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Employing both nonlinear gyrokinetic simulation and analytical theory, we have investigated the
effects of zonal (electromagnetic) fields on the energetic particle’s drive of reversed shear Alfvén
eigenmodes in tokamak plasmas. Contrary to the conventional expectation, simulations with zonal
fields turned on and off in the energetic particle dynamics

::::
while

:::::::
keeping

:::
the

:::
full

::::::::
nonlinear

::::::::
dynamics

:
of
::::

the
::::::
thermal

:::::::
plasma indicate that zonal fields further enhance the instability drive and lead, thus,

to a higher saturation level. These puzzling simulation results can be understood analytically in
terms of the general fishbone-like dispersion relation with the correspondingly different energetic-
particle phase-space structures induced by the zonal fields. Analytical expressions for the zonal
fields beat driven by the reversed shear Alfvén eigenmodes are also derived, and shown to be in
good agreement with the simulation results.

PACS numbers: 52.30.Gz, 52.35.Bj, 52.35.Mw, 52.65.Tt

I. INTRODUCTION

The interaction between energetic particles (EPs) and
Alfvén eigenmodes (AEs) is crucial for understanding
the stability and transport dynamics of fusion plasmas
in magnetic confinement devices; such as the tokamak.
Among the various AEs, reversed shear Alfvén eigen-
modes (RSAEs) [1, 2] have attracted significant interest
due to their complex interplay with EPs in reversed s-
hear configurations, which are essential for achieving self-
organized steady-state operations conducive to sustained
fusion. Previous extensive simulations on the nonlinear
physics of RSAE [3–5] have clearly shown that the zonal
electromagnetic fields (ZFs) could be beat driven by R-
SAE, and significantly lower the RSAE saturation level.
There are two possible routes to achieve such suppression
of RSAE by ZFs. The first route is via the nonlinear dy-
namics of thermal plasmas; such as nonlinear frequency
shift and/or modification of the local current/safety fac-
tor profile; and thereby, enhance the continuum damping
[4, 6]. The second route is via modifications by ZFs in the
EP dynamics and drive. Studies on both routes have, so
far, been qualitative, and underlying physics mechanism-
s remain not well understood. The focus of the present
work is to investigate the physics of the second route up

to the initial saturation.

More specifically, our aim is to provide, by using both
nonlinear gyrokinetic simulation and theory, clear and
detailed analyses on the nonlinear beat-driven genera-
tion of ZFs by RSAE, as well as how such ZFs affect the
EP’s drive of RSAE. To facilitate our analysis, we cate-
gorize our studies into three cases, referred to as cases A,
B, and C; each representing different treatment of zonal
fields in the EP dynamics. In Case A, labeled as “No-
ZFs Case A”, we focus on fully nonlinear thermal plasmas
while deliberately excluding the effects of zonal fields on
EPs. Case B, labeled as “Full-ZFs Case B”, incorpo-
rates a fully nonlinear treatment of both thermal plasma
and EPs; revealing the unexpected result that inclusion
of the ZFs in EP dynamics yields an increased satura-
tion level relative to the No-ZFs Case A. Lastly, Case C,
labeled as “Partial-ZFs Case C”, keeps fully nonlinear
thermal plasmas, while removes zonal shearing effects in
EPs; resulting in a negligible or, more precisely, a weak
stabilizing effect on RSAE saturation when compared to
the No-ZFs Case A. In all these three cases, we remark,
ZFs are fully kept for the thermal ions and electrons.

Our findings indicate that including ZFs beat driven
by RSAE in the EP dynamics tends to enhance EP’s
drive; resulting in a higher RSAE saturation level. More-
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over, suppressing zonal shearing effects in EPs appears
to exert a stabilizing effect on the RSAE saturation level.
These conclusions, contrary to conventional expectation,
could be understood analytically in terms of the general
fishbone-like dispersion relation [7, 8] with different EP
phase-space zonal structures (PSZS) [9] generated in the
three cases.

The paper is organized as follows: Section II presents
the nonlinear simulation results from GTC [10] for the
three cases discussed above. Section III presents analyt-
ical theories for the beat-driven zonal fields, as well as,
for the three cases, EP PSZS generated by ZFs and their
implications to RSAE stability. Conclusions and discus-
sions are given in Sec. IV.

II. GTC SIMULATIONS

The equilibrium and plasma profiles adopted in GTC
simulations [10] are selected from DIII-D discharge
#159243 [11] at 805 ms and reproduced by with the ki-
netic EFIT code [12], which have also been well simulat-
ed in other benchmarking codes [3, 13]. The simulations
employ a typical reversed magnetic shear configuration
with minimal safety factor qmin = 2.94 near major ra-
dius R = 1.98 m on the mid-plane for the low field side,
where RSAE are observed in experiments and validated
in simulations. Here, q, the safety factor, represents the
ratio of toroidal to poloidal turns of magnetic field lines.

