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ABSTRACT

Kinetic ballooning modes (KBMs) are widely believed to play a critical role in disruptive dynamics as well as turbulent transport in
magnetic fusion and space plasmas. While the nonlinear evolution of the ballooning modes has been proposed as a mechanism
for “detonation” in various scenarios such as the edge localized modes in tokamaks, the role of the kinetic effects in such
nonlinear dynamics remains largely unexplored. In this work, global gyrokinetic simulation results of KBM nonlinear behavior are
presented. Instead of the finite-time singularity predicted by ideal magnetohydrodynamic theory, the kinetic instability is shown
to develop into an intermediate nonlinear regime of exponential growth, followed by a nonlinear saturation regulated by sponta-
neously generated zonal fields. In the intermediate nonlinear regime, rapid growth of localized current sheets, which can induce
magnetic reconnection, is observed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5066583

Ballooning instability (or its astrophysical counterpart, the
Parker instability) in a magnetized plasma is driven by local unfa-
vorable magnetic curvature and a pressure gradient.1 The non-
linear evolution of the instability has been a subject of great
interest for a diverse range of eruptive phenomena such as sub-
storms in the Earth’s magnetotail2,3 and edge-localized modes
(ELMs)4 in toroidal fusion plasmas.5,6 Theoretical studies of non-
linear ideal magnetohydrodynamic (MHD) ballooning modes
predict explosive nonlinear growth.7 Finger-like structures
develop, forming a front with a steep pressure gradient which
can nonlinearly destabilize the mode, and result in a finite-time
singularity (“detonation”).8 However, attempts at simulating
such an instability using the full MHD equations have not suc-
ceeded in realizing a finite-time singularity. While finger-like
structures are indeed observed,9 the mode is seen to grow in the
nonlinear regime exponentially with its linear growth rate. A new
asymptotic regime, called the “intermediate” nonlinear regime of
exponential growth, has been formulated analytically to account
for these simulations.10 During the intermediate regime, the mode
structure becomes sufficiently narrow that the validity of the
MHD model is questionable. In collisionless plasmas, kinetic
effects intervene. This leads to considerations of the kinetic bal-
looning mode (KBM) which is recognized to play an important
role in the stability and transport of fusion plasmas near the
plasma edge,11,12 as well as substorm dynamics in the Earth’s

magnetotail.13,14 However, the nonlinear dynamics of the KBM in
toroidal plasmas is not well understood. Flux-tube gyrokinetic
simulations of the KBM arrived at contradictory conclusions:
zonal flows play a dominant role in KBM saturation inGENE simu-
lations15 but not in GKV simulations where the zonal flows are
seen to be much weaker than that in the ion-temperature-gradi-
ent (ITG) turbulence.16,17 KBM saturation requires external flow
shear in GYRO simulations18 beyond a critical beta value. In
BOUTþþ gyrofluid simulations,19 KBM saturates via profile
relaxation.

Here, we demonstrate from a global gyrokinetic particle-
in-cell simulation that after a linear regime, the KBM evolves
into an intermediate regime, followed by a saturated nonlinear
regime. In addition to features that are similar to its ideal MHD
counterpart,9 the kinetic intermediate regime also exhibits qual-
itatively different features. The most important one is that the
kinetic electromagnetic dynamics leads to the spontaneous
generation of zonal flow (flux-surface-averaged electrostatic
potential hd/i) and zonal current (flux-surface-averaged vector
potential hdAki). When the zonal flow shear exceeds the linear
growth rate, zonal flow shearing suppresses the nonlinear insta-
bility which in turn self-regulates the zonal fields (the zonal flow
and the zonal current), leading to a saturated nonlinear regime.
In the kinetic intermediate regime, thin current sheets develop
near the mode rational surfaces, which can eventually exhibit
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tearing instability, but the resistive tearing mode growth rate
appears to be too slow to have a strong effect on KBM nonlinear
saturation.

