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ABSTRACT

The gyrokinetic toroidal code has been upgraded for global simulations by coupling the core and scrape-off layer regions across the separatrix
with field-aligned particle-grid interpolations. A fully kinetic particle pusher for high frequency waves (ion cyclotron frequency and beyond)
and a guiding center pusher for low frequency waves have been implemented using cylindrical coordinates in a global toroidal geometry. The
two integrators correctly capture the particle orbits and agree well with each other, conserving energy and canonical angular momentum. As
a verification and application of this new capability, ion guiding center simulations have been carried out to study ion orbit losses at the edge
of the DIII-D tokamak for single null magnetic separatrix discharges. The ion loss conditions are examined as a function of the pitch angle
for cases without and with a radial electric field. The simulations show good agreement with past theoretical results and with the experimen-
tally observed feature in which high energy ions flow out along the ion drift orbits and then hit the divertor plates. A measure of the ion
direct orbit loss fraction shows that the loss fraction increases with the ion energy for DIII-D in the initial velocity space. Finally, as a further
verification of the capability of the new code, self-consistent simulations of zonal flows in the core region of the DIII-D tokamak were carried
out. All DIII-D simulations were performed in the absence of turbulence.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5108684

I. INTRODUCTION

One of the important challenges in achieving a viable operating
regime for ITER and future fusion reactors is associated with the non-
linear turbulent dynamics of the plasma in the scrape-off layer (SOL).1

The plasma characteristics in SOL can greatly affect the overall con-
finement properties of the device and also regulate the heat load to the
tokamak wall. It can also influence the level of fusion ash, impurity
dynamics, sheath physics, and plasma shaping effects. Furthermore,
the SOL dynamics can degrade the current drive performance of radio
frequency (RF) waves, through their impact on the density threshold
conditions for the onset of parametric decay instabilities.2 An in-depth
understanding of the mechanisms determining the width of the SOL
layer remains an outstanding open problem. A study of the SOL
plasma dynamics is challenging due to the multiple spatial and tempo-
ral scales associated with different energy sources (instabilities) in that
region. Fluid simulation transport codes such as UEDGE3 and
SOLPS4 are normally used to simulate the SOL dynamics. These fluid

codes use a set of fluid transport equations that are based on the
Braginskii equations.5 However, the results show a number of discrep-
ancies between experimental findings and fluid simulations, especially
in the characteristics of the radial electric field, parallel ion flow, impu-
rity radiation, etc.6–8 It is believed that kinetic effects could be a signifi-
cant contributor in the SOL to processes like ion orbit losses,9 X point
losses,10 nonlocal turbulent transport,11 plasma sheath dynamics,12

parametric decay instabilities,2,13–15 etc. To correctly model many of
these effects, one requires a kinetic approach that covers the closed
and open field line regions across the separatrix and includes the real-
istic SOL physics and tokamak geometry. Due to the difficulty in the
accessibility of diagnostics in the SOL region, such global kinetic simu-
lations can help develop useful insights for predicting the plasma
dynamics in that region for present and future reactors such as ITER
and DEMO (DEMOnstration Power Station). A laudable effort in this
direction has been the development of the massively parallel kinetic
simulation code XGC-116,43 that takes an approach based on first-
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principles and has emerged as an efficient method for describing the
complex physics of turbulent transport. Another widely used and suc-
cessful tool, the gyrokinetic toroidal code (GTC), has undergone con-
tinuous development for the past two decades and has been applied to
the study of plasma transport in the core region.17 GTC is a well-
benchmarked, first-principles code which has been extensively applied
to the investigation of neoclassical transport,18,19 microturbulence,20–25

mesoscale Alfv�en eigenmodes25–27 excited by energetic particles, mac-
roscopic MHD modes28–30 (kink and tearing modes), and radio fre-
quency (RF) waves31–37 in the core region. However, the assumptions
used in studying turbulence in the core region may not be valid in the
SOL region. GTC normally uses conventional magnetic flux coordinates,
in which the equations of motion encounter a mathematical singularity
of the metric on the magnetic separatrix surface. This is due to vanishing
of the poloidal magnetic field near the X-point as well as singular behav-
iors of the safety factor and Jacobian of Boozer coordinates near the sepa-
ratrix. Recently, the GTC was extended to separately study instabilities in
the SOL and core regions of a field reversed configuration (FRC) using
Boozer coordinates. However, the code still did not have the capability to
couple these two regions.21,38 The difficulty lay in the discontinuity of the
poloidal angle across the separatrix, in the Boozer coordinates. This limi-
tation restricted the code’s usage to electrostatic simulations in either the
core or the SOL region, with no cross-separatrix coupling.

In our present work, we report a significant enhancement of the
GTC code, called the global toroidal code using the X point (GTC-X)
through the development of a new global nonlinear particle simulation
model that couples the tokamak core and SOL regions. The code also
provides a realistic treatment of the separatrix region through the
Equilibrium Fitting (EFIT)39,40 and IPREQ41 equilibrium data files
generated by experimental discharges. A particular feature of GTC-X
is the use of a cylindrical coordinate system for the advancement of
the particle dynamics, which allows particle motion in arbitrary
shaped flux surfaces including the magnetic separatrix and the mag-
netic X-point in the tokamak. Currently, GTC-X has both fully kinetic
(FK) and guiding center (GC) particle dynamics, but XGC-1 has only
guiding center particle dynamics. The long-term goal of GTC-X is to
develop an electromagnetic (EM) global simulation model for cou-
pling the core and SOL using both the guiding center and fully kinetic
particle dynamics. GTC-X in its present form is an electrostatic code,
which has been applied to simulate ion temperature gradient instabil-
ity in the FRC geometry, which has no toroidal magnetic field.42,43

As a first step in developing this nonlinear particle simulation
model, we have developed a method of field-aligned particle-grid
interpolations using an axisymmetric mesh in the cylindrical coordi-
nates, which takes advantage of the smallest number of grid points in
the direction of the magnetic field with a high resolution in any given
poloidal plane. These field-aligned particle-grid interpolations can
achieve the same numerical efficiency as the field-aligned mesh in
magnetic flux coordinates, employed earlier in the global code GTC24

and in the flux-tube codes such as FENICA44 and GEM.45 The gain in
computational efficiency by using appropriate coordinates and com-
putational mesh helps to optimize turbulence simulations of large
devices like ITER and DEMO. We have also developed a fully kinetic
(FK) particle pusher to capture the effect of high frequency waves (ion
cyclotron frequency and beyond) and a guiding center (GC) pusher to
describe the particle dynamics associated with low frequency waves
(much smaller than the ion cyclotron frequency).

