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Abstract
By employing both nonlinear gyrokinetic simulation and analytical theory, we have investigated
the effects of zonal (electromagnetic) fields on the energetic particle’s (EPs) drive of
reversed-shear Alfvén eigenmodes (AEs) in tokamak plasmas. Contrary to the conventional
expectation, simulations with zonal fields that are turned on and off in the EP dynamics while
keeping the full nonlinear dynamics of the thermal plasma indicate that zonal fields further
enhance the instability drive and thus lead to a higher saturation level. These puzzling
simulation results can be understood analytically in terms of the general fishbone-like
dispersion relation with the correspondingly different EP phase-space structures induced by the
zonal fields. Analytical expressions for the zonal fields that are beat driven by the reversed-shear
AEs are also derived, and shown to be in good agreement with the simulation results.
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1. Introduction

The interaction between energetic particles (EPs) and Alfvén
eigenmodes (AEs) is crucial for understanding the stability
and transport dynamics of fusion plasmas in magnetic confine-
ment devices, such as the tokamak. Among the various AEs,
reversed-shear Alfvén eigenmodes (RSAEs) [1, 2] have attrac-
ted significant interest due to their complex interplay with
EPs in reversed-shear configurations, which are essential for
achieving self-organized steady-state operations that are con-
ducive to sustained fusion. Previous extensive simulations on
the nonlinear physics of RSAE [3–5] have clearly shown that
the zonal electromagnetic fields (ZFs) could be beat driven
by RSAE, and significantly lower the RSAE saturation level.
There are two possible routes to achieve such suppression of
RSAE by ZFs. The first route is via the nonlinear dynamics
of thermal plasmas, such as nonlinear frequency shift and/or
modification of the local current/safety factor profile, thereby
enhancing the continuum damping [4, 6]. The second route is
viamodifications by ZFs in the EP dynamics and drive. Studies
on both routes have so far been qualitative, and the underlying
physics mechanisms remain not well understood. The focus
of the present work is to investigate the physics of the second
route up to the initial saturation.

More specifically, our aim is to provide, by using both non-
linear gyrokinetic simulation and theory, clear and detailed
analyses on the nonlinear beat-driven generation of ZFs by
RSAE, as well as how such ZFs affect the EP drive of RSAE.
To facilitate our analysis, we categorize our studies into three
cases, referred to as cases A, B, and C, each representing dif-
ferent treatment of zonal fields in the EP dynamics. In Case
A, labeled as ‘No-ZFs Case A’, we focus on fully nonlinear
thermal plasmas while deliberately excluding the effects of
zonal fields on EPs. Case B, labeled as ‘Full-ZFs Case B’,
incorporates fully nonlinear treatment of both thermal plasma
and EPs, revealing the unexpected result that inclusion of the
ZFs in EP dynamics yields an increased saturation level relat-
ive to No-ZFs Case A. Lastly, Case C, labeled as ‘Partial-ZFs
Case C’, keeps fully nonlinear thermal plasmas, while remov-
ing zonal shearing effects in EPs, resulting in a negligible or,
more precisely, a weak stabilizing effect on RSAE saturation
when compared to No-ZFs Case A. In all these three cases,
we remark that ZFs are fully retained for the thermal ions and
electrons.

Our findings indicate that including ZFs that are beat driven
by RSAE in the EP dynamics tends to enhance the EP’s drive,
resulting in a higher RSAE saturation level. Moreover, sup-
pressing zonal shearing effects in EPs appears to exert a sta-
bilizing effect on the RSAE saturation level. These conclu-
sions, contrary to conventional expectation, could be under-
stood analytically in terms of the general fishbone-like disper-
sion relation (GFLDR) [7, 8] with different EP phase-space
zonal structures (PSZS) [9] generated in the three cases.

The paper is organized as follows: section 2 presents the
nonlinear simulation results from gyrokinetic toroidal code
(GTC) [10] for the three cases discussed above. Section 3
presents analytical theories for the beat-driven zonal fields, as

well as, for the three cases, EP PSZS generated by ZFs and
their implications to RSAE stability. Conclusions and a dis-
cussion are given in section 4.

2. GTC simulations

The equilibrium and plasma profiles adopted in GTC
simulations [10] are selected from DIII-D discharge #159 243
[11] at 805 ms and reproduced by the kinetic EFIT code [12],
which have also been well simulated in other benchmarking
codes [3, 13]. The simulations employ a typical reversed mag-
netic shear configuration with a minimal safety factor qmin =
2.94 near the major radius R= 1.98m on the mid-plane for the
low-field side, where RSAEs are observed in experiments and
validated in simulations. Here, q, the safety factor, represents
the ratio of toroidal to poloidal turns of magnetic field lines.

