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Abstract
Gyro-average is a crucial operation to capturing the essential finite Larmor radius (FLR) effect
in gyrokinetic simulation. In order to simulate strongly shaped plasmas, an innovative
multi-point average method based on non-orthogonal coordinates has been developed to
improve the accuracy of the original multi-point average method in gyrokinetic particle
simulation. This new gyro-average method has been implemented in the gyrokinetic toroidal
code (GTC). Benchmarks have been carried out to prove the accuracy of this new method. In the
limit of concircular tokamak, ion temperature gradient (ITG) instability is accurately recovered
for this new method and consistency is achieved. The new gyro-average method is also used to
solve the gyrokinetic Poisson equation, and its correctness is confirmed in the long-wavelength
limit for realistically shaped plasmas. The improved GTC code with the new gyro-average
method is used to investigate the ITG instability with EAST magnetic geometry. The simulation
results show that the correction induced by this new method in the linear growth rate is more
significant for short-wavelength modes where the FLR effect becomes important. Due to its
simplicity and accuracy, this new gyro-average method can find broader applications in
simulating shaped plasmas in realistic tokamaks.

Keywords: gyrokinetic simulation, particle-in-cell, drift wave instability,
verification and validation, gyro-average method, shaped plasmas
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1. Introduction

First-principles gyrokinetic simulation has been widely adop-
ted to study low-frequency micro instabilities and turbulences
in magnetic fusion plasmas [1, 2]. The gyro-average trans-
formation, a frequent operation used in gyrokinetic simula-
tion, is a procedure to average physical quantities such as
electric potential and charge density along the cyclotron orbit
[3–5]. To preserve the finite Larmor radius (FLR) effect, the
gyro-average needs to be accurate enough to achieve high
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numerical fidelity. As one of the numerical algorithms for
performing gyro-average, the multi-point average method has
been developed and used extensively in gyrokinetic particle
simulation [1, 6].

Simulations with realistic tokamak geometry, which is
usually characterized by features such as up–down asym-
metry and non-circularity, are crucial to interpret and pre-
dict various complicated tokamak experimental phenomena
[7–9]. However, such geometric characteristics will lead to
a large deviation from regular grid distribution and coordin-
ate orthogonality. These deviations bring significant numerical
challenges to the multi-point average method in gyrokinetic
simulation.
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In this article, an innovative multi-point method based on
non-orthogonal magnetic coordinates has been developed and
implemented in the global gyrokinetic toroidal code (GTC)
[2]. This newmethodmodifies the original multi-point average
procedure in GTC to accommodate arbitrary magnetic geo-
metry with sufficient concision and high accuracy, and cap-
tures more precisely the FLR effect that is important in com-
puting linear eigenmodes and nonlinear turbulence [1]. Due
to its simplicity and accuracy, the new method may be imple-
mented in other gyrokinetic codes for simulating experimental
plasmas.

Let us detail the physical quantities and equations involving
gyro-average in the gyrokinetic particle simulation. Generally,
two classes of equations involve this gyro-average proced-
ure, namely the Maxwell equations to solve for self-consistent
electromagnetic fields and equations of motion to push gyro-
center in phase space. To evolve the position and velocity of
the gyrocenter, the gyro-averaged magnetic and electric fields
are needed in the equations of motion, e.g. the gyro-averaged
electrostatic potential ϕ̄ is defined as

ϕ̄(R) =
1
2π

ˆ
ϕ(x)δ(x−R−ρ)dxdφ (1)

where R is the gyrocenter position, x is the particle posi-
tion, and φ stands for the gyrophase angle. The Larmor radius
ρ≡−v⊥ × b̂/Ω with b̂≡ B/B and Ω≡ qB/mc. In the elec-
trostatic limit, the Maxwell equations can be simplified to
be the gyrokinetic Poisson equation, which is essentially the
quasi-neutrality condition with the validity limit of k2⊥λ

2
d ⩽ 1

[6, 10, 11]:

τ

λ2d
(ϕ− ϕ̃) = 4πe(δn̄i − δne), (2)

where τ ≡ Te/Ti, λd ≡
√
Te/4πn0e2 is the electron Debye

length, n0 is the equilibrium particle density, and the electro-
static potential ϕ is the unknown to be solved for. In equation
(2), δn̄i and δne are the gyro-averaged ion and electron densit-
ies, respectively, with δn̄i defined as

δn̄i =
1

2πn0

ˆ
δfi(R,µ,v∥)δ(R− x+ρ)dRdµdv∥dφ, (3)

where µ is the magnetic moment, v∥ is the parallel velo-
city, and δfi is the perturbed ion gyrocenter distribution. δne
employs the same definition of equation (3) but δfi is replaced
by δfe. Note that the electron gyro-radius is negligibly small
and drift kinetics is usually assumed for the electron in the sim-
ulation. In equation (2), ϕ̃ is the second gyro-averaged poten-
tial or double gyro-averaged potential, and is defined as

ϕ̃(x) =
1
2π

ˆ
ϕ̄(R)FM(R,µ,v∥)δ(R− x+ρ)dRd µdv∥dφ

(4)

whereFM is theMaxwellian distribution of the gyrocenter, and
the gyro-averaged electric potential ϕ̄(R) can be calculated by
equation (1).

As discussed, the gyro-average transformation needs to be
performed on the electromagnetic fields and charge density to
push the gyrocenter in the phase space, and a second gyro-
average transformation needs to be performed on the elec-
trostatic potential to solve for the electromagnetic fields via
the Poisson equation. Such gyro-averaged quantities can be
calculated in the wavenumber (k) space. However, the spec-
tral method is most conveniently implemented in the flux-tube
simulations, which drops off the background profile effects
and is essentially a local approximation [6]. The multi-point
average method (typically four-point) has been developed to
evaluate the gyro-averaged quantities numerically, which is
usually more advantageous in real space for global simula-
tions [1, 6]. For the second gyro-average, there is another
approach based on the Padé approximation [12], i.e. evaluating
the second gyro-averaged potential ϕ̃ by ϕ̃= ϕ/(1− ρ2i∇2

⊥).
The Padé approximation can change the double integral oper-
ation of ϕ̃ to be a second-order differential form and thus avoid
the complicated multi-point average procedure, which can be
used to solve the gyrokinetic Poisson equation for strongly
shaped plasmas [9].

In practice, the multi-point average method could be more
accurate than the Padé approximation for short wavelength
modes with k2⊥ρ

2
i ⩾ 1 [6]. However, the original multi-point

method implemented in the GTC code is designed for ortho-
gonal or weakly non-orthogonal coordinate systems [6]. It
remains a bottleneck for the multi-point average method to
accurately simulate strongly shaped plasmas.

In this paper, we present an innovative multi-point average
method based on non-orthogonal magnetic coordinates, which
can simulate arbitrarily shaped plasmas. This new method
is implemented in the GTC code and then carefully bench-
marked. The GTC simulation results show that the correc-
tion induced by this new method does make a difference on
the ITG growth rates for the short wavelength modes where
the FLR effect becomes important. The remainder of this
paper is organized as follows. The necessity of finding a
new gyro-average method for strongly shaped plasma is intro-
duced in section 2. The scheme for the new multi-point gyro-
average method is illustrated in section 3, then we present
two examples to benchmark this new gyro-average method in
section 4. The new gyro-average method is applied to study
the ITG modes in section 5. Section 6 summarizes this paper
and discusses possible future work.

2. Original four-point average method

In this section, we review the original four-point average
method based on the magnetic coordinate that is implemen-
ted in the GTC code.

The magnetic flux coordinates have been widely used for
describing the equilibrium magnetic field of toroidal confine-
ment systems [13] in gyrokinetic simulations. A particular set
of magnetic flux coordinates, namely the Boozer coordinates
(ψ,θ,ζ) [14], is chosen in the GTC code to push particles and
solve for electromagnetic fields, where ψ is the poloidal flux

2
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Figure 1. Example of mesh grid distribution on (a) the (ψ,θ) plane and (b) the (R,Z) plane for typical EAST shaped plasmas (Shot #
077741.03500).

or radial-like variable, θ is the poloidal angle, and ζ is the tor-
oidal angle. With the Boozer coordinates, we can conveniently
define a field-aligned mesh that captures the essential flute
mode structure of turbulence with k∥ ≪ k⊥ and requires only
a few dozens of toroidal grids to accelerate field calculation by
a factor varying from several tens to hundreds [9].