For the GTC simulation model [14], EP and thermal
ions are described by gyrokinetic model [15], and elec-
trons are described by drift kinetic model. Since β � 1
and nq � 1, the effects of compressible magnetic per-
turbation δB‖ and equilibrium current J‖0 on RSAE, as
verified in previous simulations, are negligible. Here β is
the ratio between plasma and magnetic pressures, and n
is the toroidal mode number. Using the parallel veloci-
ty, υ‖, description [15], the perturbed gyrokinetic Vlasov
equation can be written as

(L0 + δL)δF = −δLF0, (1)

where F0 is the equilibrium distribution, δF is the per-
turbed distribution, and the equilibrium and perturbed
propagators in the (X, υ‖) phase space are given, respec-
tively, by

L0 =
∂

∂t
+
(
υ‖b0 + υd

)
· ∂

∂X
− µB∗0

B0
· ∇B0

∂

∂υ‖
, (2)

and

δL =

(
υE +

υ‖δB⊥

B0

)
· ∂

∂X
−
(
µδB⊥ · ∇B0

B0

+Z
B∗0
mB0

· ∇δφ+
Z

cm

∂δA‖

∂t

)
∂

∂υ‖
.

(3)

Here, X is the gyro-center position, µ = υ2⊥/2B0 is the
magnetic moment, Z is the particle charge, m is the par-
ticle mass, c is the light speed, B0 is the equilibrium

magnetic field, δB⊥ is the perpendicular magnetic per-
turbation, δA‖ is the parallel component of the perturbed
vector potential, and δφ is the perturbed scalar potential.
Furthermore,

υd = b0 ×
(
µ∇B0 + υ2‖κ

)
/Ω,

υE =
c

B0
b0 ×∇δφ,

B∗0 = B0 +
B0υ‖

Ω
b0 × κ,

where b0 = B0/B0, Ω = ZB0/mc, and κ = (b0 ·∇)b0
being the curvature of B0. For a single n mode simu-
lation with zonal components (labeled as subscript “z”),
Eq. (1) can be further written as,

(L0 + δLn + δLz) (δFn + δFz) = − (δLn + δLz)F0, (4)

where δLn and δLz correspond to the perturbed prop-
agators, Eq. (3), with, respectively, the toroidal mode
number n and zonal components of the electromagnetic
fields.

In GTC simulations, an initial Maxwellian distribution
is used for thermal plasmas and EP with Te = Ti = 1 keV
and TE = 20 keV. Simulations are performed using a low
noise δf scheme [16] with a particle number per cell 1000
to minimize the noise. The radial boundary of the sim-
ulation domain is R = [1.81, 2.23] m. Based on the con-
vergence studies, GTC uses a global field-aligned mesh
with 32 parallel grid points, which is sufficient to resolve
the long parallel wavelength, and 5 × 104 unstructured
perpendicular grid points with a grid size ∼ 1.3ρi, where
ρi ∼ 2.1 mm is the thermal ion gyroradius. Time step is
set to be 2×10−5 ms to resolve the high frequency RSAE
and the fast electron thermal motion υth,e ∼ 2×107 m/s.
In addition, the initial condition is only random noise,
and all poloidal harmonics are included for a select spe-
cific toroidal mode using Fourier filtering.

In the present work, in order to delineate the effects
of zonal fields (δφz, δA‖z) on the EP dynamics, three
cases of simulations, labeled as Case A, B, and C, are
carried out for the most unstable n = 4 RSAE. Case A
corresponds to the No-ZFs case, where we set δLz = 0
in the EP gyrokinetic Vlasov equation, Eq. (4), in order
to remove the effects of ZFs on EP. Case B corresponds
to the Full-ZFs case, where δLz on both sides of Eq. (4)
is kept for EP. Meanwhile, Case C corresponds to the
Partial-ZFs case, where we keep δLz in the right-hand
side of Eq. (4); but we set δLz = 0 in the left-hand side
of Eq. (4), i.e., the EP perturbed propagator, in order
to remove the so-called shearing effects due to ZFs. Note
that, in all three cases, ZFs are fully kept for the thermal
electrons and ions.

Figure 1 (a) shows the time history of mode amplitude
of n = 4 RSAE scalar potential, δφ4, for the three sim-
ulation cases. In the early linear phase, i.e., before 0.4
ms, effects of ZFs on the RSAE amplitude are negligible
due to the small amplitude of ZFs. However, in the lat-
er linear phase, the Full-ZFs Case B, exhibits a stronger
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FIG. 1: Time history of perturbed electrostatic
potential eδφ4/Tea (panel a), normalized by the on-axis
electron temperature Tea, for the selected toroidal n = 4
modes on qmin flux surface from Case A (red), B (black)

and C (green). The normalized zonal scalar potential
eδφz/Tea (panel b) is the root-mean-square (rms) value

averaged over the radial domain of the major radius
R = [1.91, 2.04] m. Panel (c) and (d) are the

corresponding plots using a base-10 logarithmic scale on
the vertical axis.
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FIG. 2: Time history of parallel vector potential
eυAδA‖4/(cTea) (panel a), normalized by the on-axis

electron temperature Tea and Alfvén speed
υA = Ba/

√
4πneami with the ion mass mi, the on-axis

magnetic field Ba and ion density nea. Panel (b)
displays the time history of normalized zonal vector
potential eυAδA‖z/(cTea). Panel (c) and (d) are the

corresponding plots using a base-10 logarithmic scale on
the vertical axis.

