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ABSTRACT

Global gyrokinetic particle simulations show that the radial electric field (Er) shear can suppress the kinetic ballooning mode (KBM) in a
toroidal plasma. The linear KBM growth rate reaches a maximum when the toroidal rotation induced by the ion diamagnetic shear is
canceled by the E�B flow shear. High toroidal-mode-number (high-n) KBMs are more sensitive to the Er shear than low-n KBMs.
Nonlinear simulations find that both the Er shear and a self-generated zonal flow can reduce the nonlinear KBM saturation level with smaller
particle and ion heat transport. Meanwhile, the zonal flow can weaken the suppressing effects of the Er shear on KBM nonlinear saturation
amplitude. The radial correlation length of the turbulence is reduced by the Er shear and the zonal flow.
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I. INTRODUCTION

The high confinement mode (H-mode) found in the ASDEX
Tokamak is still considered the operation mode for the International
Thermonuclear Experimental Reactor (ITER) to get a better fusion
discharge performance of deuterium–tritium (D–T) plasma.1,2

However, the edge localized modes (ELMs) that typically exist in the
pedestal region under H-mode operation severely erode the plasma-
facing components (mainly the divertor) because of periodic and tran-
sient energy flow.3 The kinetic ballooning mode (KBM) is driven by
an enormous pedestal pressure gradient and is a crucial electromag-
netic microinstability that affects the physical properties in the pedestal
region.4,5 The Environmental Processes and Effects Division (EPED)
model has been used to show that the KBM during ELM cycles has a
regulating effect on the pedestal pressure gradient by constraining the
pedestal width.6 Although there is a strong peak in the bootstrap cur-
rent in the pedestal region, the KBM can couple with peeling balloon-
ing modes (PBMs) to limit the maximum pedestal height.7 Although
the linear properties of KBMs are well understood, a complete under-
standing of the properties of nonlinear KBMs remains elusive.

The dependence of the KBM on the parallel-ion compressibility,
the width of the radial equilibrium profile, and resonant magnetic

perturbations (RMPs) has been previously investigated.8–10 The
parallel-ion conductivity can decrease the KBM growth rate under a
positive magnetic shear and has no effect on the KBM under a nega-
tive magnetic shear.8 It has been demonstrated that the KBM growth
rate and frequency are very sensitive to the radial width of the equilib-
rium density and temperature profile.9,11 Kinetic simulations reveal
that in the presence of a plasma kink, resonant magnetic perturbations
(RMPs) have no significant effect on the KBM growth rate.10 In addi-
tion, it is widely accepted that the radial electric field (Er) plays an
important role in cross field transport and L–H mode transition in the
edge region,12 which suggests that Er may affect the KBM instability.
The radial electric field can be deduced theoretically from the radial
force balance equation13 and experimentally measured by active
charge exchange recombination spectroscopy14 (CXRS) or the
motional stark effect15 (MSE) experimentally. It has been found that
the radial electric field can balance the thermal-ion orbit loss current
by providing a return current.16 The width of the established edge Er
well can be considered as the H-mode pedestal width.17 Furthermore,
a sheared radial electric field can lead to a sheared plasma flow via a
mechanism of the E � B velocity shearing. This sheared flow effec-
tively breaks up turbulence eddies and reduces the radial correlation
length of the turbulence, leading to suppression of the turbulent
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transport at the plasma edge.18 The shear straining can lower correla-
tion lengths in the direction of shear and reduces turbulent ampli-
tudes.19 It has been proven that the Er-induced poloidal rotation can
significantly reduce the growth rate of the ion temperature gradient
(ITG).20 In magnetohydrodynamics (MHD) simulations of linear
PBM using BOUTþþ, Er has been found to have destabilizing effects
for low n and stabilizing effects for high n.21 Using the GEM code and
considering the diamagnetic drift and finite Larmor radius effects has
shown that the Er shear can decrease the particle flux for the kinetic
peeling ballooning mode (KPBM) during both the linear and nonlinear
stages.22 In this paper, we investigate the effects of Er and its shear on
the KBM using the gyrokinetic toroidal code (GTC), which incorpo-
rates diamagnetic drift and finite Larmor radius effects. Furthermore,
both a perturbed parallel magnetic field and an equilibrium current are
considered because both of them can destabilize the KBM. In addition,
the performance comparison of the Er shear on KBM in the cases with
and without zonal flow is obtained in this study.