Gyrokinetic simulation of KBM.—In the simulations using
the gyrokinetic toroidal code (GTC),20 ions are treated by the
gyrokinetic Vlasov equation, while electrons are described using
the nonlinear fluid equations: the electron perturbed density
dne is calculated by time-advancing the continuity equation21

including the diamagnetic (pressure gradient) term which pro-
vides the interchange drive, and the electron parallel flow duke is
calculated by inverting the parallel Ampere’s Law.22 The gyroki-
netic Poisson’s equation is solved to obtain the perturbed elec-
trostatic potential d/. For the completeness of the model, the
parallel magnetic perturbation dBk

23 and the equilibrium current
density,21 which provide an additional linear drive, are kept in
the simulation. The parallel vector potential dAk ¼ dAadi

k þ dAna
k

is solved for the adiabatic and non-adiabatic parts. Integrating
the electron drift kinetic equation to the momentum order, we
can derive the linear Ohm’s law for adiabatic dAadi

k and the non-
linear Ohm’s law24 for non-adiabatic dAna

k as follows:

@dAadi
k

@t
¼ c

B0
B0 � rd/ind (1)
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where B0 is the equilibrium magnetic field and dB? is the per-

turbed perpendicular magnetic field. Here, d/ind ¼ Te
e
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@n0
@w0
Þ � d/ is the inductive potential, dwadi is the adiabatic

component of the perturbed poloidal flux, defined as rdwadi

�ra ¼ rdAadi
k � B0=B0; a ¼ qðw0Þh� f is the field-line label

with the Boozer poloidal angle h and toroidal angle f, and the
safety factor q(w0) is a function of the equilibrium poloidal flux
w0. Also, Te is the electron equilibrium temperature, n0 is the
plasma equilibrium density, and Pe0 ¼ n0Te is the electron equi-
librium pressure. The first term on the right-hand-side of Eq. (2)
represents the so-called nonlinear ponderomotive force25 in the
fluid electron momentum equation. The nonlinear drive from
finite dBk is obtained in the second and third terms, which are
small compared with the nonlinear ponderomotive drive due to
the smallness of b. A complete form of the generalized Ohm’s
law is presented in Ref. 24. In future work, if we consider colli-
sionless micro-tearing mode dynamics or cases with large flow
at the plasma edge,26 the terms associated with electron inertia
in the generalized Ohm’s law need to be kept. The flux-surface-
averaged component of the Poisson’s equation and Eq. (2) are
solved for the zonal flow and the zonal current, respectively.

In the simulations, Cyclone Base Case parameters are used
for the background plasmas: the major radius is R0 ¼ 83.5 cm,
the inverse aspect ratio is a/R0 ¼ 0.357. At r¼0.5a, the plasma
parameters are B0 ¼ 2.01T, Te ¼ 2223eV, R0/LT ¼ 6.9, R0/Ln ¼

2.2, and q¼ 1.4. The first order s–a model21 is used for the equilib-
rium magnetic field. With these parameters and be ¼ 2%, the
KBM is linearly unstable.23,27 In the linear simulations for a single
n¼ 10 toroidal mode, the mode exhibits ballooning mode char-
acteristics, with real frequency xlin

r ¼ 0:77cs=a and growth rate
clin ¼ 0.63cs/a. In the nonlinear simulations, we simulate n¼ 10
toroidal mode (keeping all the poloidal harmonics m), and its
nonlinear interaction with the zonal mode (m¼0, n¼0). The
GTC global field-aligned mesh has 32, 400, and 200 grids in the
parallel, poloidal, and radial direction, respectively. Convergence
studies show that the physical results in the linear and nonlinear
simulations are not sensitive to the grid size, time step size, or
number of particles per cell.

Intermediate regime and saturation by zonal fields.—A time
history for the nonlinear KBM simulation is shown in Fig. 1. The
perturbed electrostatic potential, parallel vector potential, and
parallel magnetic field are normalized as ed/=Te; cdAk=vAB0R0,
and dBk=B0, respectively, where vA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0mi
p

. The per-
turbed electrostatic potential d/10,14, the parallel vector poten-
tial dAk10;14, and the parallel magnetic field dBk10;14 of the
dominant (10, 14) mode are measured at the mode rational
surface with q¼ 1.4 at the center of the simulation domain. The
zonal flow hd/i and the zonal current hdAki amplitude are aver-
aged over the simulation domain. Before t � 11a/cs, d/10,14 is
seen to grow more than two orders of magnitudes at the linear
growth rate clin after a brief transient stage. dAk10;14 remains
much lower than d/10,14, as shown by the diamond solid red line
in Fig. 1, since the linear adiabatic component dAadi

k10;14 is zero at
the rational surface, as constrained by Eq. (1). A linear phase
shift between dAk10;14 and d/10,14 (measured at q¼ 1.36) is about