drive and, thereby, a higher initial saturation level than
the No-ZFs Case A and Partial-ZFs Case C. This result
contradicts with the conventional expectation that ZF-
s tend to suppress instabilities and, thereby, lower the
saturation level. Furthermore, that the No-ZFs Case A
essentially overlaps with the Partial-ZFs Case C is al-
so puzzling; since it suggests that δLz in the right-hand
side of Eq. (4) has a negligible effect on RSAE excita-
tions by EP. It is worthwhile noting that the effects of
ZFs also enter implicitly via the PSZS, δFz, which can-
not be suppressed in simulations. Consequently, as will
be demonstrated in Sec. III B, these puzzling simulation
results could be understood analytically employing the
GFLDR along with the different EP PSZS nonlinearly
generated in the three cases. Figure 1 (b), meanwhile,
plots the time history of the nonlinearly generated zonal
potentials, δφz, for the three cases. Curves for eδφ4/Tea
and eδφz/Tea are also plotted in Figs. 1 (c) and (d) in
semi-log scale. During the linear phase, it is observed,
as in previous RSAE simulations, that the ZFs grow at
twice the linear growth rate of RSAE; clearly indicating
that the ZFs are beat driven by RSAE [3, 5, 17]. Figure
2 plots the corresponding time histories of the parallel
vector potential, δA‖; showing the same features as δφ.
Adopting the beat driven generating mechanism, we will
derive in the Sec. III A the corresponding analytical ex-
pressions of δφz and δA‖,z; which are shown to be in good
agreement with simulations, and used later in Sec. III B
to analyze effects of ZFs on EP excitations.

III. THEORETICAL ANALYSIS

A. Beat-driven zonal electromagnetic fields by
RSAE

Let us consider a large aspect-ratio tokamak with cir-
cular magnetic surfaces; i.e., ε ≡ r/R ∼ O(10−1) < 1
with r and R being, respectively, the minor and major
radii. β, meanwhile, is taken to be O(ε2) � 1. Let
Ω0 = (ω0, n0) denote a RSAE with toroidal mode number
n0 and mode frequency ω0 = ω0r+ i∂t. Note Ω0 could be
either linearly excited by EPs with ∂t = γ0 � ω0r being
the linear growth rate, or excited by an external antenna
with ∂t → 0+. Since β � 1, magnetic compression is
negligible and, thus, Ω0 is described by electromagnetic
perturbations; δφ0 and δA‖0 with δφ0 and δA‖0 being the
scalar and parallel vector potentials, respectively. More
specifically, we take(

δφ0
δA‖0

)
= e−iω0rt+in0ξ

∑
m

(
Φm(r, t)
Am(r, t)

)
e−imθ + c.c. (5)

Here, ξ is the toroidal angle and θ the poloidal angle.
Since |k⊥0ρi|2 � 1 with k⊥0 being the perpendicular
wave vector for Ω0, we may further assume Ω0 satisfying
the ideal MHD approximation; δE‖0 ' 0; i.e., ω0δA‖0 =
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−ic(b0 · ∇)δφ0, or

k‖mΦm = ω0Am/c, (6)

where k‖m = (n0q −m)/qR.
We now consider the nonlinear generation of the zero-

frequency ZFs beat driven by Ω0. Let the corresponding
zonal state be denoted as Ωz = (ωz, n = 0); that is,(

δφz
δA‖z

)
=

(
Φz(r, t)
Az(r, t)

)
+ c.c., (7)

and | − iωz| = |∂t ln Φz| = |∂t lnAz| � ωbi, ωti, ω0r with
ωbi and ωti being, respectively, the thermal ion bounce
and transit frequencies. The governing equation, first,
is the nonlinear gyrokinetic equation [18] for the non-
adiabatic component of the perturbed distribution func-
tion, δgj , given, for j = species, by

[Lgδgj ]k = i
( e
m

)
j
QF0j〈δLk〉 − [〈δUg〉 ·∇δgj ]k , (8)

where

Lg = ∂t + υ‖b0 ·∇ + υd ·∇, (9)

QF0j = (i∂t∂/∂ε+ ω̂∗k)F0j , (10)

ω̂∗kF0j = −i(b0/Ωj ×∇F0j) ·∇, (11)

and δLk = (δφ − υ‖δA‖/c)k. Meanwhile, ε = υ2/2, 〈A〉
denotes the gyro-averaged A; i.e., 〈δLk〉 = JkδLk with
Jk = J0(λkj), J0 being the Bessel function, λkj = k⊥ρj ,
and ρj = υ⊥/Ωj . Note here that the wave vector, k,
should, in general, be understood as an operator, k =
−i∇. Finally, noting

〈δUg〉k = 〈δUE〉+ υ‖〈δB⊥〉/B0

=
c

B0
b0 ×∇〈δLk〉,

(12)

the nonlinear term can then be expressed in terms of the
wave vectors as

[〈δUg〉 ·∇δg]k =

(
c

B0

)
Λk

′

k′′ [〈δLk′〉δgk′′ ] , (13)

where k′ + k′′ = k, and

Λk
′

k′′ ≡ (c/B0)(k
′′

⊥ × k
′

⊥) · b0. (14)

Note also, since nEP /nb � 1, the EP contribution to the
ZFs is, typically, negligible.

To generate the ZFs, let us first consider the electron

responses. Letting δgze = δg
(1)
ze + δg

(2)
ze , we then have,

from Eq. (8) and noting |k⊥ρe| . |k⊥ρbe| � 1, for
trapped electrons,

δg
(1)
ze,t = − e

Te
FMeδφz, (15)

and, for circulating electrons,

δg(1)ze,c = − e

Te
FMe(δφ− ῡ‖δA‖/c)z. (16)

In deriving Eqs. (15) and (16), we have taken the thermal
plasma to be Maxwellian, and ῡ‖ is the transit-averaged

υ‖. For the nonlinear response, δg
(2)
ze , meanwhile, we

have, from Eq. (8),

[(
∂/∂t+ υ‖b0 ·∇

)
δg(2)e

]
z

=− c

B0

[
Λk

′

k′′

(
δφ

−
υ‖δA‖

c

)
k′
δgk′′

]
z

.