For the GTC simulation model [14], EPs and thermal ions
are described by a gyrokinetic model [15], and electrons are
described by a drift kinetic model. Since β≪ 1 and nq≫ 1,
the effects of the compressible magnetic perturbation δB∥ and
equilibrium current J∥0 on RSAE, as verified in previous sim-
ulations, are negligible. Here, β is the ratio between plasma
and magnetic pressures, and n is the toroidal mode number.
Using the parallel velocity, υ∥, description [15], the perturbed
gyrokinetic Vlasov equation can be written as

(L0 + δL)δF=−δLF0, (1)

where F0 is the equilibrium distribution, δF is the perturbed
distribution, and the equilibrium and perturbed propagators in
the (X,υ∥) phase space are given, respectively, by

L0 =
∂

∂t
+
(
υ∥b0 +υd

)
· ∂
∂X

− µB∗
0

B0
·∇B0

∂

∂υ∥
, (2)

and

δL=

(
υE+

υ∥δB⊥

B0

)
· ∂
∂X

−
(
µδB⊥ ·∇B0

B0

+Z
B∗
0

mB0
·∇δϕ+ Z

cm

∂δA∥

∂t

)
∂

∂υ∥
. (3)

Here, X is the gyro-center position, µ= υ2⊥/2B0 is the mag-
netic moment, Z is the particle charge, m is the particle mass,
c is the light speed, B0 is the equilibrium magnetic field, δB⊥
is the perpendicular magnetic perturbation, δA∥ is the paral-
lel component of the perturbed vector potential, and δϕ is the
perturbed scalar potential. Furthermore,

υd = b0 ×
(
µ∇B0 + υ2∥κ

)
/Ω,

υE =
c
B0
b0 ×∇δϕ,

B∗
0 = B0 +

B0υ∥

Ω
b0 ×κ,

where b0 = B0/B0, Ω= ZB0/mc, and κ= (b0 ·∇)b0 is the
curvature of B0. For a single n mode simulation with zonal
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components (labeled as subscript ‘z’), equation (1) can be fur-
ther written as,

(L0 + δLn+ δLz)(δFn+ δFz) =−(δLn+ δLz)F0, (4)

where δLn and δLz correspond to the perturbed propagators,
equation (3), with, respectively, the toroidal mode number n
and zonal components of the electromagnetic fields.

In GTC simulations, an initial Maxwellian distribution is
used for thermal plasmas and EP with Te = Ti = 1 keV and
TE = 20 keV. Simulations are performed using a low-noise δf
scheme [16] with a particle number per cell of 1000 to min-
imize the noise. The radial boundary of the simulation domain
is R= [1.81,2.23]m. Based on the convergence studies, GTC
uses a global field-aligned mesh with 32 parallel grid points,
which is sufficient to resolve the long parallel wavelength,
and 5× 104 unstructured perpendicular grid points with a grid
size ∼ 1.3ρi, where ρi ∼ 2.1mm is the thermal ion gyrora-
dius. The time step is set to be 2× 10−5 ms to resolve the
high-frequency RSAE and the fast electron thermal motion
υth,e ∼ 2× 107 ms−1. In addition, the initial condition is only
random noise, and all poloidal harmonics are included for a
select specific toroidal mode using Fourier filtering.

In the present work, to delineate the effects of zonal fields
(δϕz, δA∥z) on the EP dynamics, three simulations, labeled as
cases A, B, and C, are carried out for the most unstable n= 4
RSAE. Case A corresponds to the No-ZFs case, where we set
δLz = 0 in the EP gyrokinetic Vlasov equation, equation (4),
to remove the effects of ZFs on EPs. Case B corresponds to the
Full-ZFs case, where δLz on both sides of equation (4) is kept
for EPs. Meanwhile, Case C corresponds to the Partial-ZFs
case, where we keep δLz on the right-hand side of equation (4);
however, we set δLz = 0 on the left-hand side of equation (4),
i.e. the EP perturbed propagator, to remove the so-called shear-
ing effects due to ZFs. Note that, in all three cases, ZFs are
fully retained for the thermal electrons and ions.

Figure 1(a) shows the time history of the mode amplitude
of the n= 4 RSAE scalar potential, δϕ4, for the three simu-
lation cases. In the early linear phase, i.e. before 0.4ms, the
effects of ZFs on the RSAE amplitude are negligible due to the
small amplitude of the ZFs. However, in the later linear phase,
the Full-ZFs Case B exhibits a stronger drive and, thereby, a
higher initial saturation level than No-ZFs Case A and Partial-
ZFs Case C. This result contradicts the conventional expecta-
tion that ZFs tend to suppress instabilities and, thereby, lower
the saturation level. Furthermore, the fact that No-ZFs Case A
essentially overlaps with Partial-ZFs Case C is also puzzling,
since it suggests that δLz on the right-hand side of equation (4)
has a negligible effect on RSAE excitations by EPs. It is worth-
while noting that the effects of ZFs also enter implicitly via
the PSZS, δFz, which cannot be suppressed in simulations.
Consequently, as will be demonstrated in section 3.2, these
puzzling simulation results could be understood analytically
by employing the GFLDR along with the different EP PSZS
that are nonlinearly generated in the three cases. Figure 1(b),
meanwhile, plots the time history of the nonlinearly generated
zonal potentials, δϕz, for the three cases. Curves for eδϕ4/Tea

Figure 1. The time history of the perturbed electrostatic potential
eδϕ4/Tea (a), normalized by the on-axis electron temperature Tea,
for the selected toroidal n= 4 modes on the qmin flux surface from
cases A (red), B (black), and C (green). The normalized zonal scalar
potential eδϕz/Tea (b) is the root-mean-square (rms) value averaged
over the radial domain of the major radius R= [1.91,2.04]m. (c)
and (d) The corresponding plots using a base-10 logarithmic scale
on the vertical axis.