GTC is a well benchmarked full torus particle-in-cell (PIC) code
derived from first principles for simulating multiple physics processes,
including microturbulence, energetic particle physics, and kinetic
modes in fusion plasmas. An expansion of the electron response using
the electron–ion mass ratio as a small parameter has been used to
develop a fluid-kinetic hybrid electron model that overcomes numeri-
cal difficulties, such as the parallel Courant condition, high-frequency
xH, and tearing mode, for both electrostatic and electromagnetic sim-
ulations.23,24 A conservative scheme of kinetic electrons was subse-
quently developed for minimizing the electron particle noise and
preventing cancellation from the parallel electric field due to calculat-
ing the nonadiabatic vector potential using Ohm’s law.25 Both hybrid
and conservative models are used in GTC to implement the electro-
magnetic capability in KBM simulations.24,26

GTC has been used to perform electrostatic simulations to iden-
tify the effects of Er and its shear on ITG in toroidal plasma and field-
reversed configurations. Linear simulations have shown that the E � B
flow shear reduces the KBM growth rate and distorts turbulent eddies
in the toroidal plane.27,28 Nonlinear simulations have shown that the Er
shear can decrease the ITG saturation amplitude and particle flux.27–29

In this study, a linear electromagnetic simulation is performed on
the KBM with cyclone base case parameters9 using fluid, hybrid and
conservative electron models. Identical results for the linear growth
rate and real frequency are obtained from simulations using the hybrid
and conservative models, where the KBM growth rate obtained using
both models is lower than that obtained using the fluid model due to
the effects of kinetic electrons. Consistency of the Doppler frequency
shift between simulation and theory has been shown for rigid rotation
in a plasma with a constant Er profile. Linear simulations show that
the Er flow shear has a stabilizing effect on the KBM, where this effect
becomes stronger with increasing Er shear. In addition, the Er shear
effects are more significant for high-n KBMs than low-n KBMs due to
a larger effective shearing rate. Nonlinear simulations show that the Er
shear reduces the saturation level amplitude, the particle diffusivity
and ion heat conductivity, which is similar to the turbulence suppres-
sion by the self-generated zonal flow. The effects of Er shear on KBM
nonlinear saturation amplitude are weakened by the zonal flow. It is
found that the Er shear can suppress the spread of KBM turbulence
from the linear phase to the nonlinear phase and reduce the radial cor-
relation length of the turbulence.

The remainder of this paper is organized as follows. The GTC
simulation models for the KBM are described in Sec. II. In Sec. III, the
results of simulations showing the effects of Er on the linear KBM
instability are presented. The effects of Er shear on KBM nonlinear sat-
uration amplitude are discussed in Sec. IV. A brief summary of the
study is presented in Sec. V.

II. SIMULATION SETUP

In our simulations, collisionless gyrokinetic Vlasov equation in
the five-dimensional phase space30 is used for describing ions

d
dt
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@
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X, l, and vjj denote the gyrocenter position, magnetic moment, and
parallel velocity, respectively. Defining b0 � B0

B0
; B* ¼ Bþ B0vjj

X r �b0

(X is the cyclone frequency) is the modified magnetic field for motion
equation, B ¼ B0 þr� ðAjjb0Þ the magnetic field, vdE ¼ cb0�rd/

B0

the drift velocity of perturbed electric field, vd ¼ c
ZB0
ðmv2jjr � b0

þ lb0 �rB0Þ the equilibrium magnetic drift velocity, vBjj
¼ b0 � r � dA? the drift for perturbed parallel magnetic field,31 vzf

¼ cb0�r/zf

B0
the zonal flow velocity, ver ¼ cb0�r/er

B0
the drift velocity of

equilibrium radial electric field, / ¼ d/þ /zf þ /er (/zf and /er are
the electrostatic potential of the zonal flow and equilibrium radial elec-
tric field, respectively) the electrostatic potential. In addition, the elec-
trostatic potential is calculated by gyrokinetic Poisson’s equation while
gyrokinetic parallel and perpendicular Ampère’s law are used for
obtaining the parallel and perpendicular magnetic vector potential,
respectively. A perturbative (df ) method32 has been developed in GTC
for reducing particle noise of full-fmethod. In df method, the distribu-
tion function is separated to equilibrium and perturbed parts, i.e.,
f ¼ f0 þ df . Defining the propagator d

