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Abstract
A novel 2D nonlinear dynamical paradigm is constructed to interpret the fast and repetitive
frequency chirping and amplitude oscillation of Alfvén eigenmodes excited by energetic
particles in fusion plasmas as observed in global gyrokinetic simulations. In this
non-perturbative paradigm of the collisionless phase-space dynamics, wave-particle resonant
interactions cause the phase-space structure to continuously twist and fold, leading to the
repetitive excitation and decay of the Alfvén eigenmode. The radial (perpendicular to the
dominant wave-particle interaction) dependence of the mode amplitude and toroidal
precessional drifts of the energetic particles leads to the 2D dynamics of wave-particle
interactions, which is found to be responsible for the repetitive process of formation and
destruction of the mode structure.
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1. Introduction

Energetic particles, including energetic ions and electrons
produced by the fusion reaction and auxiliary heating, can
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excite various Alfvén eigenmodes in magnetic confinement
fusion plasmas such as ITER [1], whichmay induce significant
transport of energetic particles and degrade the overall plasma
confinement [2–4]. Increased energetic particle transport due
to Alfvén eigenmodes has been correlated [3] with a fast fre-
quency oscillation (chirping) with a sub-millisecond period
(non-adiabatic regime [5]), which has been observed in many
tokamak experiments [6–8]. Previous theoretical studies focus
on the adiabatic regime (chirping time much longer than the
wave period) based on the 1D (in toroidal direction) dynam-
ical model for the wave-particle interactions [9], which has
been investigated by numerical simulations [6, 10–13]. In this
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1D dynamical model [9], the relaxation/dissipation process
[10] are essential to inducing the frequency chirping. A new
mechanism [14, 15] is also introduced, where the frequency
chirping is induced by the transition between energetic particle
mode toAlfvén eigenmode. Recently, the 2D response [16–18]
and collision effect [19] for the frequency chirping of Alfvén
eigenmodes are addressed with the mode structure produced
by eigencodes.

However, the repetitive fast chirping of frequency and amp-
litude oscillation of Alfvén eigenmodes excited by energetic
particles in the toroidal geometry have been observed by both
first-principle kinetic [20] and hybrid magnetohydrodynamic
[21] simulations without source and sink, which is in agree-
ment with experiments and cannot be sufficiently explained
by previous work. Here, we construct a novel 2D (in tor-
oidal and radial directions) collisionless nonlinear dynamical
paradigm based on the global gyrokinetic simulation result,
which shows that the dynamics of fast and repetitive fre-
quency chirping and amplitude oscillation is a non-adiabatic
[22], non-perturbative and essentially intrinsic 2D nonlinear
wave-particle resonant interactions, where the evolution of 2D
trajectories of resonant particles restores unstable distribution
function. In particular, the radial (perpendicular to the dom-
inant wave-particle interaction) dependence of the mode amp-
litude and toroidal precessional drifts of the energetic particles
leads to the 2D dynamics of wave-particle interactions, which
is found to be responsible for the repetitive fast frequency
chirping.

Specifically, the current simulations using the gyrokinetic
toroidal code [23] find that beta-induced Alfvén eigenmodes
(BAEs) [24–26] excited by energetic electrons saturate and
chirp, exhibiting various stages of nonlinear 2D dynamics due
to the radial dependence of the mode amplitudes and the tor-
oidal precessional drifts of energetic electrons. Our paradigm
of the 2D nonlinear wave-particle interactions can be applied
to other Alfvén eigenmodes.

2. Simulation parameters

This electron BAE is chosen to simplify our 2D nonlin-
ear dynamical model, since only the toroidal precessional
resonance of deeply trapped particles is responsible [27]
for the excitation. In our simulations of a tokamak with
a concentric circular cross-section, the safety factor pro-
file is q= 1.797+ 0.8(ψ/ψw)− 0.2(ψ/ψw)2 so that the
q= 2 rational surface is located at a minor radius rs =
0.5a, where ψ is the poloidal flux with ψ= 0 on the axis
and ψ = ψw at the plasma boundary, and a is the toka-
mak minor radius at the wall. The inverse aspect ratio is
ϵ≡ a/R0 = 0.333 in terms of on-axis major radius R0. The
thermal plasma temperature is uniform with Ti = Te, and
the on-axis beta is β = 4πn0(Te+Ti)/B2

0 = 0.00718 with B0

being the on-axis magnetic field. The thermal electron dens-
ity n0 is uniform and the energetic electron density profile is
nf = 0.05n0(1.0+ 0.20(tanh((0.262−ψ/ψw)/0.06)− 1.0)),

so that the energetic electron density gradient peaks at
the q= 2 flux surface with R0/Lnf = 15, where Lnf ≡
−(dlnnf/dr)−1 is the density gradient scale length of ener-
getic electrons. The thermal ion density n0i is obtained through
the neutrality condition n0i = n0 + nf. The energetic electrons
are loaded with a local Maxwellian distribution with the uni-
form temperature Tf = 25Te.