Figure 2. The time history of the parallel vector potential
eυAδA∥4/(cTea) (a), normalized by the on-axis electron temperature
Tea and Alfvén speed υA = Ba/

√
4π neami with the ion mass mi, the

on-axis magnetic field Ba, and ion density nea. (b) The time history
of the normalized zonal vector potential eυAδA∥z/(cTea). (c) and (d)
The corresponding plots using a base-10 logarithmic scale on the
vertical axis.

and eδϕz/Tea are also plotted in figures 1(c) and (d) in semi-
log scale. During the linear phase, it is observed, as in previ-
ous RSAE simulations, that the ZFs grow at twice the linear
growth rate of RSAE, clearly indicating that the ZFs are beat
driven by RSAE [3, 5, 17]. Figure 2 plots the corresponding
time histories of the parallel vector potential, δA∥, showing the
same features as δϕ. By adopting the beat-driven generating
mechanism, we will derive, in section 3.1, the corresponding
analytical expressions of δϕz and δA∥,z, which are shown to
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be in good agreement with simulations, and are used later in
section 3.2 to analyze the effects of ZFs on EP excitations.

3. Theoretical analysis

3.1. Beat-driven ZFs by RSAE

Let us consider a large aspect-ratio tokamak with circu-
lar magnetic surfaces; i.e. ϵ≡ r/R∼O(10−1)< 1, with r
and R being, respectively, the minor and major radii. Here,
β, meanwhile, is taken to be O(ϵ2)≪ 1. Let Ω0 = (ω0,n0)
denote an RSAE with a toroidal mode number n0 and mode
frequency ω0 = ω0r+ i∂t. Note Ω0 could be either linearly
excited by EPs, with ∂t = γ0 ≪ ω0r being the linear growth
rate, or excited by an external antenna with ∂t → 0+. Since
β≪ 1, magnetic compression is negligible, and thus Ω0 is
described by the electromagnetic perturbations δϕ0 and δA∥0,
with δϕ0 and δA∥0 being the scalar and parallel vector poten-
tials, respectively. More specifically, we take(

δϕ0
δA∥0

)
= e−iω0rt+in0ξ

∑
m

(
Φm (r, t)
Am (r, t)

)
e−imθ + c.c. (5)

Here, ξ is the toroidal angle and θ is the poloidal angle. Since
|k⊥0ρi|2 ≪ 1, with k⊥0 being the perpendicular wave vector
for Ω0, we may further assume that Ω0 satisfies the ideal
magnetohydrodynamics (MHD) approximation δE∥0 ≃ 0, i.e.
ω0δA∥0 =−ic(b0 ·∇)δϕ0, or

k∥mΦm = ω0Am/c, (6)

where k∥m = (n0q−m)/qR.
We now consider the nonlinear generation of the zero-

frequency ZFs beat driven by Ω0. Let the corresponding zonal
state be denoted as Ωz = (ωz,n= 0): that is,(

δϕz
δA∥z

)
=

(
Φz (r, t)
Az (r, t)

)
+ c.c., (7)

and | − iωz|= |∂t lnΦz|= |∂t lnAz| ≪ ωbi, ωti, ω0r, with ωbi
and ωti being, respectively, the thermal ion bounce and transit
frequencies. The governing equation, first, is the nonlinear
gyrokinetic equation [18] for the non-adiabatic component
of the perturbed distribution function, δgj, given, for j =
species, by

[Lgδgj]k = i
( e
m

)
j
QF0j⟨δLk⟩− [⟨δUg⟩ ·∇δgj]k , (8)

where

Lg = ∂t+ υ∥b0 ·∇+υd ·∇, (9)

QF0j = (i∂t∂/∂ε+ ω̂∗k)F0j, (10)

ω̂∗kF0j =−i(b0/Ωj×∇F0j) ·∇, (11)

and δLk = (δϕ− υ∥δA∥/c)k. Meanwhile, ε= υ2/2, ⟨A⟩
denotes the gyro-averaged A, i.e. ⟨δLk⟩= JkδLk, with Jk =
J0(λkj), J0 being the Bessel function, λkj = k⊥ρj, and ρj =

υ⊥/Ωj. Note here that the wave vector, k, should, in general,
be understood as an operator, k=−i∇. Finally, noting

⟨δUg⟩k = ⟨δUE⟩+ υ∥⟨δB⊥⟩/B0

=
c
B0
b0 ×∇⟨δLk⟩, (12)

the nonlinear term can then be expressed in terms of the wave
vectors as

[⟨δUg⟩ ·∇δg]k =

(
c
B0

)
Λk′
k′ ′ [⟨δLk′⟩δgk′ ′ ] , (13)

where k ′ + k ′ ′ = k, and

Λk′
k′ ′ ≡ (c/B0)

(
k
′ ′

⊥ × k
′

⊥

)
· b0. (14)

Note also, since nEP/nb ≪ 1, the EP contribution to the ZFs is,
typically, negligible.

To generate the ZFs, let us first consider the electron
responses. Letting δgze = δg(1)ze + δg(2)ze , we then have, from
equation (8) and noting |k⊥ρe|≲ |k⊥ρbe| ≪ 1, for trapped
electrons,

δg(1)ze,t =− e
Te
FMeδϕz, (15)

and, for circulating electrons,

δg(1)ze,c =− e
Te
FMe

(
δϕ − ῡ∥δA∥/c

)
z
. (16)

In deriving equations (15) and (16), we have taken the thermal
plasma to be Maxwellian, and ῡ∥ is the transit-averaged υ∥.