(17)

Noting that, for RSAE, |k‖υte| � |ωk|, we have, from
Eq. (8),

δgk′e ' δg(1)k′e ' −
e

Te
FMe

(
1− ω∗e

ω

)
k′
δψk′ . (18)

Here, ω∗jk = ω∗jn[1 + η(υ2/υ2t − 3/2)]j with ω∗jn =
(cT/eB0)j(k × b0) ·∇ lnNj and ηj = |∇Tj |/|∇Nj |, and
δψk′ = (ωδA‖/ck‖)k′ = δφk′ via the ideal MHD con-
straint, Eq. (6). Equation (17) then readily yields, for
the trapped electrons,

δg
(2)
ze,t '

c

B0

e

Te
FMe

1

ω2
k′r

∂

∂r
[(kθω∗e)k′ δφk′δφk′′ ]z , (19)

and, for the circulating electrons,

δg(2)ze,c'
c

B0

e

Te
FMe

1

ω2
k′r

∂

∂r

[(
kθω∗e−ῡ‖kθk‖

)
k′
δφk′δφk′′

]
z
.

(20)

In deriving Eqs. (19) and (20), we have noted k′ = kθ0θ̂+

k‖0b0−ir̂∂/∂r, k′′ = −kθ0θ̂−k‖0b0−ir̂∂/∂r, ωk′ = ω0r+
i∂/∂t, and ωk′′ = −ω0r + i∂/∂t. Also, noting Eq. (5),
[δφk′δφk′′ ]z = |δφ0|2 should be understood as summing
up all the poloidal harmonics; e.g.

[(
kθk‖

)
k′
δφk′δφk′′

]
z

=
∑
m

n0q

r

(n0q −m)

qR
|Φm(r)|2 .

(21)
For ions, however, we need, in general, to keep the

finite Larmor-radius and drift-orbit-width effects via the
transformation to the drift/banana centers [19]. That is,
letting

δgzi = exp(−iλdi)δgzid, (22)

where λdi = kzrρdr, υ‖∂lρdr = υdr, and following steps
essentially the same as those for electrons, we then de-

rive from Eqs. (8)-(13), δgzid = δg
(1)
zid + δg

(2)
zid. Here, for

trapped ions,

δg
(1)
zid,t '

(
e

Ti
FMi

)
Jz
(
Jz0δφ− Jz1δA‖

)
z
, (23)
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and, for circulating ions,

δg
(1)
zid,c '

(
e

Ti
FMi

)
Jz0Jz

(
δφ− ῡ‖δA‖/c

)
z
. (24)

In Eqs. (23) and (24), Jz0 = exp (iλdi) and Jz1 =

(υ‖/c) exp (iλdi) correspond to finite drift-orbit/banana-

width effects, and (...) denotes bounce averaging. Mean-

while, δg
(2)
zid, is given, for both trapped and circulating,

ions, approximately by

δg
(2)
zid ' −

c

B0

e

Ti

FMi

ω2
0r

Jz0
∂

∂r

[
J2
k′k
′
θω∗k′δφk′δφk′′

]
z
. (25)

Here, again, [· · · ]z should be understood as summing over
all the poloidal harmonics. We note that, in deriving Eq.
(25), we have ignored the ion (υ‖δA‖/c)k contributions
from RSAE, since |ωk| � |k‖υti|. Equations (22)-(25)
then yield

δg
(1)
zi,t '

(
eFMi

Ti

)
JzJz0

(
Jz0δφ− Jz1δA‖

)
z
, (26)

δg
(1)
zi,c '

(
eFMi

Ti

)
J2z0Jz

(
δφ− ῡ‖δA‖/c

)
z
, (27)

and

δg
(2)
zi ' −

c

B0

e

Ti

FMi

ω2
0r

J2z0J
2
0

∂

∂r

[
kθ0ω∗i0 |δφ0|2

]
. (28)

With the δgz’s derived, we can then proceed to cal-
culate δφz and δA‖z. First, the parallel Ampère’s law,

∇2
⊥δA‖z = 4πδJz/c, can be readily shown to yield

Az
c
' c

B0ω2
0r

∂

∂r

[
kθ0k‖0|δφ0|2

]
=

c

B0ω2
0r

∂

∂r

∑
m

(n0q
r

) (n0q −m)

qR
|Φm|2 .

(29)

In deriving Eq. (29), we have noted that δJz ' δJze
since mi � me, |∇⊥c/ωpe|2 � 1, and Eq. (21). Next the
quasi-neutrality condition for the Ωz zonal mode; taking
single charged ions and τ = Te/Ti,

Nie
2

Te
(1 + τ)δφz =

∑
j=e,i

ej〈Jzδgzj〉υ, (30)

then yields

Φz '
c

B0

1

ω2
0r

(1 + c0ηi)∂r
[
kθ0ω∗in|δφ0|2

]
,

=
c

B0ω2
0r

(1 + c0ηi)
∂

∂r

∑
m

(n0q
r

)
ω∗in |Φm|2 .

