tool. Other future physics development priorities include parallel
sheath boundary conditions and electromagnetic effects. In addition,
with the upcoming exascale computing platforms in mind, upgrades
for GPU acceleration using OpenACC directives are ongoing.
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APPENDIX: FIELD-ALIGNED MESH OPERATION

BENCHMARKS

A. Grid operations

Using test functions, comparisons are made for the mesh oper-
ations in the field-aligned and regular meshes. The results for the
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field-aligned mesh operations are from ANC directly while the
results from the regular mesh operations are from Python using the
NumPy library.

In Figs. 10(a) and 10(b), the partial derivatives with respect
to the radial and axial directions, respectively, are shown. These
partial derivatives are used for the calculation of the electric field
from the self-consistently solved electrostatic potential, which is
then used to push simulation particles. The field-aligned mesh
operations agree with the regular mesh operations both qualita-
tively and quantitatively.

In ANC, either the full Laplacian or the perpendicular
Laplacian can be used to solve for the self-consistent electrostatic
potential from the quasi-neutrality equation. In Fig. 10(c), the full
Laplacian is shown. The field-aligned mesh operation agrees with
the regular mesh operations both qualitatively and quantitatively.
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FIG. 10. Comparisons of three different mesh operations are shown: (a) the partial derivative with respect to the radial coordinate R, (b) the partial derivative with respect to
the axial coordinate Z, and (c) the Laplacian. A test function of form f(i, S) o< cos(ky ) cos(ksS) is shown in the real space mesh (top left) and in the field-aligned mesh
(top right). A mesh operation is calculated in the cylindrical mesh and is shown in the real space mesh (mid-left) and in the field-aligned mesh (mid-right). The same mesh
operation is calculated in the field-aligned mesh and is shown in the real space mesh (bottom left) and in the field-aligned mesh (bottom right).
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In general, the ANC field-aligned mesh operations also impose
zero on the machine axis. This causes a slight discrepancy in the com-
parison of the partial derivative with respect to the axial position.

B. Mesh to particle interpolation

Using a test function for the electric field, comparisons are made
for electron dynamics. The “grid interp.” results are updated using
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electric field components interpolated onto particles using field-aligned
mesh operations while “direct calc.” results are updated using electric
field components directly calculated from the analytic test function.
Three different grid resolutions are used in the case of “grid interp.,”
with the cell shapes being shown in corresponding colors in (a) of
Fig. 11. Electrons are tracked near the turning points of the core where
the most concern may be for stretched meshes; these electrons cross
multiple simulation cells in this benchmark.
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FIG. 11. Comparisons of electron dynamics are shown: (a) R-Z trajectory in the poloidal plane with corresponding simulation meshes shown in matching colors, (b) parallel vs
perpendicular velocity, (c) toroidal phase space, and (d) weight evolution over time. Four different tracked electrons (ip is the tracking label of the particle) are shown for the

one direct calculation case and the three mesh-to-particle interpolation cases.
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In Fig. 11, the results of these comparison tests are shown: (a)
poloidal plane R-Z trajectories of electrons near or at the turning
point of the FRC core; (b) velocity space, parallel and perpendicular
relative to the magnetic field, which shows that the electrons have
not changed in energy much during this time (magnitude stays
almost constant here); (c) toroidal phase space, which shows a slight
toroidal drift; and (d) the delta-f weight evolution over time. The
grid cells are also plotted in the corresponding color for context
(not shown for the direct calculation case since it does not matter),
and “ip” is the tracking label of the particle. Only a subset of the
electrons tracked are shown to avoid confusion.

With respect to interpolation from field-aligned mesh to par-
ticles, note that position updates are indirectly affected via velocity,
the velocity updates are directly affected, and the delta-f weight
updates are both directly affected and indirectly affected via position
and velocity. The R-Z trajectory, the azimuthal phase space, and the
velocity space are all indistinguishable (107°%-10"° % difference for
positions and 10~4%-10~2 % difference for velocities, when compared
to the direct calculation). On the other hand, the delta-f weight has
some noticeable differences (0.1% — 1% difference, when compared
to the direct calculation) since it is more sensitive to the velocity and
position differences. In all aspects, these differences decrease as the
grid resolution is increased as expected. For this particular case of this
test function, no significant change is seen when increasing the num-
ber of Y cells in the core from 60 to 90.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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