For the nonlinear response, δg(2)ze , meanwhile, we have, from
equation (8),[(

∂/∂t+ υ∥b0 ·∇
)
δg(2)e

]
z

=− c
B0

[
Λk′
k′ ′

(
δϕ −

υ∥δA∥

c

)
k′
δgk′ ′

]
z

. (17)

Noting that, for RSAE, |k∥υte| ≫ |ωk|, we have, from
equation (8),

δgk′e ≃ δg(1)k′e ≃− e
Te
FMe

(
1− ω∗e

ω

)
k′
δψk′ . (18)

Here,ω∗jk = ω∗jn[1+ η(υ2/υ2t − 3/2)]j withω∗jn = (cT/eB0)j
(k× b0) ·∇ lnNj and ηj = |∇Tj|/|∇Nj|, and δψk′ =
(ωδA∥/ck∥)k′ = δϕk′ via the ideal MHD constraint,
equation (6). Equation (17) then readily yields, for the
trapped electrons,

δg(2)ze,t ≃
c
B0

e
Te
FMe

1
ω2
k′r

∂

∂r

[
(kθω∗e)k′ δϕk′δϕk′ ′

]
z
, (19)

and for the circulating electrons,

δg(2)ze,c≃
c
B0

e
Te
FMe

1
ω2
k′r

∂

∂r

[(
kθω∗e−ῡ∥kθk∥

)
k′
δϕk′δϕk′ ′

]
z
.

(20)
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In deriving equations (19) and (20), we have noted
k ′ = kθ0θ̂+ k∥0b0 − îr∂/∂r, k ′ ′ =−kθ0θ̂− k∥0b0 − îr∂/∂r,
ωk′ = ω0r+ i∂/∂t, and ωk′ ′ =−ω0r+ i∂/∂t. Also, noting
equation (5), [δϕk′δϕk′ ′ ]z = |δϕ0|2 should be understood as
summing up all the poloidal harmonics, e.g.[(

kθk∥
)
k′
δϕk′δϕk′ ′

]
z
=
∑
m

n0q
r

(n0q−m)
qR

|Φm (r)|2 . (21)

For ions, however, we need, in general, to keep the finite
Larmor-radius and drift-orbit-width effects via the transform-
ation to the drift/banana centers [19]. That is, letting

δgzi = exp(−iλdi)δgzid, (22)

where λdi = kzrρdr, υ∥∂lρdr = υdr, and by following steps
that are essentially the same as those for electrons, we then
derive from equations (8)–(13), δgzid = δg(1)zid + δg(2)zid . Here,
for trapped ions,

δg(1)zid,t ≃
(
e
Ti
FMi

)
Jz
(
Jz0δϕ− Jz1δA∥

)
z
, (23)

and, for circulating ions,

δg(1)zid,c ≃
(
e
Ti
FMi

)
Jz0Jz

(
δϕ− ῡ∥δA∥/c

)
z
. (24)

In equations (23) and (24), Jz0 = exp(iλdi) and Jz1 =
(υ∥/c)exp(iλdi) correspond to finite drift-orbit/banana-width

effects, and (. . .) denotes bounce averaging. Meanwhile,
δg(2)zid is given for both trapped and circulating ions
approximately by

δg(2)zid ≃− c
B0

e
Ti

FMi
ω2
0r

Jz0
∂

∂r

[
J2k′k

′
θω∗k ′δϕk′δϕk′ ′

]
z
. (25)

Here, again, [· · · ]z should be understood as summing over all
the poloidal harmonics.We note that in deriving equation (25),
we have ignored the ion (υ∥δA∥/c)k contributions fromRSAE,
since |ωk| ≫ |k∥υti|. Equations (22)–(25) then yield

δg(1)zi,t ≃
(
eFMi
Ti

)
JzJz0

(
Jz0δϕ− Jz1δA∥

)
z
, (26)

δg(1)zi,c ≃
(
eFMi
Ti

)
J2z0Jz

(
δϕ− ῡ∥δA∥/c

)
z
, (27)

and

δg(2)zi ≃− c
B0

e
Ti

FMi
ω2
0r

J2z0J
2
0
∂

∂r

[
kθ0ω∗i0 |δϕ0|2

]
. (28)

With the δgz’s derived, we can then proceed to calculate
δϕz and δA∥z. First, the parallel Ampère’s law, ∇2

⊥δA∥z =
4πδJz/c, can be readily shown to yield [20]

Az
c

≃ c

B0ω2
0r

∂

∂r

[
kθ0k∥0|δψ0|2

]
≃ c

B0ω2
0r

∂

∂r

∑
m

(n0q
r

) (n0q−m)
qR

|Φm|2 .
(29)