The next two approximations have been employed in
GTC code without losing accuracy and greatly facilitate the
numerical implementation of the four-point average proced-
ure for large aspect ratio tokamaks. First, the toroidal angle
in the Boozer coordinates ζ is approximated to the toroidal
angle in the cylindrical coordinates (R,ϕt,Z) with ζ ≈−ϕt,
since the difference function ν(ψ,θ)≡ ζ +ϕt turns out to be
of order O

(
ε2
)
for tokamaks with the inverse aspect ratio

ε= r/R0 ≪ 1. Next, the perpendicular plane is approximated
to the poloidal plane, since the intersection angle δ between
them is second-order small in ε, i.e. δ∼ O

(
ε2/q2

)
, which

comes from evaluating cosδ = B ·∇ζ/B |∇ζ|. For example,
it is evaluated numerically that the intersection angle δ is no
more than 0.089 for the typical EAST equilibrium, as is shown
in section 5.

The original four-point average method has been widely
used and well benchmarked for weakly shaped plasma [6, 9].
However, the strong shaping of the magnetic flux could lead
to significant deviation against the implicit assumption in
the original four-point scheme. Here, we illustrate this devi-
ation and necessity for improvement using a single-null-
divertor equilibrium configuration of the EAST tokamak (Shot
# 077741.03500). Figure 1 shows GTC’s field mesh setting
on the toroidal plane with ζ = 0. The GTC code uses evenly

spaced radial grids at θ = 0, as is shown by the black straight
line in figure 1(b). In the poloidal direction, the grid size∆θ is
uniform on each flux surface while maintaining r∆θ ∼∆r, as
is shown in figure 1(b). The corresponding grid setting on the
(ψ,θ) plane is shown in figure 1(a). The relatively regular grid
distribution on the (ψ,θ) plane offers great convenience for
numerical operations such as field interpolation and particle
deposition.

To illustrate the original four-point average method, we
consider one particular field point A with the coordinates
(ψ,θ) in figure 1 as the gyrocenter position for gyro-average.
In figure 1(a), point B is the poloidal grid next to the field point
A along constantψ, and Point C is the intersection point on the
next flux surface along constant θ. In the original method, the
four points selected for gyro-average are located at (ψ± δψ,θ)
and (ψ,θ± δθ), which are supposed to center at (ψ,θ) with a
radius ρi. The difference δψ and δθ are calculated by the fol-
lowing relationship:

δψ =
ρi
lAC

ψAC, δθ =
ρi
lAB

θAB (5)

where ψAC = ψC−ψA, θAB = θB− θA. Using the constructed
B-splines in GTC [9], the (R,Z) coordinates can be calculated
for the selected four points. lAC and lAB can be calculated by√
(RA−RC)

2
+(ZA−ZC)

2 and
√
(RA−RB)

2
+(ZA−ZB)

2,
respectively.

After calculating δψ and δθ, we present the selected four
points (ψ± δψ,θ) (ψ,θ± δθ) in figure 2 by four red square
markers. It can be seen that these four squares are close to
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Figure 2. Demonstration of the four-point average at the field grid point A: the black circles are the exact points in the four-point average
method, the red squares are from the original gyro-average method, and the blue crosses are produced by the improved gyro-average
method. The two solid lines are the contour lines for constants ψ and θ, respectively.