dt � L ¼ L0 þ Lzf þ dL, then
Eq. (1) can be written as Lf ¼ ðL0 þ Lzf þ dLÞðf0 þ df Þ ¼ 0, where
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The equilibrium part f0 is defined as L0f0 ¼ 0 and could be approxi-
mated as a shifted Maxwellian’s distributions as follows:
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, where vjj0 is the equilibrium

parallel velocity. For calculating perturbed part df , we define the parti-
cle weight as w � df

f . Then, we can obtain
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Instead of drift-kinetic equation for all electrons, the fluid-kinetic
hybrid electron model mentioned above takes electrons response apart
into adiabatic part in the lowest order and nonadiabatic part in the
higher order. That is, the distribution function for electrons fe can be
simply expressed as fe ¼ f0eeU=Te þ dgð1Þe þ dgð2Þe þ � � �, where U is
the parallel electric field potential, and the first term is the lowest order
for describing adiabatic electrons and calculated by fluid equation,
which removes numerical difficulties associated with the tearing
modes and the electron Courant condition. The higher order nonadia-
batic response dgð�Þe is treated kinetically with all the nonlinear kinetic
effects preserved. Based on hybrid model, the electromagnetic conser-
vative scheme for electrons further separates the parallel vector poten-
tial into adiabatic part and nonadiabatic part that can be solved by
analytic solution and Ohm’s law, respectively. Note that the adiabatic
electrons have a simple relation between perturbed electron density

and perturbed potential: dne
n0
¼ �e d/

T . In the limit of long wavelength
and no parallel electric field, our equations reduce to the well-known
ideal MHD equations. More details for electron models are described
in Refs. 24 and 25.

The cyclone base case parameters employed for background
plasma are as follows: the inverse aspect ratio a=R0 ¼ 0:357, where
R0 ¼ 83:5 cm and a are the major radius and the minor radius,
respectively. The ion gyro-radius is qi ¼ 2:86� 10�3R0. The radial
profile of safety factor is q ¼ 0:82 þ 1:1wN þ 1:0w2

N in which wN
¼ w=ww (w is the poloidal magnetic flux and ww ¼ 0:0375B0R2

0 the
magnetic flux at the wall) is the poloidal magnetic flux normalized
to the separatrix value. The equilibrium radial profile of density
and temperature is given by a0ð1þ a1ðtanhðða2 � wNÞ=a3Þ � 1ÞÞ.
The parameter a0 in density is 1:2� 1013 cm�3 and 5.8 keV in tem-
perature. In addition, parameters of (a1; a2; a3) are (0.205, 0.3, 0.4)
and (0.415, 0.18, 0.4) for density and temperature, respectively.
The radial profile of equilibrium density n, temperature T, and
safety factor q are shown in Fig. 1. The simulation parameters at
the diagnostic flux surface of wN ¼ 0:389 are q¼ 1.4, B0 ¼ 2 T,
Te ¼ Ti ¼ 2223 eV, ne ¼ ni ¼ 9� 1013 cm�3, R0=LT ¼ 6:9;
R0=Ln ¼ 2:2, ¼ 0.78, be ¼ 2:0%, where L�1T ¼ �d ln T=dr is the
scale lengths of temperature, L�1n ¼ �d ln n=dr the scale lengths of
density, s ¼ d ln q=dr the magnetic shear, and be ¼ 8pnTe=B2

0,
respectively. In our simulation case with n¼ 10, the radial, poloi-
dal, and toroidal grid numbers are 100, 400, and 32, respectively,
based on the convergence test. The number of particle cell is 50 for
thermal ions and electrons, and the poloidal grid numbers should

FIG. 1. Radial profile of equilibrium tem-
perature T [panel (a)], equilibrium density
n [panel (b)], safety factor q [panel (c)],
and radial electric field Er with a constant
shear xs ¼ 0:4Cs=R0 [panel (d)].
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be set larger as n increases. The time step size is Dt ¼ 0:002R0=Cs,
where Cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the ion sounds speed.