Here, δψ0 = (ωδA∥/ck∥)0. In deriving equation (29), we have
noted that δJz ≃ δJze since mi ≫ me, |∇⊥c/ωpe|2 ≪ 1, and
equation (21). Next, the quasi-neutrality condition for the Ωz

zonal mode, taking single charged ions and τ = Te/Ti,

Nie2

Te
(1+ τ)δϕz =

∑
j=e,i

ej⟨Jzδgzj⟩υ, (30)

then yields

Φz ≃
c
B0

1
ω2
0r

(1+ c0ηi)∂r
[
kθ0ω∗in|δϕ0|2

]
,

=
c

B0ω2
0r

(1+ c0ηi)
∂

∂r

∑
m

(n0q
r

)
ω∗in |Φm|2 . (31)

where

c0 = ⟨
(
1− J2z0

)(
υ2/2υ2ti−3/2

)
FMi⟩υ

/
⟨
(
1−J2z0

)
FMi⟩υ,

(32)

and we have taken J2z ≃ J20 ≃ 1 but kept J2z0. Note that, for
|λdi|< 1, ⟨(1− J2z0)FMi⟩υ corresponds to the Rosenbluth–
Hinton neoclassical polarization due to the trapped ions [21],
and c0 ≃ 1. In deriving equation (31), we have noted that, from
equation (29) and |n0qmin −m| ≪ 1 for RSAE, the Jz1δA∥z
term due to trapped ions in equation (23) generally makes a
negligible contribution to δϕz. Equations (29) and (31) thus
correspond to the ZFs beat driven by the ponderomotive force
of the RSAE, Ω0.

To compare the analytical expression with the simulation
results, we have plotted (black solid line) in figure 3(a) the
radial profile of the normalized δϕz from the Full-ZFs Case
B simulation at t= 0.42 ms linear phase. The black dashed
line, meanwhile, is the corresponding analytical curve accord-
ing to equation (31) with c0 = 1. Similar curves for δA∥z with
equation (29) along with δψ0 are plotted in figure 3(b). It can
be observed that the analytical and simulation results are in
good agreement for both zonal fields. It thus gives us confid-
ence to employ the analytical expressions to investigate the
effects of ZFs on EP excitation in section 3.2. We remark
that the expressions for Az and Φz given, respectively, by
equations (29) and (31) are derived subject to a minimal of
approximations, and thus can be expected to also be generally
valid for other types of high-frequency AEs: e.g. the toroidal
Alfvén eigenmode (TAE) [22].

3.2. Energetic-particle excitations of RSAE and PSZSs

To analyze how ZFs affect the EP drive on RSAE, we first note
that, with δϕ0 = δψ0, the corresponding gyrokinetic vorticity
equation can be written as [20]
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Figure 3. Radial profiles of the normalized zonal scalar potential
δϕz from Full-ZFs Case B (solid line) and the analytically derived
δϕz using equation (31) with c0 = 1 (dot–dash line) on the
mid-plane for the low-field side at t= 0.42 ms (a). The radial
profiles of the corresponding normalized zonal parallel vector
potential δA∥z using equation (29) are shown in (b). The gray
dashed lines represent the qmin flux surface.

B0

(
∂l+

δB⊥
B0

·∇
)(

δJ∥
B0

)
−∇ ·

∑〈(
e2

m
2µ
Ω2B0∂εF0j

)
×
(
J20−1
λ2

)〉
υ

∇⊥∂tδϕ−
∑

ecb0×∇
〈
2µ
Ω
F0j

(
J20 − 1
λ2

)〉
υ

·∇∇2
⊥δϕ+

∑
e∇⊥ · ⟨υdJ0δgj⟩υ + δB⊥ ·∇

(
J∥0
B0

)
+
∑

e

〈
J0

[
c
B0
b0×∇(J0δϕ) ·∇δgj

]〉
υ

= 0. (33)

In equation (33),
∑

is over all j = species, and we have
assumed F0j is isotropic; ∂F0j/∂µ= 0. From equation (33),
we can then derive, variationally, a GFLDR [7, 8] and extract
the following EP contribution to the RSAE instability drive;

ImδWk0 ≡ eEIm
ˆ

d3X{δϕ∗0 ⟨(J0ωz+ωdJ0)δgE0⟩υ} . (34)

Here, ωz =−i⟨δUg⟩z ·∇⊥, ωd =−iυd ·∇⊥, and Im denotes
the imaginary part due to wave-particle resonance, and
ImδWk0 > 0 gives rise to instability drive. Note that, as
observed in simulations [3, 23–25], |⟨δUg⟩z ·∇⊥| is, typically,
ofO(γL)≪ |υdE ·∇⊥|. Thus, ZF effects on ImδWk0 predom-
inantly enter via δgE0. To understand the simulation results
in terms of the above analytical theory, i.e. equation (34), we
need to establish the connection between the perturbed distri-
bution functions obtained in simulation and δg.

First, we note that, in simulations, one employs the gyro-
center distribution function, i.e.

f =
( e
m

) ∂F0

∂ε

(
1− e−ρ·∇J0

)
δϕ+ e−ρ·∇fg, (35)

where fg satisfies the following nonlinear gyro-center gyrokin-
etic equation [15]

(Lg+ δLX+ δLε) fg = 0, (36)

Lg is given by equation (9), δLX = ⟨δUg⟩ ·∇, ⟨δUg⟩ is given
by equation (12), δLε = δε̇∂/∂ε, and

δε̇=
( e
m

)[
υ∥

(
b0+

⟨δB⊥⟩
B0

)
· ⟨δE⟩+υd · ⟨δE⟩

]
. (37)

Note that, in equation (36), to facilitate the connection with
δg, we employ the ε= υ2/2 variable instead of the equivalent
equation (1) in terms of the υ∥ variable. In analytical theory
[18], we have

f = F0 +
( e
m

) ∂F0

∂ε
δϕ+ e−ρ·∇δg. (38)

Thus, letting fg = Fg0 + δFg, notingF0 = exp(−ρ ·∇)Fg0, we
then readily obtain

δg= δFg−
( e
m

) ∂Fg0
∂ε

J0δϕ. (39)

We remark that the two nonlinear gyrokinetic equations,
equations (8) and (36), are the same: except in equation (8)
we have ignored the O(ρ/R) higher-order small terms due to
the so-called parallel nonlinearities.