(31)

where

c0 = 〈(1−J2z0)(υ2/2υ2ti−3/2)FMi〉υ
/
〈(1−J2z0)FMi〉υ, (32)

and we have taken J2
z ' J2

0 ' 1 but kept J2z0. Note
that, for |λdi| < 1, 〈(1 − J2z0)FMi〉υ corresponds to the
Rosenbluth-Hinton neoclassical polarization due to the
trapped ions [20], and c0 ' 1. In deriving Eq. (31), we
have noted that, from Eq. (29) and |n0qmin −m| � 1
for RSAE, the Jz1δA‖z term due to trapped ions in E-
q. (23) generally makes negligible contribution to δφz.
Equations (29) and (31), thus, correspond to the zonal
electromagnetic fields, ZFs, beat driven by the pondero-
motive force of the RSAE, Ω0.
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z
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0
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(b) ev

A
A

||z
/(cT

ea
)

ev
A

A
||z,a

/(cT
ea

)

FIG. 3: Radial profiles of normalized zonal scalar
potential δφz from the Full-ZFs Case B (solid line) and
the analytically derived δφz using Eq. (31) with c0 = 1
(dot dash line) on the mid-plane for the low field side at

t = 0.42 ms [panel (a)]. The radial profiles of
corresponding normalized zonal parallel vector potential
δA‖z using Eq. (29) are shown in panel (b). The gray

dash lines represent the qmin flux surface.

To compare the analytical expression with simulation
results, we have plotted (black solid line) in Fig. 3 (a) the
radial profile of normalized δφz from the Full-ZFs Case
B simulation at t = 0.42 ms linear phase. The black dash
line, meanwhile, is the corresponding analytical curve ac-
cording to Eq. (31) with c0 = 1. Similar curves for δA‖z
with Eq. (29) are plotted in Fig. 3 (b). It can be ob-
served that the analytical and simulation results are in
good agreement for both zonal fields. It, thus, gives us
confidence in employing the analytical expressions to in-
vestigate effects of ZFs on EP excitation in Sec. III B.
We remark that the expressions for Az and Φz given, re-
spectively, by Eqs. (29) and (31) are derived subject to a
minimal of approximations and, thus, can be expected to
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6

be also generally valid for other types of high-frequency
AEs; e.g., the toroidal Alfvén eigenmode (TAE) [21].

B. Energetic-particle excitations of RSAE and
phase-space zonal structures

To analyze how ZFs affect the EP drive on RSAE,
we first note that, with δφ0 = δψ0, the corresponding
gyrokinetic vorticity equation can be written as [22]

B0

(
∂l+

δB⊥
B0
·∇
)(

δJ‖

B0

)
−∇ ·

∑〈(
e2

m

2µ

Ω2
B0∂εF0j

)
(
J2
0−1

λ2

)〉
υ

∇⊥∂tδφ−
∑

ecb0×∇
〈

2µ

Ω
F0j

(
J2
0 − 1

λ2

)〉
υ

·∇∇2
⊥δφ+

∑
e∇⊥ · 〈υdJ0δgj〉υ + δB⊥ ·∇

(
J‖0

B0

)
+
∑

e

〈
J0

[
c

B0
b0×∇(J0δφ) ·∇δgj

]〉
υ

= 0.

(33)
In Eq. (33),

∑
is over all j = species, and we have as-

sumed F0j is isotropic; ∂F0j/∂µ = 0. From Eq. (33), we
can then derive variationally a general fishbone-like dis-
persion relation (GFLDR) [7, 8] and extract the following
EP contribution to the RSAE instability drive;

ImδWk0 ≡ eEIm
∫
d3X

{
δφ∗0
〈

(J0ωz + ωdJ0) δgE0

〉
υ

}
.

(34)
Here, ωz = −i〈δUg〉z ·∇⊥, ωd = −iυd ·∇⊥, and Im de-
notes the imaginary part due to wave-particle resonance,
and ImδWk0 > 0 gives rise to instability drive. Note
that, as observed in simulations [3, 23–25], |〈δUg〉z ·∇⊥|
is, typically, of O(γL)� |υdE ·∇⊥|. Thus, ZFs effects on
ImδWk0 predominantly enter via δgE0. To understand
the simulation results in terms of the above analytical
theory; i.e., Eq. (34), we need to establish the connection
between the perturbed distribution functions obtained in
simulation and δg.

First, we note that, in simulations, one employs the
gyro-center distribution function; i.e.,

f =
( e
m

) ∂F0

∂ε

(
1− e−ρ·∇J0

)
δφ+ e−ρ·∇fg, (35)

where fg satisfies the following nonlinear gyro-center gy-
rokinetic equation [15]

(Lg + δLX + δLε) fg = 0, (36)

Lg is given by Eq. (9), δLX = 〈δUg〉 ·∇, 〈δUg〉 is given
by Eq. (12), δLε = δε̇∂/∂ε, and

δε̇ =
( e
m

)[
υ‖

(
b0+
〈δB⊥〉
B0

)
· 〈δE〉+υd · 〈δE〉

]
. (37)

Note that, in Eq. (36), in order to facilitate the connec-
tion with δg, we employ the ε = υ2/2 variable instead

of the equivalent Eq. (1) in terms of the υ‖ variable. In
analytical theory [18], we have

f = F0 +
( e
m

) ∂F0

∂ε
δφ+ e−ρ·∇δg. (38)

Thus, letting fg = Fg0 + δFg, noting F0 = exp(−ρ ·
∇)Fg0, we then readily obtain

δg = δFg −
( e
m

) ∂Fg0
∂ε

J0δφ. (39)

We remark that the two nonlinear gyrokinetic equations,
Eqs. (8) and (36), are the same except in Eq. (8) we
have ignored the O(ρ/R) higher-order small terms due
to the so-called parallel nonlinearities.