equally spaced points on the circle centered about the field
point M, as is shown in figure 2(a), but they are far away from
equally spaced points on the circle centered about the field
position A, as shown in figure 2(b). To figure out why this
inaccuracy arises, we draw two contour lines with constants
ψ and θ, respectively. These two lines intersect at the points
M and A, respectively, as is shown by figures 2(a) and (b). The
constant ψ line is almost orthogonal to the constant θ line in
figure 2(a) but far away from the orthogonal in figure 2(b). It is
the non-orthogonality of the Boozer coordinate (ψ,θ), or the
non-orthogonality of ∇ψ and ∇θ, that causes the uneven dis-
tribution of the selected four points on the gyro-average circle.
We have tested various field points in the whole poloidal plane
and found that the selected four points are much more inaccur-
ate for gyro-average in the plasma edge than that in the plasma
core, since the non-orthogonality of the Boozer coordinates are
more severe in the plasma edge.

To quantify how much inaccuracy the original four-point
method can bring by the coordinate non-orthogonality, we
define α as the intersection angle between ∇ψ and ∇θ, ran-
ging from 0 to π, and α can be calculated by

cosα=
∇ψ ·∇θ
|∇ψ| |∇θ|

. (6)

Then we show the intersection angle α in the 2D contour plot
of figure 3. As can be seen, the angle α is exactly equal to π/2
at θ = 0 where the point M is located. About 45% of the whole
area has a moderate angle deviation (less than 30%) from π/2.
The derivation is more severe in those areas close to the plasma
edge, as is shown by figure 3. In some edge areas, the deviation
could be even larger than 60%.

3. Improved gyro-average for shaped plasmas

A new numerical method is highly in demand to accommodate
this coordinate non-orthogonality for the strongly shaped

Figure 3. Contour plot for the intersection angle α on the poloidal
plane with the contour lines at α = 2π/6 and α = 4π/6 shown by
the dashed black lines.

plasmas. The key idea of this new method is to locate the
accurate positions for the gyro-average points by includ-
ing the non-orthogonality between the radial and poloidal
coordinates. The positions of these gyro-average points pro-
duced by the new method are given by (ψ+∆ψj,θ+∆θj),
with
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Figure 4. Illustration of the improved gyro-average method based
on non-orthogonal coordinates.

∆ψj = sin

(
2πj
N

+
α

2

)
δψ

sin(α)
,

∆θj = sin

(
2πj
N

− α

2

)
δθ

sin(α)
, ( j= 1,2, . . . ,N), (7)

where the intersection angle α is given in equation (6), and δψ
and δθ are defined by equation (5). N could be 4, 8, etc, cor-
responding to the number of points used for the gyro-average.
Assuming that N= 8, the schematic diagram for this new
eight-point average method is shown in figure 4. Two con-
tour lines for constants ψ and θ are shown by the two black
solid lines. The vectors ∇ψ and ∇θ are marked in figure 4,
which are perpendicular to their contour lines, respectively.
As is shown in figure 4, the new method produces eight points
systematically by (ψ+∆ψj,θ+∆θj), j= 1,2 . . .8.

The four-point or sixteen-point average can be produced
by the same strategy. For example, we can select four points
from the eight points in figure 4, namely the points with index
j = 2, 4, 6, 8, to carry out the four-point average procedure,
as is shown in figure 2 by the blue crosses. By comparison,
we also show the exact points by a brutal force calculation in
figure 2 using black circles. It can be seen that the selected four
points from the improved gyro-average method well match the
exact four points. To verify the accuracy and generality of the
new method, we tested various field points in different equi-
librium magnetic configurations, such as China Fusion Engin-
eering Test Reactor. The correction effect of the new method
is similar to that presented in figure 2.

One may argue that the contour lines for constants ψ and
θ may not be straight lines within the range of one gyro-
orbit and thus numerical inaccuracy could arise. However, for
typical fusion plasmas, the ratio between gyro-radius and the
curvature radius of the field line is of the orderO(ρi/R0). Thus,
this new method can be used to improve the original gyro-
average operation in GTC with satisfactory accuracy. In addi-
tion, this improved gyro-average method possesses a number
of highly desirable features such as systematic treatment of

points and minimal modifications to the original GTC code,
which make this new method appealing not only to GTC but
also to other gyrokinetic codes.