III. EFFECTS OF RADIAL ELECTRIC FIELD ON LINEAR
KBM INSTABILITY

With the cyclone base case parameters and without adding equi-
librium radial electric field (i.e., /er ¼ 0), Figs. 2(a) and 2(b) show that
the growth rate c and real frequency x of linear KBM simulations,
respectively, with different toroidal mode number n. Here, the corre-
sponding poloidal mode numbers m of the largest growth rate satisfy
q ¼ m=n on diagnostic surface. Thus, the mode of highest amplitude
is chosen to get the largest the growth rate. Figure 2(a) shows that the
KBM growth rate becomes large with the increasing of n and reach
peak at n¼ 10 among the three electron models, indicating that domi-
nant instability of KBM at diagnostic surface is around n¼ 10 in this
case. Compared with fluid electron model, the KBM growth rate is
around 0.1 Cs=R0 decrease in hybrid and conservative models due to
the effects of finite Larmor radius and trapped electrons of kinetic elec-
trons.33,34 The almost same results of KBM real frequency are obtained
for different electrons models, as shown in Fig. 2(b), the physical rea-
son lies in that x is mainly dependent on ion dynamics.26 Note that
the simulation results are similar between hybrid model and conserva-
tive model, and we will use hybrid model for the cases with kinetic
electrons in Secs. III and IV.

It has already been proven using various gyrokinetic simulation
codes that a radial electric field can significantly affect the properties of
edge turbulence in the pedestal region.22,35–39 In our simulation, the
radial electric field is given by Er ¼ � @/er

@w jrwj, and a constant Er, i.e.,
there is no rotational Er shear across the entire plasma, is first added to
verify the rigid rotation effects of Er. We have verified a Doppler

frequency shift for M ranging from 0 to 0.3, whereM ¼ vjj0=Cs is the
Mach number with vjj0 � RX/. The equilibrium angular frequency of
the toroidal rotation X/ is calculated from the radial force balance
X/ � �Xer þ qXp � Xdia, where Xp is the poloidal rotation, and
Xer ¼ @/er

@w and Xdia ¼ 1
niZi

@Pi
@w are the toroidal angular frequency driven

by the E�B flow and the ion diamagnetic flow, respectively. Note that
the poloidal component of the plasma flows of the neoclassical damp-
ing cancels the E�B flow in the poloidal direction. As expected, we
see a Doppler frequency shift Xdopp ¼ nXer occurs as the Mach num-
ber changes. We also find that the KBM growth rate changes by less
than 2% in the absence of kinetic electrons and 5% in the presence of
kinetic electrons. The effects of the rigid rotation on the KBM growth
rate are small because the E�B flow speed at M � 1 is considerably
smaller than the ion thermal speed. Similar results have been observed
for the ITG mode in toroidal plasma and field-reversed
configurations.27,28

The Er shear is calculated from a two-point nonlinear analy-

sis:xs ¼ Dw
Df

@Xer
@w �

ðBpR0Þ2
B0

@2/er

@w2 ,
27,40 where Dw and Df are the turbu-

lence correlation lengths in radial and toroidal direction, respectively,
and Bp is the poloidal magnetic field. For an isotropic turbulence eddy
(DR � RDf) near equatorial plane, then the shearing rate can be sim-
plified to the radial variation of the toroidal rotation frequency:
xs ¼ @Xer

@ lnR.
28 In our simulation, the radial profile of /er with a constant

xs is taken to be /er ¼ xs
2B0R2

0
ðw� 0:02wwÞð0:88ww � wÞ, where Er

¼ 0 at the core of the simulation domain to minimize the Doppler fre-
quency shift. The red dashed line in Fig. 1 corresponds to the radial
profile of Er with xs ¼ 0:4Cs=R0. Figure 3 shows the result of the
KBM growth rate as a function of the Er shear over the range of
�0:5Cs=R0 to 0:5Cs=R0, with n¼ 10 and b ¼ 2:0%. We can see that
the KBM growth rate decreases as xs increases, indicating that the Er
shear has a stabilizing effect on the KBM. Note that the c value satisfies
cðxs�0:1Cs=R0Þ � cð�xsÞ, which implies that the maximum growth rate
of KBM appears approximately at the Er shear xs ¼ �0:05Cs=R0 in
this case. In our simulations, the ion diamagnetic flow shear xdia

¼ @Xdia
@ lnR equals to 0.48 Cs=R0, that is,xdia þ nxs � 0. Therefore, we find

that the maximum growth rate occurs at a radial shear of the Doppler
shifted local mode frequency of zero, i.e., @

@ lnR ðXdia þ XdoppÞ � 0, which
agrees very well with the results presented in Refs. 28 and 41.