Let us consider simulations where only one single-n0
RSAE (δφ0, δA‖0) and ZFs (δφz, δA‖z) are kept. Thus,
letting, correspondingly, δFg = δFg0 + δFgz, Eq. (36)
then yields, for the Ω0 RSAE perturbation,

(Lg+δLzX+δLzε) δFg0 =− (δL0X+δL0ε) (Fg0+δFgz) .
(40)

Meanwhile, for the Ωz zonal perturbation, we have

LgδFgz ' −δLzεFg0 − [δL0XδFg0]z . (41)

In deriving Eq. (41) we have noted δLzX(δFgz, Fg0) =
0, and neglected the small corrections of δLzεδFgz as
well as δL0εδFg0 relative to, respectively, δLzεFg0 and
δL0XδFg0.

We now proceed to analyze, for the three simulation
cases presented in Sec. II, the corresponding δgE and sta-
bility properties. From now on, we will, unless necessary,
drop the subscript E in order to simplify the notations.

(Case A) No ZFs in EP. In this case, δφz = δA‖z =
0 and Eq. (40) becomes

LgδFg0A = −(δL0X + δL0ε)(Fg0 + δgzA). (42)

Here, we have noted, from Eq. (39), δFgzA = δgzA. Also,
using Eq. (39) for δFg0 and noting Eq. (9), Eq. (42)
further reduces to

Lgδg0A = i

(
e

m

)
ω0r

∂Fg0
∂ε

J0

(
δφ−

υ‖δA‖

c

)
0

−δL0X

(
Fg0 + δgzA

)
0

∼= i

(
e

m

)
Q(Fg0 + δgzA)J0

(
δφ−

υ‖δA‖

c

)
0

.

(43)
In Eq. (42), we have approximated ∂εFg0 ' ∂ε(Fg0 +
δgzA). δgzA, meanwhile, is given by Eq. (41); i.e.,

LgδgzA = − [δL0Xδg0A]z
= − [〈δUg〉0 ·∇δg0A]z .

(44)

Equation (44) shows that, in the present case of no ZFs,
the phase-space zonal structure is, as expected, gener-
ated only by the symmetry-breaking Ω0 RSAE fluctua-
tions. Equations (43) and (44), thus, correspond to the
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single-wave model [26] and have been extensively studied
in the literature [25, 27–34] and can be cast in a Dyson-
like equation [9, 22]. We, furthermore, remark that, in
Eq. (43), δL0xFg0 = 〈δUg〉0 ·∇Fg0 provides the expan-
sion free energy for the linear instability drive. δgzA,
meanwhile, gives rise to the clump-hole structure near
the wave-particle resonance and, thereby, reduces the in-
stability drive near the peak of the RSAE; resulting in a
net stabilizing effect [35, 36]. This feature can be clear-
ly observed in Fig. 4 where δFz is plotted in the (ε,R)
phase space for µBa = 80 keV at t = 0.42 ms linear phase
in the Case A simulation.

FIG. 4: Perturbed EP zonal distribution function δFz
with fixed µBa = 80 keV in (ε,R) phase space taken at
0.42 ms in the linear phase of Case A simulation. The

black lines represent the radial structure of RSAE
intensity |δφ4|2, and the gray dash line represents the

qmin location.

To be more specific, we follow the linear gyrokinetic
theory [37] and let

δg0A = −
( e
m

)( Q

ω0r

)
(F0 + δgzA) J0δΨ0 + δK0A, (45)

Equation (43), with δφ0 = δψ0, then leads to

LgδK0A = i
( e
m

)
J0

ωd
ω0r

δφ0Q(F0 + δgzA). (46)

ImδWk0, Eq. (34), meanwhile, becomes

ImδWk0A = eEIm
∫
d3X

{
δφ∗0
〈
ωdJ0δK0A

〉
υ

}
. (47)

To proceed further analytically and, thereby, illumi-
nate the underlying physics more clearly, let us further
simplify the analysis by considering only trapped EPs.
Taking ωbE � |ω0|, |ωd|, we then have

δK0A '
( e
m

)
E
e−iλdE

(ωd/ω0r)

ωd − ω0
J0JE0δφ0Q(F0 + δgzA).

(48)

Here, as in Sec. III A, λdE = k⊥ ·ρd, represents the finite
banana-width effect and JE0 = exp(iλdE). Equation (47)
then reduces to

ImδWk0A =

(
e2

m

)
E

(
π

ω0r

)∫
d3X

〈
J2
0J

2
E0

∣∣δφ0∣∣2ω2
d

× δ(ωd − ω0)Q(F0 + δgzA)E

〉
υ
,

≡ ImδW l
k + ImδWA

kz,
(49)

where δW l
k and δWA

k correspond to contributions to the
instability drive due to, respectively, F0 and δgzA. Noting
|ω0| � |ω∗iE |, Q ≈ ω̂∗ = (k×b0/Ω)·r̂∂/∂r, and consider-
ing the resonance, ω0r = ωd(rm|ε,µ), where q(rm) = qmin

and |δφ0|2 peaks at rm, we then have, taking ω0r and
ωd > 0, ∂F0/∂r|rm < 0 and, thus, ω̂∗F0 > 0; i.e.,
ImδW l

k > 0. This is, of course, just the usual trapped
EP linear instability drive via the precessional resonance
and ∂F0/∂r < 0 expansion free energy.