4. Benchmarks for improved gyro-average method

In this section, we implement the improved gyro-average
method in the GTC code and verify its effectiveness with two
examples. First of all, the improved four-point method should
conform with the original four-point average method in the
limit of concentric circular tokamak where the original pro-
cedure is still accurate. Secondly, it is crucial to verify the
accuracy of the improved four-point method by solving the
classical Poisson problem−∇2

⊥ϕ= δn correctly with realistic
geometry.

4.1. Consistency check: concentric circular geometry

For the concentric circular magnetic field, the magnetic sur-
face is determined by the equations

R= R0 + rcosθg (8)

Z= rsinθg. (9)

The Boozer coordinates (ψ,θ,ζ) are constructed analytic-
ally as follows: the poloidal magnetic flux ψ can be determ-
ined by dψt/dψ = q(ψ) with the toroidal magnetic flux ψt =
r2/2. The Boozer poloidal angle θ can be determined by
θ = θg− rsinθg, and the Boozer toroidal angle ζ can be
determined by ζ =−ϕt. Nowwe can calculate the intersection
angle α in equation (6). This angle turns out to be not far away
from π/2, with a deviation of less than 5% in most areas and
a maximum value of 17% for the large aspect ratio tokamak
with r/R< 0.3. As we have discussed in section 2, the main
inaccuracy for the original four-point average method comes
from the non-orthogonality between ∇ψ and ∇θ. Since the
non-orthogonality is weak in this case, the inaccuracy is insig-
nificant according to our analysis. Therefore, the improved
four-point average method should conform with the original
scheme.

To confirm our conjecture, we use the Cyclone Base para-
meters in [15] to carry out a global gyrokinetic simulation via
the GTC code for ion temperature gradient (ITG) instability,
with the concentric circular geometry defined in equations (8)
and (9) for the equilibrium magnetic field. The background
temperature and density are set as Te = Ti = 2.223keV and
ni = ne = 7.9× 1019 m−3, respectively. The inverse aspect
ratio is set as a/R0 = 0.36 with the major radius R0 = 0.835 m,
and the simulation domain is set as r⊂ [0.1a,0.9a]. At r= a/2
flux surface, we have the following local simulation para-
meters: r/R0 = 0.18, safety factor q= 1.4, magnetic shear
s= q ′r/q= 0.78, density gradient R0/Ln = 2.22, and ion or
electron temperature gradient R0/LT = 6.92, where LT and Ln
are the temperature and density gradient scale lengths, defined
by LT ≡−(dlnT/dr)−1 and Ln ≡−(dlnn/dr)−1. Here, we
focus on the ion physics and plasma-shaping effect, and the
electrons are assumed to be adiabatic for simplicity.
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Figure 5. Linear growth rate γ and real frequency ωr of ITG as
functions of the poloidal wavenumber in the concentric circular
tokamak.

The linear simulation results on the ITG dispersion are
demonstrated in figure 5. The linear dispersion relation from
this improved gyro-average method matches that from the ori-
ginal gyro-average method in both growth rate and real fre-
quency, with a difference of less than 5%. Thus, we confirm
that the improved gyro-average method is consistent with the
original gyro-average method in the limit of the concentric cir-
cular tokamak, as it should be.

4.2. Gyrokinetic Poisson solver: EAST magnetic geometry

Next, we come to solve the gyrokinetic Poisson equation
(equation (2)) in the long-wavelength limit with a typic-
ally shaped plasma equilibrium from the EAST tokamak
experiments. Note that the gyrokinetic Poisson equation
becomes two-dimensional in the limit of k∥ ≪ k⊥ and
becomes the standard Poisson problem −ρi2en0∇2

⊥ϕ= Tiδn
since the approximation ϕ− ϕ̃≈−ρ2i∇2

⊥ϕ holds in the long-
wavelength limit.