To test the effectiveness of these enhancements and appropri-
ately benchmark the code, we have carried out ion guiding center
simulations to study ion orbit losses at the edge of the DIII-D toka-
mak for single null magnetic separatrix discharges. Using model
calculations, some analytical expressions of such losses have been
presented by Miyamoto46 and have been used in the past to esti-
mate the loss region in velocity space for JET, JT-60, and ITER.
Stacey has introduced the effect of ion orbit loss and X point loss
in his fluid calculations for the interpretation of fluid transport in
the edge region.47,48 We apply the new simulation model and
benchmark GTC-X against some of these past results. We have
examined the ion orbit losses as a function of the pitch angle, in
both the presence and absence of an electric field. The simulations
show good agreement with past theoretical results and with many
experimentally observed features. A measure of the ion direct orbit
loss fraction shows that the loss fraction increases with the ion
energy for DIII-D in the initial velocity space.

As a testimony to the capability of GTC-X to reproduce the exist-
ing physical phenomena, we carried out self-consistent simulations of
zonal flows in the core region of the DIII-D tokamak. The collisionless
damping of the zonal electric field to a nonzero steady-state value veri-
fies the famous theory of Rosenbluth and Hinton49 on the collisionless
damping of zonal flows.

This paper is organized as follows: Sec. II contains a detailed
description of the coordinate system and the representation of the
equilibrium and fluctuating field quantities in the code. Section III
describes the computational mesh used in the simulations. The
physics model explaining the dynamics of the particles is described
in Sec. IV followed by our simulation results for the ion orbit losses
in Sec. V. The verification of the damping of zonal flows is given in
Sec. VI. Section VII provides a brief summary and some conclud-
ing discussions.

II. REPRESENTATION OF THE EQUILIBRIUM AND
COORDINATE SYSTEM

In describing the collective dynamics of a tokamak plasma, it is
convenient to represent the physical variables in terms of equilibrium
and fluctuating quantities. The equilibrium is described by the Grad-
Shafranov equation. The fluctuations representing wave activity
contribute to plasma transport. The input equilibrium magnetic field
configuration for GTC-X can be generated in any of the equilibrium
solvers, EFIT or IPREQ, and is normally expressed as a function of the
magnetic flux function. In the MHD approximation (ignoring guiding
center orbit effects), the plasma profiles of temperature, density, cur-
rent, etc., are also functions of the flux function. In the GTC-X version,
we use cylindrical coordinates (R, f, Z), where R is the distance from
the geometry axis, f is the toroidal angle, and Z is the direction of the
torus symmetry axis. The representation of the magnetic field for an
axisymmetric system is then given by

~B ¼ rwðR;ZÞ � rfþ FðwÞ
R

f̂; (1)

where w(R, Z) is the poloidal flux function that labels the magnetic
surfaces for both closed and open field lines [cf. Fig. 1(b)] and F(w) is
the poloidal current function [cf. Fig. 1(a)], which provides the com-
ponents of magnetic field in cylindrical coordinates as
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BR ¼ �
1
R
@w
@Z

; BZ ¼
1
R
@w
@R

; Bf ¼
FðwÞ
R

: (2)

The Jacobian for this system can be written as

J�1 ¼ rR � ðrf�rZÞ: (3)

The cylindrical toroidal coordinate system is related to the stan-
dard Cartesian system as follows:

x ¼ R cos f;

y ¼ R sin f;

z ¼ Z:

(4)

By defining contravariant basis vectors ~eR ¼ rR; ~ef ¼ rf; ~eZ

¼ rZ, the velocity and the electric field can be written as

~v ¼ vR~eR þ vf~ef þ vZ~eZ ; (5)

~E ¼ �r/ ¼ � @/
@R
rRþ @/

@f
rfþ @/

@Z
rZ

� �
; (6)

where

vR ¼ _R; vf ¼ _f; vZ ¼ _Z ;

~eR ¼ cos fx̂ þ sin fŷ;

~ef ¼ �R sin fx̂ þ R cos fŷ;

~eZ ¼ ẑ :

(7)

The equilibrium inputs from EFIT only provide equilibrium
quantities on a coarse mesh, which usually contains a few tens of grid
points in the R and Z directions. However, the microscale turbulence
demands much denser grid points in R and Z directions. Therefore, it
is necessary to map the equilibrium mesh to a dense computational
mesh, in order to achieve sufficient numerical accuracy. For a 1D func-
tion f(w), such as the poloidal current function F(w), we can use the
following B-spline representation:24

f ðwÞ ¼ f ð1; iÞ þ f ð2; iÞDwþ f ð3; iÞDw2; (8)

where f(2, i) and f(3, i) are coefficients related to the first and second
order differential in the w direction, which are calculated using the
finite difference method on a spline mesh. In our simulations, we have
calculated the grid size in w using the following three steps:

Dw ¼ wLim

Nw � 1
) Nsep ¼ integer

wsep

Dw

" #
) Dw ¼

wsep

Nsep
; (9)

where wLim is the poloidal flux function at the limiter point, Nw is the
number of grid points in w, Nsep is the grid point number at the sepa-
ratrix, and wsep is the poloidal flux function at the separatrix. This cal-
culation will provide an accurate value of w at the separatrix in the
simulation. However, it will give some minor differences in calculating
w at the limiter points.

A 2D function f ðR;ZÞ ¼
P

n FnðRÞGnðZÞ can be expressed as

f ðR;ZÞ ¼ f ð1; i; jÞ þ f ð2; i; jÞDRþ f ð3; i; jÞDR2

þ f ð4; i; jÞDZ þ f ð5; i; jÞDRDZ þ f ð6; i; jÞDZDR2

þ f ð7; i; jÞDZ2 þ f ð8; i; jÞDRDZ2 þ f ð9; i; jÞDR2DZ2;

(10)

where DR¼ Riþ1 � Ri; i¼ 1;2;3;…;nR, and DZ ¼ Zjþ1 � Zj; j¼ 1;
2;3;…;nZ. Equation (10) is derived by using the 1D B-spline func-
tions of FnðRÞ ¼ Fnð1; iÞþFnð2; iÞDRþFnð3; iÞDR2 and GnðZÞ
¼Gnð1; jÞþGnð2; jÞDZþGnð3; jÞDZ2. The spline coefficients f(1:9,
i, j) are calculated from the spline coefficients Fnð1 : 3; iÞ and
Gnð1 : 3; jÞ. Figures 1(a) and 1(b) represent the equilibrium poloidal
current function on a uniform flux grid and poloidal flux function on
the rectangular R-Z grid, respectively, for DIII-D shot No. 158103 at
3050ms.50 In GTC-X, we use these two functions in Eq. (2) to calcu-
late the magnetic field components for DIII-D (cf. Fig. 2). In the parti-
cle pusher, we interpolate these field quantities at the particle position
using a 2D spline function, as described in Eq. (10). The magnetic field
is divergence-less if we use the expressions of BR, BZ, and Bf as given
by Eq. (2). The equilibrium poloidal flux w is numerically calculated

FIG. 1. (a) Poloidal current function F(w) in m-T on a uniform flux grid and (b) poloi-
dal flux function in web/rad on rectangular (R, Z) grid points for DIII-D shot No.
158103 at 3050ms.50 The magnitude of the flux function is indicated by color. The
last closed flux surface and limiter points are represented by black and magenta
lines, respectively.