Following the same argument, we can consider ImδWA
kz

due to QδgzA ' ω̂∗δgzA. Note, as remarked earlier, δgzA
is given by the coupled Eqs. (43) and (44); involving an
infinite sum of perturbation expansions; i.e., the Dyson-
like equation. In the linear phase, however, we need only
keep the first-order perturbation; i.e., dropping δgzA in
Eq. (48). Noting ω0 = ω0r + iγ0 with γ0 being the
linear growth rate, and substituting Eq. (48) without
δgzA into Eq. (44), we can straightforwardly derive, near
wave-particle resonance [22],

δgzA ' J2zEJ
2
E0

∣∣∣∣ cB0

n0q

r

ωd
ω0r

∣∣∣∣2 ∂∂r
∣∣δφ0∣∣2

(ωd − ω0r)2 + γ20

∂F0

∂r
.

(50)
In deriving Eq. (50), we have noted δgzA ∝ exp(2γ0t).

Taking resonance near rm such that (ωd−ω0r)
2 ' ω

′2
d (r−

rm)2 and noting ∂F0/∂r|rm < 0, we, thus, have a hole
(δgzA < 0) for r < rm and a clump (δgzA > 0) for r > rm;
consistent with the simulation result shown in Fig. 4.
Consequently, ∂δgzA/∂r|rm > 0 and ImδWA

kz < 0; i.e.,
δgzA, as is well known, reduces the instability drive.
(Case B) Full ZFs in EP. In this case, δFg0B and

δFgzB satisfy, respectively, Eqs. (40) and (41). Applying
Eq. (39), the corresponding δgg0B and δgzB can then be
shown to satisfy

(Lg + δLzX) δgg0B =i
( e
m

)
Q (Fg0 + δgzB)

× J0
(
δφ−

υ‖δA‖

c

)
0

,
(51)

δgzB = δgzA + δg(1)z , (52)

where

Lgδg(1)z = −
( e
m

) ∂F0

∂ε

∂

∂t
Jz

(
δφ−

υ‖δA‖

c

)
z

, (53)

and δgzA given by Eq. (44). As in Case A, we can
follow Eq. (45) to extract the compressional component
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of δgg0B , δK0B ;

(Lg + iωz) δK0B = i
( e
m

)
J0

(ωd + ωz)

ω0r
δφ0Q(F0 + δgzB).

(54)
ImδWk0, Eq. (34), meanwhile, becomes

ImδWk0B = eEIm
∫
d3X

{
δφ∗0
〈

(J0ωz + ωdJ0) δK0B

〉
υ

}
.

(55)
Again, taking trapped EP as an illustration, we have

δK0B'
( e
m

)
E
e−iλdE

(ωd+ωzE)

ωd−ω0+ωzE
J0JE0δφ0Q(F0+δgzB),

(56)
and

ImδWk0B=

(
e2

m

)
E

π

ω0r

∫
d3X

〈
J2
0J

2
E0

∣∣δφ0∣∣2(ωd + ωzE)2

· δ(ωd − ω0 + ωzE)Q(F0 + δgzB)E

〉
υ
.

(57)

Here, ωzE = (c/B0)〈δEz〉 × b0 · k⊥0. ZFs, thus, intro-
duce two effects on the EP excitation of the instability.
First, noting |ωzE | ∼ O(γL) � |ω0|, |ωd|, δEz intro-
duces a small shift in the wave-particle resonance condi-
tion in the EP phase space; and, typically a negligible
effect on the instability drive. We remark, however, ωzE
could play a more significant role in the nonlinear satura-
tion process via the resonance detuning due to the finite
∂ωzE/∂r shearing relative to ∂ωd/∂r [38]. The other ef-
fect, noting Eq. (52), is via the ZFs-induced phase-space

structure, δg
(1)
z given by Eq. (53). As in case (A), taking

the resonance at rm where |δφ0|2 peaks, the addition-

al drive then depends on (∂δg
(1)
z /∂r)|rm . Following the

analysis in Sec. III A for the thermal ions, we have, for
the trapped EPs [c.f. Eq. (26)],

δg
(1)
zE ' −

(
e

m

∂F0

∂ε

)
JzJEz0(JEz0Φ− JEz1A)z. (58)

Here, we recall JEz0 = exp (iλdEz), λdEz = ρdrkzr, and

JEz1 = (υ‖/c) exp (iλdEz). Hence, for |λdEz| < 1, JEz0 '
1, and JEz1 ≈ iυc ρbEkzr ∝ ∂/∂r. Noting, from Eqs. (29)
and (31), both Φz and Az beat driven by RSAE are odd
functions with respect to (r − rmin), we then obtain(

∂δg
(1)
zE

∂r

)∣∣∣∣∣
rm

' −
(
e

m

∂F0

∂ε

)
J2Ez0

∂Φz
∂r

∣∣∣∣∣
rm

' −
(
e

m

∂F0

∂ε

)
c

B0

(1 + c0ηi)

ω2
0r

kθ0ω∗in
∂2

∂r2
∣∣δφ0∣∣2∣∣∣∣

rm

< 0.