Various benchmarks [6, 9] on the four-point average
method have been carried out in the large aspect ratio circu-
lar cross-section limit since the Poisson problem is essentially
a Bessel problem in this limit and its solutions are known ana-
lytically. However, such experience cannot be easily applied
to the realistically shaped geometry where the new method
is expected to make a notable difference. A new numerical
scheme has been designed to verify the accuracy of the Pois-
son solver with improved four-point average by the follow-
ing procedure: (a) Given a known analytic function expres-
sion F(ψ,θ); (b) calculate the charge density δn numerically
by δn≡−∇2

⊥F; (c) use the resulting δn as the source to the
Poisson equation and solve the Poisson equation−∇2

⊥ϕ= δn
by employing the four-point average method; (d) compare the
calculated ϕ with the original function F(ψ,θ) and compute
the error by their difference. If F≈ ϕ or the error is sufficiently
small, we can conclude that this four-point average method is
sufficiently accurate. As can be seen, an analytical solution can

be conveniently established in the long wavelength, but not in
the short wavelength, because the calculation of charge density
cannot be simplified to the form in step (b).

In this benchmark case, the aforementioned EAST equilib-
rium is used for the shaped plasma. The specific benchmark
function is given by: F(ψ,θ) = (ψ−ψ0)

3(ψ1 −ψ)3 cos(mθ)
withm= 6, whereψ0 = ψ(r= 0.55a) andψ1 = ψ(r= 0.95a)
are the poloidal flux at the inner and outer boundaries,
respectively.

The resulting charge density δn is shown in figure 6(a). The
prescribed function F(ψ,θ) is shown in figure 6(b), which is
also the analytic solution of the Poisson equation−∇2

⊥ϕ= δn.
As can be seen, the difference between δn and F(ψ,θ) is sig-
nificant. The numerical solution to the Poisson equation is
demonstrated in figure 7(c) where the original four-point aver-
age method is used, and in figure 7(d), where the improved
four-point average method is used. The numerical solution
in figure 7(d) is almost identical to the analytical solution in
figure 7(b), which proves the accuracy of the improved four-
point average method. However, the numerical solution in
figure 7(c) differs from the analytical solution in figure 7(b),
and its 2D pattern is more like that of the source term δn in
figure 7(a).

For a more quantitative comparison, we take out the data
along the black solid line in figures 6(b)–(d), then compare
them in a one-dimensional plot in figure 7, where the black
line represents the analytical solution F, the blue circle stands
for the numerical solution using the improved four-point aver-
age method, and the dashed red line represents the numer-
ical solution using the original four-point average method. As
can be seen in figure 7, there is a notable difference between
the red dashed line and the black solid line, especially on the
left or center of the figure. We further note that this differ-
ence exists not only on this particular line but also on the
whole poloidal plane, which suggests that the original four-
point average needs to be improved for better accuracy. How-
ever, the difference is almost indistinguishable between the
blue circles and black solid lines, which verifies the high accur-
acy of the improved four-point average method. By scanning
the whole poloidal plane, we find that the numerical solution
using the improved four-point method matches the exact ana-
lytic solution very closely. The slight difference between them
comes from the difference in numerical operator. The oper-
ator for the four-point average method in this benchmark is
0.7194J20(0.9130k⊥ρi)+ 0.2806J20(2.2339k⊥ρi)− 1, and the
exact operator we wanted is (k⊥ρi)2. In the long wavelength
limit k⊥ρi → 0, the two operators can be considered the same.
However, there is always a difference between these two oper-
ators when k⊥ρi is finite, albeit it is small when k⊥ρi is small.

Combining both benchmarks in this section and the verific-
ation in section 3, we conclude that the improved four-point
average method can be utilized to significantly improve the
gyro-average procedure to obtain an accurate gyro-averaged
potential as well as ion density, which is crucial for the PIC
simulation to simulate shaped plasmas because the inaccur-
acy in the gyro-average can accumulate at each time step and
may substantially modify the linear and nonlinear simulation
results.
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Figure 6. (a) Density fluctuation δn on poloidal plane. (b) Given analytic function F on poloidal plane. (c) Numerical solution ϕ from
original four-average method. (d) Numerical solution from improved four-average method.