FIG. 2. Growth rate c [panel (a)] and real frequency x [panel (b)] of KBM in linear
simulations as a function of toroidal mode numbers n. Solid lines are the cases car-
ried out by fluid electron, hybrid and conservative models, with the absence of Er.
Both hybrid and conservative models are with kinetic electrons. Dashed lines show
the cases with Er shear xs ¼ 0:4Cs=R0 (triangle) and xs ¼ 0:8Cs=R0 (star) in
hybrid model.

FIG. 3. Growth rate of KBM as a function of the Er shear with (blue star) and with-
out (red triangle) kinetic electrons in KBM linear simulation for n¼ 10 and
b ¼ 2:0%.
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The evolution of the poloidal contour of the perturbation electro-
static potential d/ at n¼ 10 and t ¼ 4:0R0=Cs is shown in
Figs. 4(a)–4(c), and the corresponding radial mode profiles of different
poloidal mode numbers are shown in Figs. 4(d)–4(f). Figure 4(a)
shows a ballooning structure of d/ with a small radial tilting due to a
weak background flow at xs ¼ 0. Figures 4(b) and 4(c) show an
Er-induced flow that gradually becomes stronger, leading to a reduc-
tion in the radial widths of d/ and deformation of the ballooning
structure, which implies that Er flow shear is accompanied by effective
suppression of radial plasma turbulent transport. In addition, the
mode tilts in the radial direction as xs increases due to a radial varia-
tion in the local wave phase velocity caused by the E�B shear flow.
Figure 4(d) shows that the single poloidal mode number of the d/
maintains a Gaussian profile at xs ¼ 0 and decreases from m¼ 12 to
m¼ 16. As the Er shear increases, all the harmonic modes decrease,
and the Gaussian profile is lost. Figures 4(e) and 4(f) show that the
highest m mode at the outer side goes to zero first, corresponding to
the reduction of the radial width of d/ from the outer boundary
shown in Figs. 4(b) and 4(c), respectively.

Figure 2 shows the stabilizing effects of Er shear on the KBM in
the linear simulations with kinetic electrons are also observed for dif-
ferent toroidal mode numbers n. In Fig. 2(a), the KBM growth rate
decreases with increasing Er shear, as expected. Furthermore, the sup-
pression effect of Er shear is stronger at higher n, such that the most
unstable mode changing from n¼ 10 to 5 as xs increases to 0:4Cs=R0

or 0:8Cs=R0. This result is obtained because the ratio of the correlation

lengths of the ambient turbulence in the radial and toroidal directions
increases with the increasing of the toroidal mode numbers, leading to
an increase in the effective E�B shearing rate.40 Figure 2(b) shows
that the real frequency also decreases as xs increases, but the changes
in x are considerably smaller than that in c because Er ¼ 0 is located
on the diagnostic surface to minimize the Doppler frequency shift.

IV. EFFECTS OF RADIAL ELECTRIC FIELD ON KBM
NONLINEAR SATURATION AMPLITUDE

It is well known that microturbulence is regulated by the sponta-
neous generation of the zonal flow, which may be excited by all types
of microinstabilities.29,42–44 The nonlinear physical effects for turbu-
lence and transport have been studied in various gyrokinetic simula-
tions.45–50 We have demonstrated the stabilizing effect of Er and its
shear on the KBM instability in linear simulations. In this section, a
comparative analysis is performed of the results of KBM nonlinear
simulations in the presence of the zonal flow and sheared Er for n
¼ 10 and b ¼ 2:0%. The same setup is used for the nonlinear simula-
tions as for the linear simulations. Nonlinear terms are added to the
guiding center equation of motion,51 and the zonal component is also
considered in nonlinear simulation. We can ignore the zonal flow
effects by artificially suppressing the zonal potential term (/zf ) in sim-
ulations. In addition, only the hybrid electron model is used to accu-
rately maintain the kinetic effects of the particles.