3. Fast and repetitive frequency chirping of BAE

In the linear simulations [27], the most unstable toroidal mode
number is n= 3 with kθρi = 0.115 at the q= 2 rational sur-
face, where the device size is a= 104ρi, kθ = nq/r is the pol-
oidal wave-vector, ρi =

√
miTi/eB0 is the thermal ion gyro-

radius, and mi is the ion mass. Given the thermal plasma
profiles, the frequency at the BAE accumulation point is

ω0 =
√

11Ti/2miR2
0 ≈ 2.34vi/R0, where vi =

√
Ti/mi is the

ion thermal velocity. In our collisionless simulations, particle
sources or sinks were turned off to allow free evolution of tem-
perature and density profiles.

The nonlinear time evolution of the electrostatic potential
of the (n,m) = (3,6) mode is shown in figure 1, where the
amplitude (red line in panel a) and spectrum (panel b) of the
electrostatic potential are measured at the mode rational sur-
face rs. The time evolution of the power spectrum in the lower
panel is obtained through the wavelet analysis of the real part
of the electrostatic potential ϕ. Figure 1(b) shows a fast oscil-
lation of the mode intensity. For each time step in figure 1(b),
the frequency of the maximum power intensity is plotted in
figure 1(a) with a black curve, which shows that the frequency
starts with a linear frequency of ωBAE and chirps in the nonlin-
ear stage roughly in phase with the intensity of the electrostatic
potential ϕ (red curve). In the linear stage, the measured real
frequency is ωBAE = 1.215ω0 [27, 28] (the straight black line
before point C) and the linear growth rate γ = 0.0410ω0, The
mode saturates at point D with the amplitude of the perturbed
electrostatic potential being |eϕ/Te|= 1.14× 10−2. After sat-
uration (point D), the mode evolves to a nonlinear chirping
state. The first chirping period (points F-I) is about seven wave
periods, which is in a non-adiabatic regime [22]. There is a
small phase difference between the minima of amplitude and
frequency. During such chirping, the range of the frequency
change is 0.157ω0, which is 12.9% of the linear eigenfre-
quency ωBAE.

Figures 2 and 3 shows the time evolution of the BAE mode
structure of the electrostatic potential on a poloidal plane and
in the radial direction. The mode structure is coherent and
nearly symmetric with respect to the q= 2 rational surface.
It changes little from the linear stage (panel b) to the nonlin-
ear saturation with a maximal mode amplitude (panel d). It
then moves slightly outward as the mode amplitude decreases
and the frequency starts chirping down (panel e). At the low-
est amplitude and frequency (panel f), the mode structure is
destroyed across the q= 2 rational surface. Later, a coherent
mode structure forms but moves slightly inward as the mode
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Figure 1. Time evolution of electrostatic potential |eϕ/Te| (red) and the frequency ω (black) of dominant mode (n,m) = (3,6) in upper
panel (a) and frequency power spectrum in lower panel (b). The color in panel (b) represents the power intensity and the 95% lines indicate
the significance level. The unit of the power intensity in the panel (b) is arbitrary. The mode stage at different times is marked with letters
A-K. The cone of influence in panel (b) indicated by dashed lines shows the power intensity plot using wavelet transform to distinguish the
trust-able spectrum region from the edge-effect artifacts.

Figure 2. Poloidal contour plots of electrostatic potential eϕ/Te. The dotted circle is the q= 2 rational surface. The x axis is the major
radius R/R0 and the y axis is the vertical distance from the midplane Z/R0. Time steps b− h correspond to B−H in figure 1.

amplitude increases and the frequency chirps up (panel g).
Finally, at the highest mode amplitude and frequency (panel
h), the mode structure becomes nearly symmetric with respect
to the q= 2 rational surface, similar to that in the initial non-
linear saturation (panel d). This time oscillation (from panel
d to panel h) for the mode amplitude, frequency, and mode

structure repeats itself in the next cycle (from panel h to panel
j) but with a slightly smaller time period.