(59)
Here, we note ∂F0/∂ε < 0 and ∂2|δφ0|2/∂r2 < 0 at rm.
That is, the additional δφz − induced EP phase-space

structure, δg
(1)
z , further enhances the linear instability

drive due to ∂F0/∂r < 0 and, hence, is destabilizing.
One, thus, expects that the present Case B with ZFs in

the EP dynamics will lead to a higher saturation level
than the Case A without ZFs in the EP dynamics. This
analytical prediction is consistent with the simulation re-
sults presented in Sec. II.
Case (C) Partial ZFs in EP. In this case, we sup-

press the ZFs in the EP gyro-center propagator; while
keeping the ZFs-induced perturbed distribution. That
is, Eq. (40) becomes

LgδFg0C = − (δL0X + δL0ε) (Fg0 + δFgzC) . (60)

Noting Eq. (39), Eq. (60) then leads to

Lgδgg0C = i
( e
m

)
Q (Fg0 + δFgzC) J0

(
δφ−

υ‖δA‖

c

)
0

.

(61)
Meanwhile, from Eq. (41) and noting δLzE given by Eq.
(37), we find

δFgzC =
( e
m

) ∂F0

∂ε
J0δφz + δgzB

=
( e
m

) ∂F0

∂ε
J0δφz + δgzA + δg(1)z ,

(62)

where δgzA and δg
(1)
z are given, respectively, by Eq. (44)

and Eq. (53). From Eq. (61), the compressional compo-
nent, δK0C , obeys

LgδK0C = i
( e
m

)
J0

ωd
ω0r

Q(Fg0 + δFgzC)δφ0, (63)

and ImδWk0C becomes

ImδWk0C = eEIm
∫
d3X

{
δφ∗0
〈
ωdJ0δK0C

〉
υ

}
. (64)

Considering only the trapped EPs, we have

δK0C '
( e
m

)
e−iλdE

ωd
ωd − ω0

JE0J0δφ0Q(Fg0 + δFgzC).

(65)
ImδWk0C is then further reduced to

ImδWk0C =

(
e2

m

)
E

π

ω0r

∫
d3X

〈
J2
0J

2
E0

∣∣δφ0∣∣2ω2
dδ(ωd−ω0)

·Q(Fg0 + δFgzC)
〉
υ
.

(66)
Equations (62) and (66) indicate that, relative to the
Full-ZFs Case B, the present Partial-ZFs Case C intro-
duces an additional EP PSZS, (e/m)(∂F0/∂ε)J0δφz. The
corresponding instability drive at rm is then given by

∂

∂r

[( e
m

)(∂F0

∂ε

)
J0δφz

] ∣∣∣∣
rm

' e

m

∂F0

∂ε

∂δφz
∂r

∣∣∣∣
rm

> 0.

(67)
That is, suppressing the zonal drift-shearing in the EP
gyro-center propagator, in fact, provides stabilization
with respect to the Full-ZFs Case B; which is consistent
with simulation reported in Sec. II. Compared to the No-
ZFs Case A, Eq. (62) indicates that the additional EP
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PSZS is given by (e/m)(∂F0/∂ε)Jzδφz + δg
(1)
z . Noting

Eq. (59) and Eq. (31), the additional instability drive
relative to Case A is, thus,

∂

∂r

[( e
m

)
E

∂F0

∂ε
Jz(1− J2E0)Φz

]∣∣∣∣
rm

≈
( e
m

)
E

(
∂F0

∂ε

)
c

B0

(1+c0ηi)

ω2
0r

kθ0ω∗in(1−J2E0)
∂2

∂r2
∣∣δφ0∣∣2∣∣∣

rm

> 0;
(68)

i.e., Case C with the zonal drift-shearing suppressed
is, qualitatively, more stable than the No-ZFs Case A.
Quantitatively, for |krzρdE | < 1, 1− J2E0 ' (kzrρdE)2 �
1, the additional stabilization is negligibly small. Case
C, therefore, essentially coincides with Case A, and this
analytical result is consistent with the simulation result
presented in Sec. II.

IV. CONCLUSIONS AND DISCUSSIONS

In summary, we have employed nonlinear gyrokinet-
ic simulation as well as analytical theory to investigate
the effects of ZFs on the EP’s drive of RSAE instabili-
ty. We have derived analytical expressions for the ZFs
beat-driven by RSAE; which are in good agreement with
the simulation results. Three cases of GTC simulations
with various terms of ZFs in the EP gyrokinetic equation
turned on and off are then carried out. The results, con-
trary to the usual expectation, indicate that ZFs tend to
enhance EP’s drive and, thereby, increase the saturation
level. Corresponding analytical theory is also developed;
which demonstrates that, in each case, the ZFs-induced
EP phase-space zonal structures are different, and this,
according to the general fishbone-like dispersion relation,
gives rise to, consistent with simulation results, the addi-
tional stabilization/destabilization by ZFs. We note that,
while this work is focused on the RSAE, it will be inter-

esting to carry out a corresponding study on TAE and
investigate if ZFs have similar effects on the EP drive.

As we remark in Sec. I, it has been well established
that ZFs tends to suppress RSAE to a significantly lower
saturation level. Our current results, however, indicate
that such suppression is not due to ZFs effects on EP;
i.e., not via the second route. Thus, one must conclude
that ZFs suppress RSAE mainly via the channel of non-
linear physics of thermal plasma; i.e., the first route. It
will, therefore, be interesting to employ, again, both non-
linear simulation and analytical theory, to investigate the
detailed nonlinear mechanisms of thermal plasmas which
could suppress the RSAE. This will be a subject of future
investigations.
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