Figure 5 shows the time history of the perturbation electrostatic
potential d/ for the mode of n¼ 10 and m¼ 14 on the diagnostic

FIG. 4. Upper panels of (a)–(c) show two-dimensional poloidal contour of perturbed electrostatic potential d/ with xs ¼ 0:0; 0:4Cs=R0, and 0:8Cs=R0 in KBM linear simula-
tion of n¼ 10 with kinetic electrons. Lower panels of (d)–(f) correspond to the radial mode profile of different poloidal mode numbers m of (a)–(c), respectively. All results here
base on a same physical time of t ¼ 4:0R0=Cs.
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rational surface. With increasing time, the amplitude of d/ first
increases exponentially during the linear stage and then saturates dur-
ing the nonlinear stage. Comparing the results of the nonlinear simula-
tion with and without zonal flow presented in the plot shows that the
zonal flow significantly reduces the amplitude of d/ during the non-
linear stage. By contrast, the Er shear reduces the amplitude of

nonlinear fluctuations as well as the linear growth. Note that the satu-
rated level is almost unchanged when xs ¼ 0:4Cs=R0 with the pres-
ence of the zonal flow, which means the zonal flow is much more
dominant mechanism for reducing the saturated amplitude with small
Er shear. However, we should point out that physics model in these
simulations is not complete (e.g., only a single-toroidal-mode-number
eigenmode family and short saturated time). We will perform more
realistic nonlinear simulations and steady saturated level evolution in
the future to investigate the Er effects on microturbulence and
transport.

Figure 6 shows the two-dimensional d/ poloidal structure in the
nonlinear regime. Figure 6(a) shows the results obtained in the absence
of both the zonal flow and Er shear, where the poloidal mode structure
in this panel is deformed slightly from the linear phase to the nonlin-
ear phase [compared to the results shown in Fig. 4(a)] due to the non-
linearity of the flow. Meanwhile, the radial widths of the d/
turbulence are broadened because of the turbulence spreading.
Figure 6(d) shows that the zonal flow reduces the d/ intensity and
breaks up the radially elongated eigenmode structure into microscale
and mesoscale structures. Figures 6(b) and 6(c) show the results of the
simulation with only Er shear for xs ¼ 0:4Cs=R0 and 0:8Cs=R0 (with-
out zonal flow), where the radial width of the turbulence is also

FIG. 6. Two-dimensional poloidal contour of perturbed electrostatic potential d/ at nonlinear saturation time t ¼ 6:5R0=Cs with different Er shear: (a) and (d), xs ¼ 0. (b) and
(e), xs ¼ 0:4Cs=R0. (c) and (f), xs ¼ 0:8Cs=R0. Upper panels (a)–(c) are the cases without zonal flow and lower panels (d)–(f) with zonal flow.

FIG. 5. The time history of the perturbed electrostatic potential d/ for the mode of
n¼ 10, m¼ 14 on the diagnostic rational surface with (solid lines) and without
(dashed lines) zonal flow as Er shear is xs ¼ 0:0; 0:4Cs=R0, and 0:8Cs=R0.
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reduced but persists for longer than in the presence of the zonal flow
shown in Figs. 6(e) and 6(f), respectively. In addition, the Er shear
reduces the intensity of d/ turbulence and suppresses its radial
spreads as well. In Figs. 6(e) and 6(f) showing the results of the simula-
tion with both the zonal flow and Er flow shear, the d/ intensity and
radial widths of the poloidal d/ turbulence are both reduced, demon-
strating that combining the Er shear and the zonal flow effectively
reduces KBM nonlinear saturation amplitude.

Figures 7(a)–7(c) show the time-averaged and volume-averaged
particle diffusivity D, ion heat conductivity vi, and mean square of the
perturbed electrostatic potential d/2

rms as a function of the Er shear,
respectively. The particle diffusivity is defined as D ¼ 1

nrn
Ð
dvvrdf ,

where vr is the total radial velocity, and the ion heat conductivity is
defined as vi ¼ 1

nirTi

Ð
dv 1

2miv2 � 3
2T

� 	
vrfi. Here, we used DGB

and vGB for normalization, where DGB ¼ vGB ¼ viq2
i =a, with vi

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
as the thermal ion speed. Figures 7(a)–7(c) show that all

the aforementioned quantities are suppressed by the zonal flow and
decrease with increasing Er shear, indicating that both the zonal flow
and the Er shear can reduce the KBM nonlinear saturation amplitude.
Note that the line shape is not symmetric with respect to positive and
negative Er shear due to the background diamagnetic flow shear,
which is similar to the result obtained for the linear simulations dis-
cussed above. Moreover, the aforementioned quantities change more
slowly as the Er shear changes in the presence of the zonal flow than in

the absence of the zonal flow, which implies that KBM nonlinear satu-
ration amplitude are more sensitive to the Er shear in the absence of
the zonal flow. This result is obtained because the zonal flow decreases
the correlation length of the ambient turbulence in the radial direction
(see Fig. 6), resulting in a reduction in the effective E�B shearing rate.