FIG. 2. Components of the magnetic field (a) BZ, (b) BR, and (c) Bf for DIII-D shot
No. 158103 at 3050ms.50 The magnitude of the magnetic field components is indi-
cated by color. The last closed flux surface and limiter points are represented by
black and magneta lines, respectively.
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by a 2D spline representation. Hence, for this axisymmetric system,
r�~B ¼ 0 is guaranteed numerically in the simulation.

III. FIELD ALIGNED MESH FOR FLUCTUATING
QUANTITIES

The field aligned mesh has maximum numerical efficiency and
accuracy to address the nonlinear physics of drift wave turbulence.
Because the particle moves much faster in the direction parallel to the
magnetic field than when it drifts across the magnetic field, the parallel
wave vector is usually much smaller than the perpendicular wave vec-
tor for the drift wave instabilities. Thus, one only requires a small
number of grid points to resolve the parallel wavelength, which greatly
saves the computational costs and suppresses the numerical high kjj
modes efficiently. Furthermore, it helps to simplify the implementa-
tion of the field solver, since the field aligned mesh can exactly decou-
ple the parallel and perpendicular directions.

A. Radial grid

GTC code has in the past utilized the field aligned mesh in
Boozer coordinates and has successfully applied it to gyrokinetic simu-
lations of drift waves in the core region of toroidal plasmas.17 In this
work, we extend the original GTC field aligned mesh from Boozer
coordinates in the core region to cylindrical coordinates in the whole
domain across the separatrix. In order to create the field aligned mesh
for the whole tokamak domain, we build equispaced radial grids (spac-
ing of size Dr) on the outer midplane for each field line, which can be
calculated as

Dr ¼ 1
NSOL � 1

RLFðw ¼ w1;Z ¼ 0Þ � RLFðw ¼ wsep;Z ¼ 0Þg;
�

(11)

where RLF is the radial position as a function of poloidal flux and Z on
the low field side and NSOL is the number of field lines in the SOL
region. w1 is the maximum value of the poloidal flux on the limiter
points (plasma facing components). GTC-X also has the capability to
use a nonuniform grid, with the grid size in the perpendicular direc-
tion correlated with the local gyro-radius. The poloidal flux at each
field line of the simulation mesh in the SOL region is

wSOLðiSOLÞ ¼ wðRLFðw ¼ wsep;Z ¼ 0Þ
þ ðiSOL � 1Þ � Dr;Z ¼ 0Þ; (12)

where iSOL 2 [1, NSOL].
Then, the field line number in the core region Ncore can be calcu-

lated as

Ncore ¼ integer
RLFðw ¼ wsep;Z ¼ 0Þ � R0

Dr

� �
; (13)

where R0 is the major radius. The poloidal flux at the innermost grids
in the core region w0 can be determined as

w0 ¼ w RLFðw ¼ wsep;Z ¼ 0Þ � ðNcore � 1Þ � Dr;Z ¼ 0
� �

; (14)

where w0 is not necessarily equal to the poloidal flux value at the mag-
netic axis. The poloidal flux of each field line for the simulation mesh
in the core region is

wcoreðicoreÞ ¼ wðRLFðw ¼ w0;Z ¼ 0Þ
þðicore � 1Þ � Dr;Z ¼ 0Þ; (15)

where icore 2 [1, Ncore].
Similarly, the field line number in the private region (i.e., the

space/dome below the separatrix X-point, which has no connection of
flux lines with main plasma) Nprivate, is calculated as

Nprivate¼ Integer
RLFðw¼wsep;Z¼Z0Þ

Dr
�
RLFðw¼wpmax;Z¼Z0Þ

Dr

� �
;

(16)

where wpmax is the poloidal flux at the innermost flux surface in the
private region and Z0 is the minimum value in the Z direction. The
poloidal flux at the innermost grids in the private region wp0 can be
determined as

wp0 ¼ wðRLFðw ¼ wsep;Z ¼ 0Þ
�ðNprivate � 1Þ � Dr;Z ¼ Z0Þ; (17)

where wp0 is not necessarily equal to wpmax. The poloidal flux at each
field line of the simulation mesh in the private region is

wprivateðiprivateÞ ¼ wðRLFðw ¼ wp0;Z ¼ Z0Þ
þ ðiprivate � 1Þ � Dr;Z ¼ Z0Þ; (18)

where iprivate 2 [1, Nprivate].

B. Poloidal grid

After this, we trace each field line along the poloidal direction
and calculate the length of the poloidal projection of each field line by
using the unit magnetic vector as follows:

dR
dS
¼ bR (19)

and

dZ
dS
¼ bZ : (20)

Here, bR¼ –(1/BpR)(@w/@Z), bZ¼ (1/BpR)(@w/@R), and Bp is the
poloidal magnetic field. The starting points for tracing the field lines
are on the low field side of the outer midplane (Z¼ 0 plane) for the
core region and on the low field side of the Z¼Z0 plane for the SOL
and the private regions. The step DSt for tracing each field line is at
least 10�5 smaller than the order of magnitude of the length of the
poloidally projected field line, and we correct the new position for
each tracing step by using Newton’s method, with the error of the
order of floating precision, in order to ensure that it lies on the same
flux surface. All the advanced positions during the tracing of the poloi-
dal field line are recorded as tracing grids. The outermost simulation
boundary is determined by the limiter, as shown by the brown line. As
a result, the tracing grids outside the limiter in the SOL and private
region are removed by using the ray casting algorithm.51 In the closed
field line region, we calculate the length of the poloidal projection of
the field line for each flux surface. However, in the open field line
regions, we set the intersection points of the field lines and the limiter
as the simulation boundary points and then calculate the length of the
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poloidal projection of the field line between each of the two intersec-
tion points on a single continuous field line.