5. ITG mode for EAST geometry

In this section, we carry out the ITG simulation with adia-
batic electrons using the aforementioned EAST equilibrium
(shot# 077741.03500). The equilibrium data, such as poloidal
flux ψ(R,Z), poloidal current I, and safety factor q have been
used to construct the equilibrium magnetic field in real space
and determine the Boozer coordinates (ψ,θ,ζ). This shaped
EAST equilibrium has a background magnetic field with up–
down asymmetry and the tokamak parameters B0 = 2.46T,
a= 0.375m, R0 = 1.91m. On the reference flux surface at
the middle of the minor radius, Ti = Te = 1500 keV and n=
4.0× 1019m−3. For simplicity, we choose the Cyclone base

case parameters R0/Ln = 2.22, R0/LT = 6.92 for the plasma
gradients.

The intersection angle between the Boozer coordinates ψ
and θ has been computed in figure 3, and themoderate coordin-
ate non-orthogonality suggests that the improved gyro-average
method can play an important role according to the preceding
discussions.

The gyro-average procedure is associated with the FLR
effect, an essential kinetic effect in magnetized plasmas. The
more accurate we treat the gyro-average, the more accurate
we calculate the FLR effect. It is known that the FLR effect
plays an important role in determining the ITG growth rate,
especially for higher n modes [16]. Therefore, we expect that

7
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Figure 7. Comparison of solutions along the black line in figure 6.

Figure 8. The linear growth rate γ and real frequency ωr of ITG as
functions of the poloidal wavenumber in EAST tokamak.

with the application of the improved gyro-average method, the
correction to the gyro-average procedure can make significant
changes for the ITG growth rates, especially for those high n
modes.

The GTC linear ITG simulation results are shown in
figure 8, where the linear growth rate and frequency vary
with poloidal wavelength kθρi. In this figure, the blue color
represents simulation results using the improved four-point
average method, while the red color represents simulation
results using the original four-point average method; case 1
and case 2 represent two different radial domains used in the
simulation. As discovered in section 2, the coordinate non-
orthogonality varies in the poloidal plane. In order to demon-
strate its consequence on the linear instability, we artificially
set the radial simulation domain: r⊂ [0.55a,0.95a] for case 1,
and r⊂ [0.30a,0.70a] for case 2.

As can be seen in figure 8, for either case 1 or case 2, the
linear growth rate using the improved four-point average con-
verges to that using the original four-point average in the long-
wavelength limit. With the poloidal wavenumber increasing,
the FLR effect becomes more important, and the difference
for linear growth rate between the two gyro-average meth-
ods becomes larger. This trend is demonstrated in figure 8 as
well. The difference for real frequency is mainly determined
by the diamagnetic frequency ω*, which does not contain the
FLR effect. That is why the real frequency is indistinguish-
able between different gyro-average methods. However, the
real frequency for case 1 (outer radial domain) is generally
larger than that for case 2 (inner radial domain). This is due
to the fact that the average magnetic field for case 1 is smal-
ler than that for case 2 and thus the corresponding diamagnetic
frequency is larger for case 1 when the most unstable area out-
side the middle plane is considered.

6. Conclusion

In this paper, we have found the main source of inaccur-
acy introduced by the original gyrophase-average procedure
in a realistic tokamak geometry, i.e. the non-orthogonality
of the Boozer coordinates [6, 9], and developed an innov-
ative multi-point average method to improve the comput-
ing accuracy. The effectiveness and accuracy of this new
method is demonstrated by a number of benchmark cases
such as consistency check and solving the gyrokinetic Pois-
son equation. For the conventional ITG instability case, we
find that the improved four-point average method calculates
the FLR effect more accurately, demonstrated by the differ-
ence of the linear growth rates in the short-wavelength range
between this new four-point average method and the original
one. Based on the improved multi-point average method, we
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plan to simulate turbulence physics in spherical tokamak and
the edge of tokamak, where this new method can find broader
applications for its usefulness. In addition, the current work
is focused on electrostatic turbulence simulation. The electro-
magnetic gyrokinetic simulation for shaped plasmas is another
interesting direction to explore with this new gyro-average
method.
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