FIG. 1. Time history of the normalized perturbed electrostatic potential d/, parallel
vector potential dAk, parallel magnetic field dBk for the mode (m¼ 14, n¼ 10)
measured at the (14, 10) rational surface, and radial averaged zonal flow and
zonal current amplitude. Comparison of a linear growth at c ¼ clin (grey dashed
line) and the d/ evolution (black solid line) in the intermediate regime is shown in
the zoom-in plot.
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0.8p. dBk is much smaller than d/ due to small plasma b. At
t � 11a=cs; dAk10;14 starts to grow faster than exponential, indi-
cating that the mode evolves into a nonlinear regime where
ponderomotive effects become important. From t � 11a/cs to t
� 15a/cs, d/10,14 and dBk10;14 grow slightly faster than exponential,
with an effective growth rate cint ¼ 1.1clin. A comparison of d/10,14

evolution with a pure linear growth is shown in the zoom-in plot
in Fig. 1. During this regime, the field quantities retain their linear
poloidal mode structure. These features are qualitatively similar
to those in the intermediate regime found in compressible MHD
simulations.9 The growth of dominant field quantities at a rate
faster than the linear growth rate indicates that the perfect can-
cellation between nonlinear destabilization due to enhanced
pressure gradients and stabilization due to field-line bending
that occurs in the ideal MHD dynamics10 does not occur in this
kinetic intermediate regime. We characterize the intermediate
regime of the KBM by the rapid growth of the tearing compo-
nent of dAk at the rational surface (starting around t¼ 11a/cs in
this case), and the close-to-exponential growth of d/ and dBk.
Mode saturation (at around t¼ 15a/cs in this case) indicates the
end of the intermediate regime. In the linear regime and the
intermediate regime, hd/i and hdAki both grow exponentially at
a growth rate czonal �2clin. This suggests that the zonal fields in
KBM are passively generated by three-wave coupling, in con-
trast to the zonal flow excitation by modulational instabilities in
electrostatic ITG, where hd/i grows as a double exponential
function.28

At t � 15a/cs, the dominant mode and the zonal fields satu-
rate nonlinearly. As shown by the diamond dotted blue line in
Fig. 1, the steady state zonal flow amplitude is around 5 times
larger than the dominant d/10,14 component. The ion energy
transport reaches steady state at the gyro-Bohm level with vi
� vGB, as shown by the black solid line in Fig. 2, where
vGB ¼ q2

i vi=a; vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
, and qi ¼ vimic/eB0. The ion heat

conductivity vi ¼ 1
n0rTi

Ð
dvð12miv2 � 3

2TiÞvrdf is defined as the
volume averaged ion energy flux normalized by the local tem-
perature gradient, where vr is the radial drift velocity including
the E�B drift and the magnetic flutter drift.24 In the simulation

where the zonal flow and the zonal current are both artificially
suppressed, the nonlinear ion heat conductivity becomes one
order of magnitude larger, as shown by the diamond red line in
Fig. 2. d/10,14 also saturates at a magnitude around 3 times higher
than that in the case with the zonal fields. In two other simula-
tions where only the zonal current or the zonal flow is artificially
suppressed, d/ and vi saturation levels also see a significant
increase, indicating that both zonal flow and zonal current regu-
late ion energy transport and KBM saturation. A comparison of
the d/ nonlinear poloidal structure between simulations with
and without the zonal fields is shown in Fig. 3. In the simulation
with self-consistently generated zonal flow and zonal current,
the zonal fields break up the radially elongated eigenmode
structure into microscale and mesoscale structures as in Fig.
3(a), reducing radial transport. The radial variation scale length
of the zonal fields is on the order of the distance between the
rational surfaces. In the simulation with the zonal fields artifi-
cially suppressed, although the non-zonal nonlinear E�B term
also shears the mode structure, some macroscale radial fila-
ments of streamers survive. These results show that the KBM
saturation is governed by the zonal fields, including both the
zonal flow and the zonal current. In two additional simulations
where be ¼ 1.74% and be ¼ 1.55% (near the KBM instability
threshold), we observe similar nonlinear saturation features. In
simulations with be ¼ 2%, but without dBk and equilibrium cur-
rent,we also observe similar nonlinear KBM dynamics.

Onset of nonlinear rapid growth of the localized current
sheet.—As shown by the diamond solid red line in Fig. 1, dAk10;14 at
the mode rational surface first grows faster than exponential
and then grows more than one order of magnitude exponen-
tially with a nonlinear growth rate cnl �3clin during the interme-
diate regime. This growth rate can be explained by the coupling
between the zonal current and non-zonal inductive potential
through the first term in Eq. (2). The poloidal dAk structure
evolves from the linear eigenmode structure at t¼ 11cs/a, as
shown in Fig. 4(a), tomesoscale structures at t¼ 17cs/a, as shown
in Fig. 4(b). The mode structure becomes thin in the radial direc-
tion. This corresponds to the rapid growth of current sheets
localized at the rational surfaces, excited by the nonlinear pon-
deromotive force terms in Eq. (2). In the simulation where the
nonlinear ponderomotive force terms are not included
(dAna

k ¼ 0), although zonal flows still break the linear mode into
mesoscale structures nearly isotropic in radial and poloidal
directions, as shown in Fig. 4(c), the radial correlation length of
the turbulence eddies is much longer than that in the case with
the self-consistent ponderomotive force.