In controlled simulations, we find no frequency chirp-
ing when the nonlinearity of the energetic electrons is
removed. This indicates that energetic electrons are exclus-
ively responsible [29] for such a frequency chirping process.
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Figure 3. Radial profiles of electrostatic potential eϕ/Te. The black, blue and green lines are corresponding to the poloidal mode number
m= 5,6,7, respectively. The dotted line is the ψ value at the q= 2 rational surface. The x axis is ψ/ψw and the y axis is eϕ/Te. Time steps
(b)− (h) are corresponding to (B)− (H) in figure 1.

The saturation amplitude significantly increases when the non-
linearity of thermal ions is removed, which suggests that
thermal ions contribute to the nonlinear saturation.

4. Intrinsically 2D particle dynamics

Given an energy E and a magnetic moment µ, the guiding-
center motions of the deeply trapped particles can be described
by a pair of action-angle variables (ζ,Pζ) with ζ being the
toroidal angle, Pζ = gρ∥ −ψ being the normalized canonical
angular momentum [30], 2πg being the poloidal current and
ρ∥ = v∥/B being the normalized parallel velocity. Here, we
examine the structure of the energetic particle distribution
function in the (ζ,Pζ) phase space. Instead of directly analyz-
ing the data of energetic particles in the self-consistent sim-
ulations, tracking orbits of passive particles will give a better
resolution and a lower particle noise for diagnosis by loading
a large number of the passive deeply-trapped particles in the
resonant region of the phase space.

These passive particles are uniformly initialized in the
(ψ,ζ) planewith θ= 0, v∥ =−0.01

√
Te/me andµ= 32Te/B0

within the resonant region. Pζ/ψw are initialized in the range
of (0.15,0.42). The particle positions in figure 5 are plotted
in the (ζ,Pζ) space, where Pζ values are approximately the
radial position since Pζ ≈−ψ for the energetic electrons.

Using the nonlinear gyrokinetic equations [31–34], we can
calculate the trajectory of the deeply trapped particles using

the perturbed electrostatic potential ϕ = ϕ̂(ψ,ϵt)eiα, where ϵ
indicates the slow evolution of the mode amplitude and α=
nζ −mθ−ωt, α ∈ [0,2π), with a single toroidal mode num-
ber n. Since the parallel wave wavelength is much longer than
the distance that a deeply trapped particle travels along the
magnetic field line, i.e. k∥ ≈ 0, the guiding center equation of
motion is

ζ̇ ∝ µ

e
∂B0

∂ψ
− ∂ϕ̂

∂ψ
eiα, ψ̇ ∝ nϕ̂ei(α+π/2), (1)

where e is the elementary charge. Since in equation (1), the
second term of ζ̇ and ψ̇ have a π/2 phase difference, these
two equations describe a Lissajous curve [35] rotating clock-
wise with a distortion described by the first term of ζ̇. A 2D
dynamical model can be constructed using the reduced evolu-
tion equation for the perturbed distribution function,

δ̇f∝ nf0

(
µ

e
∂B0

∂ψ
+

1
f0

∂f0
∂ψ

∣∣∣∣
v⊥

)
ϕ̂ei(α+π/2), (2)

which is closed with the field equations.
By using Taylor expansion around the q= 2 rational sur-

face and keeping the first and second order terms of B0 and
eliminating the phase dependence for ζ̇, and keeping the zero
order terms of ϕ̂ for ψ̇, the equations are reduced to

δ̇ζ ∝ µ

e
∂2B0

∂ψ2

∣∣∣∣
ψ0

δψ, ˙δψ ∝ nϕ̂(ψ0)e
i(α+π/2), (3)
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Figure 4. Contour plots of electrostatic potential eϕ/Te in the midplane (ζ,ψ) of the low field side. The dotted circle is the q= 2 rational
surface. Horizontal axis is the normalized toroidal angle nζ/2π, and vertical axis is ψ/ψw. Here ζ ∈ [0,2π]. Time steps (b)− (h) are
corresponding to (B)− (H) in figure 1.