We calculate the two-point correlation function CrhðDr;DhÞ
¼ hd/ðrþDr;hþDhÞd/ðr;hÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hd/2ðrþDr;hþDhÞihd/2ðr;hÞi
p to estimate the radial correlation length of

the turbulence, whereDr and Dh represent the radial and poloidal sep-
aration, respectively, and h� � �i denotes the average over the polodial
plane at t ¼ 6:5R0=Cs. Figure 8(a) shows the example of CrhðDr;DhÞ
with the zonal flow at xs ¼ 0. Then we use the maximal value along
the ridge of CrhðDr;DhÞ to obtain the 1D radial correlation function
CrðDrÞ, as shown in Fig. 8(b). Note that although CrðDrÞ has a clear
tail because of the streamers but still exhibits Gaussian decay for small
radial separations, i.e., CrðDrÞ � e�ðDr=LrÞ

2

, where Lr is the radial cor-
relation length, and the dependence of Lr on the shear rate is shown in

FIG. 7. The volume-averaged particle diffusivity D [panel (a)], ion heat conductivity
vi [panel (b)], and turbulence amplitude d/2

rms [panel (c)] for n¼ 10 with (black tri-
angle) and without (red star) zonal flow as a function of the Er shear. All quantities
are time-averaged over the nonlinear saturation stage during t ¼ [6.3, 6.5]R0=Cs.
The quantities in the cases with zonal flow are corresponding to the left y-axis, and
the right y-axis is used for the cases without zonal flow.

FIG. 8. Panels (a) and (b) show the two dimensions of the correlation function
CrhðDr ;DhÞ and one dimension of the correlation function Cr ðDrÞ, respectively,
for the case with zonal flow and xs ¼ 0. A Gaussian decay is plotted to fit the cor-
relation function in panel (b) to get the correlation length. Panel (c) shows the corre-
lation length of the turbulence Lr as a function of the Er shear for cases with (blue
star) and without (red triangle) zonal flow, respectively.
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Fig. 8(c), for cases with and without zonal flow, respectively. Lr
decreases linearly with the increasing of xs, which is consistent with
the results presented in Refs. 28 and 29. In addition, the zonal flow
reduces the radial correlation length of the turbulence significantly
because the eigenmode structures are broken into smaller eddies by
the zonal flow (see Fig. 6).

V. SUMMARY

In this study, we have performed GTC linear and nonlinear sim-
ulations to investigate the effects of a radial electric field on the KBM.
Comparing the results of different simulation models with and with-
out kinetic electrons before the addition of Er shows that kinetic elec-
trons can reduce the KBM growth rate. Then, we demonstrate the
consistency of the Doppler shift between simulation and theory with a
constant Er profile. Linear simulations show that the Er shear reduces
the KBM growth rate, i.e., the Er shear has stabilizing effects on the
KBM that becomes stronger with increasing Er shear. The poloidal
contour of d/ shows that the E� B flow reduces the radial correlation
length of the perturbed electrostatic potential and breaks up the eddy
structure. In addition, high-n KBM is more sensitive to the Er shear
effects than low-n KBM due to the increase in the effective shearing
rate. Nonlinear simulations show that the Er shear reduces the particle
diffusivity and ion heat conductivity, thereby the nonlinear KBM satu-
ration amplitude is decreased. The zonal flow reduces the effects of Er
shear by reducing the effective shearing rate. The poloidal contour of
the d/ in the nonlinear phase indicates that the Er shear suppresses
the radial spreads of KBM turbulence and reduces the corresponding
radial correlation length. Asymmetrical results are obtained for both
linear and nonlinear simulations under positive and negative Er shear
due to the shear of ion diamagnetic flows in plasma. In a future study,
we will carry out simulations using a more experimentally realistic Er
profile. We will also consider collision effects and obtain an Er profile
self-consistent with neoclassical transport.29,52
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