The number of simulation grids for each continuous poloidal
field line is calculated as

Ni ¼ integer
li

DSi0

� �
; (21)

where li is the poloidal field line length of the i-th field line and DSi0 is
the approximate grid size along the poloidal direction. The exact poloi-
dal grid size DSi is then determined by li andNi as

DSi ¼
li

Ni � 1
: (22)

The positions of the field aligned grid along the poloidal direction can
be derived from poloidal grid size DSi, the much smaller tracing step
DSt, and the positions of the dense tracing grids.

In the cylindrical coordinate representation, we only create the
field aligned mesh in the poloidal direction, and the meshes on differ-
ent poloidal planes are identical (as shown in Fig. 3) due to

axisymmetry. In order to decouple the exact parallel and perpendicular
directions and use a small number of poloidal planes, the particle-grid
gathering and scattering operations can be done exactly along the par-
allel direction by interpolating the value on the identical field line.

IV. PHYSICS MODEL FOR PARTICLE DYNAMICS

The efficiency of particle simulation strongly depends on the
advancement of the dynamical quantities. In the GTC-X, we have
developed particle pushers for both fully kinetic particles and guiding
center particles using cylindrical coordinates (R, f, Z) in a global toroi-
dal geometry. The models for the fully kinetic dynamics and guiding
center dynamics and the numerical methods associated with the time
advancement of the physical quantities (particle position and guiding
center) are described in Secs. IVA–IVC.

A. Fully kinetic particle dynamics

Fully kinetic particle dynamics is described by the six dimen-
sional Vlasov equation,

@

@t
þ~v � r þ qc

m
ð~E þ~v �~BÞ � @

@~v

� �
fFK ¼ 0; (23)

where fFK is the fully kinetic particle distribution function, qc is the par-
ticle charge, and m is the particle mass. The above equation governs
the evolution of fFK in the fully kinetic approach.

The time evolution of the phase space coordinates of a single par-
ticle, in the presence of a self-consistent electromagnetic field, is gov-
erned by the Lorentz-force equation as follows:

d
dt
~r ¼~v; d

dt
~v ¼ qc

m
~E þ~v �~B
	 


: (24)

In our simulation, we compute the marker particle trajectory Eq. (24)
using the time centered Boris push method31,33,52–55 as discussed in
Sec. IVB. The Lagrangian for the single particle motion in the cylindri-
cal coordinates is written as

L ¼ m
2

_R
2 þ R2 _f

2 þ _Z
2

h i
þ qc _RAR þ R_fAf þ _ZAZ

h i
� qc/; (25)

where~A is the magnetic vector potential. Now the components of gen-
eralized momenta are

pR ¼
@L
@ _R
¼ m _R þ qcAR;

pf ¼
@L
@ _f
¼ mR2 _f þ qcRAf;

pZ ¼
@L
@ _Z
¼ m _Z þ qcAZ :

(26)

In our simulation, we use the poloidal flux function w rather
than the vector potential~A to represent the equilibrium magnetic field
components for calculating the toroidal canonical angular momen-
tum. Two constants of motion for fully kinetic single-particle dynam-
ics in cylindrical coordinates are defined by45

• Kinetic energy

E ¼ ðm=2Þ ðvRÞ2 þ ðRvfÞ2 þ ðvZÞ2
	 


:

FIG. 3. GTC-X computational grids on a poloidal plane coupling core and SOL.
The field aligned mesh at the core, separatrix, SOL, and private regions are repre-
sented in red, black, magenta, and green, respectively. Fully kinetic (blue and
green) and guiding center (magneta and yellow) calculations of trapped particle
orbits in the core (51.66 keV) and cross separatrix (59.42 keV) for DIII-D shot No.
158103 at 3050 ms.50 Limiter points are represented by a dark brown line.
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• Toroidal angular momentum from Eqs. (26) and (1)

pf ¼ mR2vf þ qcw;

since RAf¼w

B. Boris push for fully kinetic particle dynamics

The Boris scheme is the most widely used orbit integrator in
explicit particle-in-cell (PIC) simulation of plasmas. In this paper,
we have extended our Boris push scheme in GTC from Boozer
coordinates33 to cylindrical coordinates. This scheme offers second
order accuracy while requiring only one force (or field) evaluation
per step. The interplay between the PIC cycle and the Boris scheme
is schematically represented in Fig. 2 of Ref. 33. At the beginning
of each cycle, the position of the particles and their time centered
velocity~vðt � 1=2Þ as well as the grid based electromagnetic fields
~EðtÞ;~BðtÞ are given.

At the first step, we add the first half of the electric field to update
the velocity from (t – 1/2) to t as follows:

~uðtÞ ¼~vðt � 1=2Þ þ qc
m

Dt
2
~EðtÞ: (27)

One may write the components of velocity at particle position at t as

ua�ðtÞ ¼
X

b¼R;f;Z
vbðt � 1=2Þ~ebðt � 1=2Þ � raðtÞ

þ qc
m

Dt
2
~EðtÞ � raðtÞ; (28)

where a¼R, f, Z. For an orthogonal cylindrical system, Eq. (28) can
be rewritten as follows:

uR�ðtÞ ¼ A1v
Rðt � 1=2Þ þ B1Rð1Þvfðt � 1=2Þ

þ qc
m

Dt
2
~EðtÞ � rRðtÞ;

uf�ðtÞ ¼ Rð2Þ A1Rð1Þ
gffðtÞ

vfðt � 1=2Þ � B1

gffðtÞ
vRðt � 1=2Þ

� �

þ qc
m

Dt
2
~EðtÞ � rfðtÞ;

uZ�ðtÞ ¼ vZðt � 1=2Þ þ qc
m

Dt
2
~EðtÞ � rZðtÞ;

(29)

where A1 ¼ cos ðf2 � f1Þ; B1 ¼ cos f1 sin f2 � sin f1 cos f2; f1 ¼ fðt
�1=2Þ; f2 ¼ fðtÞ; Rð1Þ ¼ Rðt � 1=2Þ and R(2)¼R(t).