where δζ = ζ −ωd0t, δψ = ψ−ψ0, α= nδζ −mθ− (ω−
nωd0)t, the toroidal precessional drift ωd ∝ (µ/e)∂B0/∂ψ ∝
µB0/r, ωd0 = ωd(ψ0) and ψ0 is the poloidal flux at the q= 2
rational surface. Regarding (δζ, δψ) as the generalized canon-
ical coordinates (x, v), equation (3) recovers the conventional
1D nonlinear dynamical model [36].
ζ̇ ≈ ωd with Pζ ≈ 0 and thus the frequency shift is given

by the equations (1) and (3), where δζ = ζ −ωd0t presents
the toroidal angle variation in the waveframe and its time
derivation δ̇ζ = ζ̇ −ωd0 indicates the frequency shift with ωd0
approximately being the BAE frequency in the linear stage.
Thus the evolution of phase variation between waveframe and
mode structure as shown in figure 4 indicates the frequency
shift. If there is no frequency oscillation, the mode structure
in the waveframe should be constant, otherwise the variation
between the mode structure and waveframe introduces a fre-
quency shift.

Compared with equations (1) and (3) neglects the asym-
metric radial dependence of B0 and ϕ̂ and the phase depend-
ence for ζ̇. Thus, equation (1) generalizes the wave-particle
resonant interactions to a non-perturbative and 2D dynam-
ical process, which incorporates the radial (perpendicular to
the dominant wave-particle interaction) dependence of the tor-
oidal precessional drifts as well as the mode structure and the
phase dependence (the second term of ζ̇ in equation (1)). In
particular, the asymmetric radial dependence is essential to
generate the nonlinear chirping phenomenon, which will be
discussed later.

Using equation (1), the energetic particle trajectories
(figure 5) can be easily understood. At time B, the trajectory
starts twisting. The peak points¬ and in the panel (b) are the
˙δψ = 0 turning points, corresponding to the α= 0 region. At
timeD, the symmetric phase space island is formed. The points
{®,¯,±,³} in the panel (d) are the ˙δψ = 0 turning points with

the particle velocity only along the negative and positive δζδζδζ
directions, corresponding to the α= 0 region. The points of
° and TTT7 are δ̇ζ = 0 turning points with the particle velo-
city only along the negative and positive δψδψδψ directions, cor-
responding to the α= 3π/2+O and α= π/2−O, where the
correctionsO comes from the radial dependence of the toroidal
precessional drift.

This paradigm is first verified with a simple numerical test,
where the particle trajectories are modeled by equation (1)
with all the parameters set to the actual data in the simulations.
The curves were shown in figure 5 (panels (b), (d) white dot
line), which are the instantaneous interface of particles initially
residing at the two sides of rational surface. Such a good agree-
ment will help demonstrating the validity of our paradigm in
the following sections.

5. Mode radial envelope plays an essential role

The model of equation (1) is used to understand the nonlin-
ear evolution of the particle trajectories (figure 5). According
to equations (1) and (2), δ̇f∝ ψ̇. Thus, the perturbed distribu-
tion function (figure 6) of the resonant particles is similar to the
particle trajectories (figure 5). As shown in figure 5(b), particle
trajectories are determined by the oscillations along the δψδψδψ
and δζδζδζ directions plus the motion in the negative and positive
δζδζδζ directions for phases between α= (0,π) and α= (π,2π),
respectively. As the mode grows, the structure of particle tra-
jectories gradually starts twisting and generating the ˙δψ = 0
turning points. This persistent twisting eventually leads to the
generation of the phase space island (figures 5(a)→ (d)), when
the perturbed density (figure 6(d)) and the electrostatic poten-
tial (figure 2(d)) both reach their maxima. Due to the asym-
metric radial dependence of the toroidal precessional drift, the
trajectories in the phase space island are asymmetric. At this
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Figure 5. Time evolution of passive energetic-particle trajectories in (δζ,Pζ) Lagrangian space. Different color represents initial canonical
angular momentum Pζ as shown in panel (a). Dashed line is the q= 2 rational surface. Horizontal axis is the toroidal angle nδζ/2π in the
wave frame, and vertical axis is −Pζ/ψw. Here ζ ∈ [0,2π]. The diagram of predicted particle trajectories according to equation (1) are
labeled in panel (b) and (d) with white dot line, respectively. Labels a− k correspond to A−K in figure 1.
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Figure 6. Evolution of passive energetic-particle perturbed distribution function δf(δζ,Pζ) in Eulerian phase space. Different color
represents amplitude of perturbed distribution function δf/f. Dashed line is the q= 2 rational surface. Horizontal axis is the toroidal angle
nδζ/2π in the wave frame, and vertical axis is −Pζ/ψw. Here ζ ∈ [0,2π]. The maximum of the absolute perturbed distribution |δf/f| for
each time point is indicated. Labels a− k correspond to A−K in figure 1.
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Figure 7. Time evolution of electrostatic potential |eϕ/Te| (red) and the frequency ω (black) of dominant mode (n,m) = (3,6) in upper
panel (a) and frequency power spectrum in lower panel (b). The diagnosis position is at ψ/ψw = 0.20. The color in panel (b) represents the
power intensity and the 95% lines indicate the significance level. The unit of the power intensity in the panel (b) is arbitrary. The cone of
influence in panel (b) indicated by dashed lines shows the power intensity plot using wavelet transform to distinguish the trust-able spectrum
region from the edge-effect artifacts.