The development of the localized current sheet in the
intermediate and nonlinear regime in KBM is analogous to the
nonlinear process in the ideal MHD theory. However, in this sce-
nario where the kinetic effects become important during the
intermediate regime, the mode saturates at the spatial scale
comparable to the ion gyroradius with a transport level con-
trolled by the zonal fields. In contrast, the mode structure in the
MHD theory tends to become singular until the pressure profile
flattens by transport. The radial profiles of (n,m) harmonic of dAk
at t¼ 11cs/a and t¼ 17cs/a are shown in Figs. 4(d) and 4(e). The
linear mode structure has exact odd parity at the rational

FIG. 2. Time history is shown for the ion heat conductivity vi and the perturbed
electrostatic potential d/ for the mode (m¼ 14, n¼ 10) in a simulation with self-
consistently generated zonal flow and zonal current and in a simulation with artifi-
cially suppressed zonal fields.
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surfaces, and the nonlinear mode structure contains even parity
component at the rational surfaces driven by the nonlinear elec-
tromagnetic ponderomotive force. For comparison, Fig. 4(f)
shows the (n,m) harmonic of dAk after saturation in the

simulationwith dAna
k ¼ 0. In this case, each (n,m) harmonic is still

zero at the q¼m/n surface. Because of the formation of a thin
current layer near rational surfaces, we conducted simulations
with finite resistivity in the generalized Ohm’s law to test the

FIG. 3. Poloidal contour of the perturbed electrostatic potential d/ at the nonlinear regime. Panel (a) shows broken radial filaments in the simulation with self-consistently gen-
erated zonal flow and zonal current. Panel (b) shows macroscale radial filaments in the simulation with the zonal fields artificially suppressed. To clearly illustrate the difference
in radial filaments, the hd/i component is not plotted in (a).

FIG. 4. Poloidal contour of the parallel vector potential dAk linear structure before the intermediate regime in panel (a), and dAk nonlinear structure after the intermediate
regime in panel (b) in the simulation with self-consistent ponderomotive force. Panel (c) shows poloidal contour of nonlinear dAk in the simulation without the ponderomotive
force terms but with zonal flows. Panels (d), (e), and (f) show the radial profile of (n, m) harmonic of dAk in (a), (b), and (c).
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role of resistive tearing physics29 in the saturation of KBM.With
resistivity 100 times the Spitzer resistivity, no significant tearing
instability is observed within the time scale of KBM nonlinear
saturation. In this case, the KBM linear growth rate and real fre-
quency are increased significantly by the resistive drive, and the
zonal fields still saturate the mode with a radially smoother non-
linear mode structure.

Conclusions and future work.—In summary, we have pre-
sented global gyrokinetic simulation results of KBM nonlinear
behavior. The instability develops into an intermediate regime,
followed by nonlinear saturation regulated by spontaneously
generated zonal fields. In the intermediate regime, rapid growth
of the localized current sheet is observed. These qualitative fea-
tures appear to be robust consequences of our work and have
potentially important consequences for space and fusion plas-
mas. In the Earth’s magnetotail, where there has been significant
controversy regarding the relative importance of ballooning
modes and magnetic reconnection in causing substorm onset,
our studies suggest that nonlinear KBMs, which are self-
regulated by zonal flows, can produce thin current sheets that
can be unstable to secondary tearing instabilities, thus enabling
both mechanisms to play important roles at various stages of
time-evolution in causing substorm onset. This perspective is
similar to that presented in a recent MHD study,30 except that
the mechanism driving ballooning modes in our simulations
is inherently kinetic. The simulations do not seem to exhibit
plasmoid instabilities31,32 which might be suppressed or sta-
bilized due to diamagnetic effects. On a longer time scale, the
current sheet near the rational surfaces might induce colli-
sionless tearing instabilities, which can provide seed islands
for the neoclassical tearing mode or plasmoid instabilities.33

For future work, we plan to explore the consequences of cou-
pling nonlinear KBM instabilities with magnetic reconnection
in Earth’s dipole magnetic field for the magnetotail and in
tokamak edge configuration.
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