In the second step, we consider the rotation of the velocity at
time (t). The rotated vector can be written as

~uþðtÞ ¼~u�ðtÞ þ~u�ðtÞ �~sðtÞ þ ~u�ðtÞ �~T ðtÞ
h i

�~sðtÞ; (30)

where ~T ¼ ðqc~B=mÞðDt=2Þ and~s ¼ 2~T=ð1þ T2Þ. The components
of the rotated vector become

uRþðtÞ ¼ 1� PQ B2
Z þ B2

f

� �h i
uR�ðtÞ

þ PQBRBfRþ PBZ
gff

J

� �
uf�ðtÞ

þ PQBRBZ � PBfR
1
J

� �
uZ�ðtÞ; (31)

ufþðtÞ ¼ 1� PQ B2
R þ B2

Z

� �	 

uf�ðtÞ

þ PQBRBfRg
ff � PBZ

1
J

� �
uR�ðtÞ

� PQBZBfRg
ff þ PBR

1
J

� �
uZ�ðtÞ; (32)

uZþðtÞ ¼ 1� PQ B2
R þ B2

f

� �h i
uZ�ðtÞ

þ PQBZBfR� PBR
gff

J

� �
uf�ðtÞ

þ PQBRBZ þ PRBf
1
J

� �
uR�ðtÞ; (33)

where Q¼ (qc/m)(Dt/2), P¼ 2/(1þT2)(qc/m)(Dt/2), gff¼R2, and J2

¼ det(gab)¼R2. In the third step, we add the other half electric accel-
eration to the rotated vectors to obtain the velocity at time (tþ 1/2),

uaðt þ 1=2Þ ¼ uaþðtÞ þ qc
m

Dt
2
~EðtÞ � raðtÞ: (34)

To update the particle position, we need to recover~vðt þ 1=2Þ, which
can be done through the following transformation (cf. Fig. 2 of Ref. 33
dark purple arrow):

vcðt þ 1=2Þ ¼
X

a¼R;f;Z
uaðt þ 1=2Þ~eaðtÞ � rcðt þ 1=2Þ; (35)

where c¼R, f, Z. However, the basis vector rc(tþ 1/2) is still
unknown, since c(tþ 1/2) does not exist in the standard leap-frog
scheme. Here, we use a prediction for c(tþ 1/2) as

cðt þ 1=2Þ ¼ cðtÞ þ ucðt þ 1=2ÞDt
2
: (36)

After we find the velocity at time (tþ 1/2), we can update the particle
position using the leap-frog scheme as

cðt þ 1Þ ¼ cðtÞ þ vcðt þ 1=2ÞDt: (37)

In Eq. (35), we have the dot-product of two basis vectors at different
time steps. We have calculated this equation in a similar fashion as dis-
cussed in Eqs. (28) and (29).

In this section, we have described the time advancement of the
dynamical quantities such as velocity and position of the particle using
the time centered approach. However, the self-consistent simulation
requires update of particle weight (representing the perturbed distribu-
tion function), guiding center, and electric field. In our future simula-
tions, we will use the second order Runge-Kutta (RK) method to
advance these quantities.33,34

C. Guiding center dynamics

Guiding center particle dynamics is described by the five-
dimensional phase space

@

@t
þ _~X � r þ _vk

@

@vk

" #
fGC ¼ 0; (38)

where fGC is the guiding center distribution function, ~X is the guiding
center position, and vk is the parallel velocity. The evolution of the
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guiding center distribution function can be described by the following
equations of guiding center motion:56

_~X ¼
~B
�

B�k
vk þ~vE þ~vc þ~vg ;

_vk ¼ �
1
m

~B
�

B�k
� ðlrBþ qcr/Þ;

(39)

where ~B
� ¼ ~B þ Bvk=xcr� b̂; l ¼ mv2?=2B, and B�k ¼ b̂ �~B�. The

~E �~B drift velocity ~vE, the grad-B drift velocity ~vg , and curvature
drift velocity~vc are given by

~vE ¼
c~B �r/

BB�k
;

~vg ¼
l

mxc

~B �rB
B�k

;

~vc ¼
B
B�k

v2k
xc
r� b̂:

(40)

In the GC description, the following order is adopted:

x
xc
�

kk
k?
� qc/

Tc
� Oð�Þ;

where x is the frequency of the mode of interest and kk and k? are the
wave vectors in the parallel and perpendicular direction, respectively.
Two constants of motion for guiding center dynamics are defined by

• Total energy

E ¼ ðm=2Þv2k þ lB:

• Toroidal angular momentum

pf ¼ mRvkðBf=BÞ þ qcw:

For an axisymmetric system, Eq. (39) can be rewritten in cylindrical
coordinates (R, f, Z) as follows:

vR ¼ vk
BR

B�k
þ c
B�k

Bf

B
@/
@Z
� B
B�k

v2k
xc

@

@Z
Bf

B

� �

þ l
mxc

Bf

B�k

@B
@Z

; (41)

vf ¼ vk
Bf

B�k

1
R
þ c
B�kJ

BZ

B
@/
@R
� BR

B
@/
@Z

� �

þ B
B�k

v2k
xc

1
J

@

@Z
BR

B

� �
� @

@R
BZ

B

� �� �

� l
mxcJ

BR

B�k

@B
@Z
� BZ

B�k

@B
@R

" #
; (42)

vZ ¼ vk
BZ

B�k
� c
B�k

Bf

B
@/
@R
þ B
B�k

v2k
xc

1
J
@

@R
R
Bf

B

� �

� l
mxc

Bf

B�k

@B
@R

; (43)

_vk ¼ �
l
m

BR

B�k

@B
@R
þ BZ

B�k

@B
@Z

 !
� qc

m
BR

B�k

@/
@R
þ BZ

B�k

@/
@Z

 !

�
lvk
mxc

B
B�k

1
J

@

@R
R
Bf

B

� �
@B
@Z
� R

@

@Z
Bf

B

� �
@B
@R

� �

�
vkqc
mxc

B
B�k

1
J

@

@R
R
Bf

B

� �
@/
@Z
� R

@

@Z
Bf

B

� �
@/
@R

� �
: (44)

For guiding center particle dynamics, GTC normally uses the second
order Runge Kutta (RK) method (cf. Fig. 2 of Ref. 33).

To test our integration schemes (FK and GC), we consider the
collisionless single particle motion of the trapped one in the core and
cross-separatrix regions using the initial conditions from Tables I and
II for DIII-D geometry, respectively. The projection of the FK and GC
trapped particle orbit on the R-Z plane in the core and cross-
separatrix regions is shown in Fig. 3. Both integrators correctly capture
the trapped particle orbit and agree well with each other. In Fig. 4, the
temporal variation of the toroidal angle f of these orbits is shown. The
bounce motion of the particles is implied by the oscillations of f, and
the gradual change in the mean level of these oscillations with time is
an evidence of the toroidal precession of these orbits. The conservation
properties of our integrators are tested with two exact constant of
motion, viz., kinetic energy E and toroidal angular momentum pf.