Let us consider simulations where only one single-n0
RSAE (δϕ0, δA∥0) and ZFs (δϕz, δA∥z) are kept. Thus, let-
ting, correspondingly, δFg = δFg0 + δFgz, equation (36) then
yields, for the Ω0 RSAE perturbation,

(Lg+δLzX+δLzε)δFg0=−(δL0X+δL0ε)(Fg0+δFgz) .
(40)

Meanwhile, for the Ωz zonal perturbation, we have

LgδFgz ≃−δLzεFg0 − [δL0XδFg0]z . (41)

In deriving equation (41) we have noted δLzX(δFgz,Fg0) = 0,
and neglected the small corrections of δLzεδFgz as well as
δL0εδFg0 relative to, respectively, δLzεFg0 and δL0XδFg0.

We now proceed to analyze, for the three simulation cases
presented in section 2, the corresponding δgE and stability
properties. From now on, we will, unless necessary, drop the
subscript E to simplify the notations.

(Case A) No ZFs in EP. In this case, δϕz = δA∥z = 0 and
equation (40) becomes

LgδFg0A =−(δL0X+ δL0ε)(Fg0 + δgzA) . (42)

6



Nucl. Fusion 65 (2025) 016018 L. Chen et al

Figure 4. The perturbed EP zonal distribution function δFz with
fixed µBa = 80 keV in (ε,R) phase space taken at 0.42ms in the
linear phase of the Case A simulation. The black lines represent the
radial structure of RSAE intensity |δϕ4|2, and the gray dashed line
represents the qmin location.

Here, we have noted, from equation (39), δFgzA = δgzA.
Also, using equation (39) for δFg0 and noting equation (9),
equation (42) further reduces to

Lgδg0A = i
( e
m

)
ω0r

∂Fg0
∂ε

J0

(
δϕ−

υ∥δA∥

c

)
0

− δL0X (Fg0 + δgzA)0

∼= i
( e
m

)
Q(Fg0 + δgzA)J0

(
δϕ−

υ∥δA∥

c

)
0

. (43)

In equation (42), we have approximated ∂εFg0 ≃ ∂ε(Fg0 +
δgzA). Meanwhile, δgzA is given by equation (41), i.e.

LgδgzA =− [δL0Xδg0A]z
=− [⟨δUg⟩0 ·∇δg0A]z .

(44)

Equation (44) shows that, in the present case of no ZFs,
the PSZS is, as expected, generated only by the symmetry-
breaking Ω0 RSAE fluctuations. Equations (43) and (44)
thus correspond to the single-wave model [26] and have
been extensively studied in the literature [25, 27–34] and
can be cast in a Dyson-like equation [9, 20]. We further-
more remark that, in equation (43), δL0xFg0 = ⟨δUg⟩0 ·∇Fg0
provides the expansion free energy for the linear instability
drive. Meanwhile, δgzA gives rise to the clump–hole struc-
ture near the wave-particle resonance and thereby reduces the
instability drive near the peak of the RSAE, resulting in a net
stabilizing effect [35, 36]. This feature can be clearly observed
in figure 4, where δFz is plotted in the (ε,R) phase space for
µBa = 80 keV at the t= 0.42ms linear phase in the Case A
simulation.

To be more specific, we follow the linear gyrokinetic theory
[37] and let

δg0A =−
( e
m

)( Q
ω0r

)
(F0 + δgzA)J0δΨ0 + δK0A. (45)

Equation (43), with δϕ0 = δψ0, then leads to

LgδK0A = i
( e
m

)
J0
ωd
ω0r

δϕ0Q(F0 + δgzA) . (46)

ImδWk0, equation (34), meanwhile, becomes

ImδWk0A = eEIm
ˆ

d3X{δϕ∗0 ⟨ωdJ0δK0A⟩υ} . (47)

To proceed further analytically and thereby illuminate the
underlying physics more clearly, let us further simplify the
analysis by considering only trapped EPs. Taking ωbE ≫ |ω0|,
|ωd|, we then have

δK0A ≃
( e
m

)
E
e−iλdE

(ωd/ω0r)

ωd−ω0
J0JE0δϕ0Q(F0 + δgzA) . (48)

Here, as in section 3.1, λdE = k⊥ ·ρd represents the finite
banana-width effect and JE0 = exp(iλdE). Equation (47) then
reduces to

ImδWk0A =

(
e2

m

)
E

(
π

ω0r

)ˆ
d3X

〈
J20J

2
E0

∣∣δϕ0∣∣2ω2
d

× δ (ωd−ω0)Q(F0 + δgzA)E⟩υ ,
≡ ImδWl

k+ ImδWA
kz, (49)

where δWl
k and δWA

k correspond to contributions to the
instability drive due to, respectively, F0 and δgzA. Noting
|ω0| ≪ |ω∗iE|, Q≈ ω̂∗ = (k× b0/Ω) · r̂∂/∂r, and consider-
ing the resonance, ω0r = ωd(rm|ε,µ), where q(rm) = qmin and
|δϕ0|2 peaks at rm, we then have, taking ω0r and ωd > 0,
∂F0/∂r|rm < 0, and thus ω̂∗F0 > 0: i.e. ImδWl

k > 0. This is,
of course, just the usual trapped EP linear instability drive
via the precessional resonance and ∂F0/∂r< 0 expansion free
energy.