In numerical simulation, the dynamical quantities accumulate
error with time. Figure 5 shows the relative variation of E and pf for
FK Boris integrator over a time of 15000 cyclotron period for different
time step sizes in core and cross-separatrix regions. The Boris algo-
rithm maintains adequate accuracy with 20 time steps per cyclotron
period (xcDt¼ 0.292). The relative energy error arises mostly due to
floating point cutoff (floating precision). However, the GC second
order RK demonstrates that E and pf can converge with 240 time steps
per bounce period (xbDt¼ 0.027) in core and cross-separatrix regions,
where xb is the bounce frequency of the particle [cf. Fig. 6]. From
these convergence studies, it is found that the FK Boris integrator

TABLE I. Initial conditions for the FK integrator. R0 is the R at the magnetic axis.

Parameter Core Cross-Separatrix

R/R0 1.154 1.289
Z/R0 0.0 0.0
f 1.570 1.570
vR/xcR0 3.371� 10–3 3.371� 10–3

vZ/xcR0 5.371� 10–3 5.371� 10–3

vf/xc 1.271� 10–3 1.271� 10–3

TABLE II. Initial conditions for the GC integrator. B0 is the B at the magnetic axis.

Parameter Core Cross-Separatrix

R/R0 1.147 1.281
Z/R0 0.0 0.0
f 1.570 1.570
vk=xcR0 2.547� 10–3 3.017� 10–3ffiffiffiffiffiffiffiffi

lB0
p

=xcR0 4.545� 10–3 4.642� 10–3
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provides better energy convergence than the second order Runge
Kutta GC integrator. If there are high frequency electromagnetic per-
turbations, the condition of xperDt< 1 will set an upper bound for the
time step size. In the present simulations, the particle orbits are studied
without electric and perturbed magnetic fields. However, previously,
Wei et al.55 have demonstrated the effect of the electric field on the

trapped particle orbit (Ware pinch) in the core region of the tokamak
using Boozer coordinates.

As the particles move around, some of them happen to leave the
domain of simulation. This, after a certain duration of time, would
result in erroneous ensemble averages. To improve the accuracy of our

FIG. 5. Time step convergence of the fully kinetic Boris integrator. (a) and (c) repre-
sent the relative energy error (in the range of floating point cutoff errors) and panels
(b) and (d) show relative canonical angular momentum error for DIII-D geometry
core and cross-separatrix regions, respectively.

FIG. 4. Variation of the toroidal angle f with time for the trapped particle orbits of
Fig. 3, in the core (blue) and the cross-separatrix (red) regions. The oscillations of
f indicate the bounce motion and the gradual change in the mean level of the oscil-
lations implies the toroidal precession of these bounce orbits.

FIG. 6. Time step convergence of the guiding center second order Runge Kutta integrator. Panels (a) and (c) represent the relative energy error and panels (b) and (d) show
relative canonical angular momentum error for DIII-D geometry core and cross-separatrix regions, respectively.
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simulations, we brought the escaping particles back into the simulation
domain using the following procedure: we first found the flux at the
position of the particle at a given instant of time wp(t), the simulation
domain being the interval (w1, w2), and the poloidal angle at that
instant hp(t). If wp(t)< w1 or wp(t)> w2, i.e., if the particle lay outside
the simulation domain, we reinitialized wp with its value at the earlier
time step when the particle was within the simulation domain (i.e.,
wp(t)¼wp(t – Dt)) and hp was reinitialized as hp(t)¼ 2p – hp(t – Dt).
This technique preserves the nature of the motion of trapped particles
at the domain boundaries. Knowing wp(t) and hp(t), we obtained the
new coordinates (Rp, Zp) of the guiding center by finding expressions
for R and Z in terms of w and h. This was done by constructing 2D
splines for R¼R(w, h) and Z¼Z(w, h) in the same way as mentioned
in Sec. II,

Rðw; hÞ ¼ Rð1; i; jÞ þ Rð2; i; jÞDwþ Rð3; i; jÞDw2

þRð4; i; jÞDhþ Rð5; i; jÞDhDwþ Rð6; i; jÞDhDw2

þRð7; i; jÞDh2 þ Rð8; i; jÞDh2Dwþ Rð9; i; jÞDh2Dw2 ;

(45)

Zðw; hÞ ¼ Zð1; i; jÞ þ Zð2; i; jÞDwþ Zð3; i; jÞDw2

þZð4; i; jÞDhþ Zð5; i; jÞDhDwþ Zð6; i; jÞDhDw2

þZð7; i; jÞDh2 þ Zð8; i; jÞDh2Dwþ Zð9; i; jÞDh2Dw2 :

(46)

Here, Dw¼wiþ1 – wi and Dh¼ hjþ1 – hj where i¼ 1, 2,…, N1 and
j¼ 1, 2,…, N2. N1 and N2 depend on the density of the spline grids
that our accuracy of interpolation demands. The velocity of the escap-
ing particle is reinitialized with its value at the previous time step when
the particle lay within the simulation domain. This was done to ensure
the conservation of the total energy and the toroidal angular momen-
tum. In order to test the above technique, we applied it to the cross-
separatrix particle in Fig. 3, using the separatrix as the boundary of our
simulation domain such that the particle was brought back every time
it crossed the separatrix. The relative error in the total energy and
the canonical angular momentum for different time-steps is shown in

Fig. 7. We observe that the conservation of the invariants is better at
the smaller time step sizes (xbDt¼ 0.014, 0.027) than that at a bigger
time step size (xbDt¼ 0.055). However, the overall extent of conserva-
tion is not as good as observed earlier, in the absence of a domain
boundary. This is because the boundary condition used here is not a
perfect one. It, however, gives us good results in the self-consistent sim-
ulations of large number of particles over long time intervals, as we will
observe later in Sec. VI, where we verify zonal flows in the core region.

V. ION ORBIT LOSS NEAR PLASMA EDGE

In a tokamak plasma, ions have drift motions due to the gradient-
B and curvature drift. As a result, ion orbits are shifted from a magnetic
surface. Due to this shift of the ion orbit from the magnetic surface, the
hot ions that exist close to the separatrix can pass near the X point
region. In this region, the poloidal magnetic field is very weak and the
ions have a very small poloidal displacement in time. These ions experi-
ence vertical curvature and grad-B drifts and move toward the divertor,
resulting in ion orbit loss.9,46 In an axisymmetric configuration, the
drift orbit of the ion is obtained by solving the following three equa-
tions as described in Sec. IVC. These are the conservation of kinetic
energy, magnetic moment, and canonical angular momentum,

1
2
mðv2? þ v2kÞ þ qc/ ¼ constant ¼ 1

2
mðv2?a þ v2kaÞ þ qc/a;

(47)

mv2?
2B
¼ constant ¼ mv2?a

2Ba
; (48)

mRvkðBf=BÞ þ qcw ¼ constant ¼ mRavkaðBfa=BaÞ þ qcwa:

(49)

The subscript “a” means the value at the starting point of the
ions. The conservation of above quantities with Bf ’ B gives the drift
orbit surface as follows:46

qcw
mva
þ R

vk
va
¼ qcwa

mva
þ Ra

vka
va
; (50)

FIG. 7. Time step convergence of the guiding center pusher for a boundary particle that is brought back into the simulation domain after leaving it. The figure on top shows the
relative error in total energy, while the one below represents the relative error in the canonical angular momentum.
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vk
va
¼ 6 1� ð1� n20Þ

Ra

R
þ qc
mv2a=2

ð/a � /Þ
� �1=2

; (51)

where n0 ¼ ðvka=vaÞ is the initial pitch angle and n0 > 0 denotes the
ion moving in the cocurrent direction. In the above equation, we
assume that Bf > 0 and use the approximation Bf / (1/R). A minus
sign must be used instead of a plus sign in Eq. (49) when Bf < 0. We
also consider that the poloidal magnetic field is directed clockwise and
the ion toroidal drift ð~vgÞ is approximately vertically up and away
from the X point. The coordinates of the X point are (RX, ZX), and the
poloidal magnetic flux function of X point satisfies (@w/@R)X¼ 0 and
(@w/@Z)X¼ 0. When the initial position Ra of a test ion is at the outer
midplane, that is, Ra > RX, there are following two cases for orbit ion
loss [cf. Figs. 8(a) and 8(b)]:46

When n0 > 0 and Ra > RX, the relative position of the magnetic
surface and drift orbit surface [cf. Eq. (50)] clearly indicates that direct
ion orbit loss is not possible. However, when the initial position of the
test ion is selected as Ra< RX, Fig. 8(c) is possible for ion orbit loss.

In the above GTC-X simulations (cf. Fig. 8), we did not include
the radial electric field on ion orbit loss. However, one must mention
here that in a tokamak scenario, the radial electric field shifts the veloc-
ity space boundaries separating trapped and passing orbits. Also, the
ion orbit loss contributes to the generation of radial electric field,
which affects the ion orbit loss. Therefore, the ion orbit loss and the
radial electric field should be considered self-consistently for more
accurate calculation. Similarly, it is important to study the effect of ion
orbit loss and X point loss for understanding the plasma transport,47

particle distribution,48 plasma rotation,9 etc. Finally, the ion orbit loss
region in our calculation is based on the assumptions that the ions
are collisionless and the loss region is not filled by the collisions or
turbulence. Simulation related to these effects will be reported in a
future work. To see how the electric field affects the velocity space
boundaries, we have calculated the minimum velocity of the ion and
particle loss fractions for DIII-D in the following paragraph.

In order to find the minimum initial ion speed v0 that is required
for the ion to reach the final location (near X point), we combine Eqs.
(50) and (51). The minimum loss speed of ion is

v0¼ R2
an

2
0�R2

XD 1�ð1�n20Þ
Ra

RXD

� �� ��1
�WRan0

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2R2

an
2
0� W2�R2

XD
~/

h i
R2
an

2
0�R2

XD 1�ð1�n20Þ
Ra

RXD

� �� �s
;

(52)

where W¼ (qc/m)(wa – wXD) and ~/ ¼ qcð/a � /XDÞ=ðmx2
cR

2
0=2Þ.

For passing ion orbit loss, the sign of the second term of the numerator
in Eq. (52) is positive, and for the trapped ion orbit loss, it is negative,
respectively. We solve Eq. (52) to find the ion orbit loss region for DIII-
D model parameters as described in Table III. Here, we examine the loss
of the ion for which –1 � n0 � 0. The loss region in the initial velocity
space of an ion starting from outer midplane point Ra is described by the
solid curves in Fig. 9(a). Case-I and Case-II represent boundary curves
CD ðC0D0Þ and AB ðA0B0Þ of the loss region without ~/ (with ~/), respec-
tively. Boundary curves BC ðB0C0Þ, i.e., the condition for mirror reflec-
tion of the test ion without ~/ (with ~/), are given by Case-I(ii), where
~/ > 0 and ~/ < 0 correspond to the outward and inward radial electric
fields, respectively. The value of minimum energy ðmv20=2Þ is obtained
from Eq. (52) [cf. Fig. 9(a)] without ~/, which demonstrates good agree-
ment with the simulation results of Figs. 8(a) and 8(b).

After the minimum loss energy is determined, particle loss frac-
tion due to direct ion orbit loss is calculated. The ion loss rate is deter-
mined by the rate of supply of ions to the loss regions. The
corresponding cumulative particle loss fraction of ions, which follow
distribution function g in velocity space, is defined as46

fL ¼
ð1
�1

ð1
v0ðn0Þ

v2gðvÞdvð1
�1

v2gðvÞdv
dn0: (53)

For a Maxwellian distribution function, the above equation turns out to
be fL ¼

Ð 1
�1 Cð3=2; �minðn0ÞÞdn0=2Cð3=2Þ, where �minðn0Þ¼mv20ðn0Þ=

2Ti is the energy corresponding to the minimum velocity for which ion
orbit loss is possible [cf. Eq. (52)], Ti is the ion temperature, and C(3/2,
�min(n0)) is the upper incomplete gamma function of order 3/2. The n0
dependent cumulative particle loss fraction fL starting from Ra > RX
without ~/ (ABCD) and with ~/ ðA0B0C0D0Þ is shown in Fig. 9(b). These
results clearly demonstrate that the radial electric field shifts the velocity
space boundaries of loss regions for trapped and passing particles.
Figure 9(c) represents the cumulative ion loss fraction for different ion

FIG. 8. Ion drift orbits (solid red line) of DIII-D with a single null divertor.50 The ion
toroidal grad-B drift is away from the X point (Bf > 0). The initial position of the test
ion is represented by a green square. (a) An ion starting from the outer midplane
(Ra > RX) is reflected at M, changes the sign of vk, and escapes near the X point
to the outside divertor plate (case-I). (b) An ion starting from the outer midplane
escapes without mirror reflection to the inside divertor plate (case-II). (c) An ion
starting from the inner midplane (Ra < RX) escapes near the X point to the outside
divertor plate (case-III). The last close surface and limiter points are represented by
black and magenta lines, respectively.

TABLE III. Parameters for the ion orbit loss region.

Parameter Case-I Case-II

(Ra/R0,Za/R0) (1.2748, 0.0) (1.2748, 0.0)
(Rin/R0,Zin/R0) (0.6134, 0.0) (0.6134, 0.0)
(RXD/R0,ZXD/R0) (0.8442, –0.6680) (0.6253, –0.6680)
ðwXD=B0R2

0;wa=B0R2
0Þ (5.253� 10–2,

4.688� 10–2)
(5.138� 10–2,
4.688� 10–2)
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energies (Ti). Pan et al. have carried out detailed studies of minimum
loss energy and cumulative loss fraction for the ions starting from differ-
ent poloidal and radial positions.9 However, for verification and applica-
tion of our new capability, we have carried out the above calculation for
an ion starting from the outer midplane only.