Following the same argument, we can consider ImδWA
kz due

to QδgzA ≃ ω̂∗δgzA. Note, as remarked earlier, δgzA is given
by the coupled equations (43) and (44), involving an infinite
sum of perturbation expansions, i.e. the Dyson-like equation.
In the linear phase, however, we need only keep the first-
order perturbation: i.e. dropping δgzA in equation (48). Noting
ω0 = ω0r+ iγ0, with γ0 being the linear growth rate, and sub-
stituting equation (48) without δgzA into equation (44), we can
straightforwardly derive, near wave-particle resonance [20],

δgzA ≃ J2zEJ
2
E0

∣∣∣∣ cB0

n0q
r
ωd
ω0r

∣∣∣∣2 ∂∂r
∣∣δϕ0∣∣2

(ωd−ω0r)
2
+ γ20

∂F0

∂r
. (50)

In deriving equation (50), we have noted δgzA ∝ exp(2γ0t).
Taking resonance near rm such that (ωd−ω0r)

2 ≃ ω
′2
d (r−

rm)2 and noting ∂F0/∂r|rm < 0, we thus have a hole (δgzA <
0) for r< rm and a clump (δgzA > 0) for r> rm, consistent
with the simulation results shown in figure 4. Consequently,
∂δgzA/∂r|rm > 0 and ImδWA

kz < 0, i.e. δgzA, as is well known,
reduces the instability drive.

(Case B) Full ZFs in EP. In this case, δFg0B and δFgzB satisfy,
respectively, equations (40) and (41). Applying equation (39),

7
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the corresponding δgg0B and δgzB can then be shown to satisfy

(Lg+ δLzX)δgg0B = i
( e
m

)
Q(Fg0 + δgzB)

× J0

(
δϕ−

υ∥δA∥

c

)
0

, (51)

δgzB = δgzA+ δg(1)z , (52)

where

Lgδg
(1)
z =−

( e
m

) ∂F0

∂ε

∂

∂t
Jz

(
δϕ−

υ∥δA∥

c

)
z

, (53)

and δgzA given by equation (44). As in Case A, we can fol-
low equation (45) to extract the compressional component of
δgg0B, δK0B;

(Lg+ iωz)δK0B = i
( e
m

)
J0
(ωd+ωz)

ω0r
δϕ0Q(F0 + δgzB) .

(54)

ImδWk0, equation (34), meanwhile, becomes

ImδWk0B = eEIm
ˆ

d3X{δϕ∗0 ⟨(J0ωz+ωdJ0)δK0B⟩υ} . (55)

Again, taking trapped EP as an illustration, we have

δK0B≃
( e
m

)
E
e−iλdE

(ωd+ωzE)

ωd−ω0+ωzE
J0JE0δϕ0Q(F0+δgzB) ,

(56)

and

ImδWk0B=

(
e2

m

)
E

π

ω0r

ˆ
d3X

〈
J20J

2
E0

∣∣δϕ0∣∣2 (ωd+ωzE)
2

·δ (ωd−ω0 +ωzE)Q(F0 + δgzB)E⟩υ .
(57)

Here, ωzE = (c/B0)⟨δEz⟩× b0 · k⊥0. ZFs thus introduce two
effects on the EP excitation of the instability. First, noting
|ωzE| ∼ O(γL)≪ |ω0|, |ωd|, δEz introduces a small shift in
the wave-particle resonance condition in the EP phase space
and, typically, a negligible effect on the instability drive. We
remark, however, that ωzE could play a more significant role
in the nonlinear saturation process via the resonance detun-
ing due to the finite ∂ωzE/∂r shearing relative to ∂ωd/∂r [38].
The other effect, noting equation (52), is via the ZFs-induced
phase-space structure, δg(1)z , given by equation (53). As in
Case A, taking the resonance at rm, where |δϕ0|2 peaks, the
additional drive then depends on (∂δg(1)z /∂r)|rm . Following
the analysis in section 3.1 for the thermal ions, we have, for
the trapped EPs (cf equation (26)),

δg(1)zE ≃−
(
e
m
∂F0

∂ε

)
JzJEz0 (JEz0Φ− JEz1A)z . (58)

Here, we recall JEz0 = exp(iλdEz), λdEz = ρdrkzr, and JEz1 =
(υ∥/c)exp(iλdEz). Hence, for |λdEz|< 1, JEz0 ≃ 1, and JEz1 ≈
iυc ρbEkzr ∝ ∂/∂r. Noting, from equations (29) and (31), that

both Φz and Az beat driven by RSAE are odd functions with
respect to (r− rmin), we then obtain(

∂δg(1)zE

∂r

)∣∣∣∣∣
rm

≃−
(
e
m
∂F0

∂ε

)
J2Ez0

∂Φz

∂r

∣∣∣∣∣
rm

≃−
(
e
m
∂F0

∂ε

)

× c
B0

(1+ c0ηi)

ω2
0r

kθ0ω∗in
∂2

∂r2
∣∣δϕ0∣∣2∣∣∣∣

rm

< 0.