VI. VERIFICATION OF ZONAL FLOWS IN THE CORE
REGION

In this section, we demonstrate the collisionless damping of zonal
flows and verify the Rosenbluth-Hinton theory49 by observing the var-
iation of the zonal electric field E(w), at a given point in the core

region, with respect to time. Zonal flows are low frequency electro-
static modes that are spontaneously generated by turbulence and, in
turn, play an important role in regulating the turbulence. They are
important in the study of transport processes in the core region. In
order to simulate these zonal flows, we solve the flux-surface averaged
gyrokinetic Poisson’s equation24 at every time step,

hr2
?/i ¼

�
Ti

Z2
i ni
r2
? �

Ti

q2
i Z

2
i ni

� �
1
e
ðZini � neÞ

�
: (54)

Here, h� � �i implies the flux-surface average. Ti, ni, and Zi are the tem-
perature, density, and atomic number of the ion species, respectively.

FIG. 9. Ion orbit loss region for DIII-D50 in the initial velocity space for the same parameters of Fig. 8. (a) The minimum energy for which the orbits of ions launched from Ra >
RX will be lost. (b) Pitch angle dependent ion orbit loss fraction for Ti¼ 40 keV. Parts AB ðA0B0Þ; BC ðB0C0Þ, and CD ðC0D0Þ of the curve ABCD ðA0B0C0D0Þ correspond to the
conditions case-II, case-I(ii), and case-I(iii) without ~/ (with ~/), respectively. (c) Cumulative ion orbit loss fraction as a function of ion energy (Ti).
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e is the unit electronic charge and ne is the electron density. qi is the
ion gyroradius. Since we are dealing with zonal quantities, we are only
concerned with the component of the Laplcian perpendicular to the
flux surfaces. As shown in Xiao et al.,24 the flux-surface averaged
Laplacian can be written in the flux coordinates (w, h, f) as

hr2
?/i ¼ 1

J0ðwÞ
@

@w
J0ðwÞhgwwi @h/i

@w

� �� �
; (55)

where J0(w) is the flux-surface averaged Jacobian. In writing Eq. (55),
we have neglected the higher order toroidal coupling terms by assum-
ing a small inverse-aspect-ratio. In our simulations, we load a uniform
ion temperature and density profile. As a result, Ti and ni are constant
all throughout the simulation domain. Integrating Eq. (54) once with
respect tow, we obtain the zonal electric field as follows:

EðwÞ ¼ @h/i
@w
¼ Ti

niZ2
i e2

@hqci
@w

� 1
hgwwiJ0ðwÞ

ð
dw

Ti

niZ2
i e2

�
1
q2
i

�
hqciJ0ðwÞ : (56)

Here, hqci ¼ eðZih�nii � hneiÞ is the flux-averaged total charge den-
sity. �ni is the ion guiding center density. Solving Eq. (56) at every time
step, we have incorporated the field information in our GC pusher
which updates the particle position accordingly. However, Eq. (56)
gives the zonal electric as a function of w while the guiding center
equations of motion in cylindrical coordinates [Eqs. (41)–(44)] require
the R and Z components of the zonal field. Hence, we simply do a
coordinate transformation to obtain ER and EZ, i.e., ER¼ (@w/@R)Ew

and EZ¼ (@w/@Z)Ew, where Ew¼ E(w).
In our simulation of zonal flows, we started off by loading the

particles (here, thermal ions) in a certain domain within the core
region such that they are uniformly distributed between any two con-
secutive flux surfaces. For this, we had to calculate the volume associ-
ated with each flux surface. We began by taking an approximation of
the volume associated with each grid cell and then added them up
over the respective flux surfaces to get the flux surface volumes. After
that, we loaded the particles accordingly and calculated the number of
particles lying within a certain neighborhood of each flux surface (i.e.,
their weights associated with a given flux surface), thereby obtaining

the flux surface volumes in terms of the number of particles. The
newly calculated flux surface volumes would also serve as the flux-
averaged Jacobian J0(w) at each flux surface. As the system evolves
with time, the particles leaving the simulation domain are brought
back using the reflective boundary conditions discussed earlier, in
order to maintain quasineutrality and energy conservation. Full-f ions
and adiabatic electrons are used in the present study of zonal
flows. The initial velocities of the particles followed a Maxwellian
distribution. The simulation domain extended from w1¼ 0.4wsep to
w2¼ 0.9wsep, and the domain-width along the outer midplane was
D � 68.02qi.

The zonal flows were initiated by driving the system for a certain
duration of time with a low magnitude electric field having a sinusoi-
dal dependence on w. After switching off the external perturbation
(i.e., the driving field), the system was allowed to evolve self-
consistently with time. Figure 10 shows the time evolution of the zonal
field Ew after removing the external perturbation. Finally, Ew settles
down to a residual value, in the absence of collisions. This nonzero
value is the Rosenbluth-Hinton residual level and is of great impor-
tance in determining the level of turbulence in the plasma.49

VII. SUMMARY AND CONCLUSION

As a first step in developing the self-consistent global simulation
model to couple the SOL and the core regions in tokamaks by incorpo-
rating the separatrix, we have developed the particle dynamics for FK
and GC particles using cylindrical coordinates. To get the maximum
numerical efficiency, field aligned mesh in the cylindrical coordinates
is developed for the whole device from the magnetic axis to the mate-
rial wall (plasma facing components). These field-aligned particle-grid
interpolations using an axisymmetric mesh in cylindrical coordinates
help to avoid the difficulty associated with the X point. Finally, we
have extended this particle orbit simulation technique to study the ion
orbit loss near the X-point of the DIII-D single null divertor. Based on
three constants of motion, the minimum loss speed and ion orbit loss
fraction at the edge of the tokamak are calculated. However, these par-
ticles need proper boundary conditions near the divertor wall. Finally,
we also verified the physics of zonal flows using the equilibrium of the
DIII-D tokomak. Presently, GTC-X does not have the capability of
handling the plasma particle loss to the material wall (plasma facing

FIG. 10. Time series plot of the normalized zonal electric field on a given flux surface. Here, R0 is the major radius of the DIII-D tokamak and cs is the ion sound speed.
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components), recycling the neutral particles, and calculating the
Monte-Carlo neutral particle transport with a charge exchange and
ionization interaction with the plasma.
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