(59)

Here, we note ∂F0/∂ε < 0 and ∂2|δϕ0|2/∂r2 < 0 at rm. That
is, the additional δϕz− induced EP phase-space structure,
δg(1)z , further enhances the linear instability drive due to
∂F0/∂r< 0 and, hence, is destabilizing. One thus expects that
the present Case B with ZFs in the EP dynamics will lead to
a higher saturation level than Case A without ZFs in the EP
dynamics. This analytical prediction is consistent with the sim-
ulation results presented in section 2.

Case (C) Partial ZFs in EP. In this case, we suppress the
ZFs in the EP gyro-center propagator, while keeping the ZFs-
induced perturbed distribution. That is, equation (40) becomes

LgδFg0C =−(δL0X+ δL0ε)(Fg0 + δFgzC) . (60)

Noting equation (39), equation (60) then leads to

Lgδgg0C = i
( e
m

)
Q(Fg0 + δFgzC)J0

(
δϕ−

υ∥δA∥

c

)
0

. (61)

Meanwhile, from equation (41) and noting δLzE given by
equation (37), we find

δFgzC =
( e
m

) ∂F0

∂ε
J0δϕz+ δgzB

=
( e
m

) ∂F0

∂ε
J0δϕz+ δgzA+ δg(1)z ,

(62)

where δgzA and δg
(1)
z are given, respectively, by equations (44)

and (53). From equation (61), the compressional component,
δK0C, obeys

LgδK0C = i
( e
m

)
J0
ωd
ω0r

Q(Fg0 + δFgzC)δϕ0, (63)

and ImδWk0C becomes

ImδWk0C = eEIm
ˆ

d3X{δϕ∗0 ⟨ωdJ0δK0C⟩υ} . (64)

Considering only the trapped EPs, we have

δK0C ≃
( e
m

)
e−iλdE

ωd
ωd−ω0

JE0J0δϕ0Q(Fg0 + δFgzC) . (65)

ImδWk0C is further reduced to

ImδWk0C=

(
e2

m

)
E

π

ω0r

ˆ
d3X
〈
J20J

2
E0

∣∣δϕ0∣∣2ω2
dδ (ωd−ω0)

·Q(Fg0 + δFgzC)
〉
υ
. (66)
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Equations (62) and (66) indicate that, relative to the Full-
ZFs Case B, the present Partial-ZFs Case C introduces an
additional EP PSZS, (e/m)(∂F0/∂ε)J0δϕz. The correspond-
ing instability drive at rm is then given by

∂

∂r

[( e
m

)(∂F0

∂ε

)
J0δϕz

]∣∣∣∣
rm

≃ e
m
∂F0

∂ε

∂δϕz
∂r

∣∣∣∣
rm

> 0. (67)

That is, suppressing the zonal drift-shearing in the EP gyro-
center propagator in fact provides stabilization with respect
to the Full-ZFs Case B, which is consistent with the simula-
tion reported in section 2. Compared to the No-ZFs Case A,
equation (62) indicates that the additional EP PSZS is given by
(e/m)(∂F0/∂ε)Jzδϕz+ δg(1)z . Noting equations (59) and (31),
the additional instability drive relative to Case A is thus,

∂

∂r

[( e
m

)
E

∂F0

∂ε
Jz
(
1− J2E0

)
Φz

]∣∣∣∣
rm

≈
( e
m

)
E

(
∂F0

∂ε

)
× c
B0

(1+c0ηi)
ω2
0r

kθ0ω∗in
(
1−J2E0

) ∂2
∂r2
∣∣δϕ0∣∣2∣∣∣

rm
> 0; (68)

i.e. Case C with the zonal drift-shearing suppressed is, qualit-
atively, more stable than the No-ZFs Case A. Quantitatively,
for |krzρdE|< 1, 1− J2E0 ≃ (kzrρdE)2 ≪ 1, the additional stabil-
ization is negligibly small. Case C, therefore, essentially coin-
cides with Case A, and this analytical result is consistent with
the simulation results presented in section 2.

4. Conclusions and discussion

In summary, we have employed nonlinear gyrokinetic simula-
tion as well as analytical theory to investigate the effects of ZFs
on the EP’s driving of RSAE instability. We have derived ana-
lytical expressions for the ZFs beat driven by RSAE, which are
in good agreement with the simulation results. Three cases of
GTC simulations with various terms of ZFs in the EP gyrokin-
etic equation turned on and off are then carried out. The res-
ults, contrary to the usual expectation, indicate that ZFs tend to
enhance EP’s drive and thereby increase the saturation level.
A corresponding analytical theory is also developed, which
demonstrates that, in each case, the ZFs-induced EP PSZSs
are different, and this, according to the GFLDR, gives rise to,
consistent with the simulation results, the additional stabiliz-
ation/destabilization by ZFs. We note that while this work is
focused on the RSAE, it will be interesting to carry out a cor-
responding study on TAE and investigate if ZFs have similar
effects on the EP drive.

As we remark in section 1, it has been well established
that ZFs tend to suppress RSAE to a significantly lower sat-
uration level. Our current results, however, indicate that such
suppression is not due to ZF effects on EPs, i.e. not via the
second route. Thus, one must conclude that ZFs suppress
RSAE mainly via the channel of nonlinear physics of thermal
plasma, i.e. the first route. It will, therefore, be interesting to
employ again both nonlinear simulation and analytical theory
to investigate the detailed nonlinear mechanisms of thermal
plasmas which could suppress the RSAE. This will be a sub-
ject of future investigations.
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