moment, almost all the resonant particles driving the instabil-
ities are trapped in the phase space island.

Due to the asymmetric radial dependence of the toroidal
precessional drift along with the effect from the oscillat-
ing electrostatic potential, the island continues its twisting
(figures 5(e) → (f )), which causes the outer part of the
phase island and the inner part of the neighboring island to
twist and form a new island. During this continuous twist-
ing stage, the clumps and holes gradually line up vertically in
the radial direction so that the density perturbation becomes
small at any toroidal angle. This leads to the perturbed dens-
ity (figures 6(e) → (f )) and, as a consequence, the electro-
static potential (figures 2 and 3(e)→ (f )) both decaying gradu-
ally in amplitude and varying in shape. And in figures 4(e)
→ (f ), the phase of δζ of the mode structure varies, introdu-
cing a frequency shift in the waveframe. The frequency shift
(figure 4), mode structure evolution (figures 2 and 4) and tra-
jectories (figures 5 and 6) are consistent, which demonstrates
that the radial dependence of trajectories contributes to the fre-
quency oscillation. This stage is phenomenally characterized
by a weakening BAE with the broken mode structure and the
down-chirping frequency.

6. Particle dynamics determines mode evolution

When the BAE amplitude reaches its minimal level, the drive
from the energetic particles is restored and begins to excite the
BAE instability again, and the process of (f → h) proceeds as
opposite to the process of (d → f). This leads to the repetitive
process of mode excitation and suppression accompanied by
the down-chirping in the frequency (f→ i, i→ k). This repet-
itive process corresponds to the folding process of the phase
space islands, which form the stretched-nested-folding-layer
structure (figures 5(f ) → (i), (i) → (k); figures 6(f ) → (i),

(i) → (k)). During this folding process, the resonance region
of the particle phase space and the mode structure extend
radially beyond the rational surface. Comparing with the 1D
Landau damping model [36], the radial envelope plays an
important role. Therefore, our paradigm reveals the intrins-
ically 2D dynamics in the collisionless nonlinear Landau
damping.

7. Radial dependence of frequency

We also diagnosis the frequency at the radial location
ψ/ψw = 0.2 as shown in figure 7. The normalized amp-
litude and frequency at ψ/ψw = 0.2,0.262 are presented
in figure 8. It is noteworthy figure 8 reveals a slight
radial dependency of the frequency oscillations, which
validates the radial dependence of frequency oscillations
thereby confirming the influence of the radial trajectories
of the resonant particles among the frequency oscillations.
This finding holds significant importance, as detecting such
information in experimental setups can often be challen-
ging, yet it bears great significance for future theoretical
investigations.

8. Validation of J∥ ≈ 0

The approximation Pζ ≈−ψ already verified in the linear
simulations [27], where deeply trapped particles dominate the
resonance. And we also tested here that the dominant distribu-
tion perturbation δf comes from J∥ ≈ 0 as shown in figure 9,
where J∥ is the second adiabatic moment [30] and J∥ ≈ 0
indicates the particles are deeply trapped. Such a situation
leads to the validation of Pζ ≈−ψ.
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Figure 8. The comparison of amplitude (left) and frequency (right) at ψ/ψw = 0.2,0.262. As depicted in the left figure, the amplitude at
ψ/ψw = 0.262 is approximately 1.6 times that at ψ/ψw = 0.2. The minor frequency discrepancy at ψ/ψw = 0.262,0.2 is demonstrated in
the right figure.

Figure 9. The perturbed distribution δf in the J∥ space. Here J∥ ≈ 0
dominates.

9. Conclusion and summary

In this work, we investigate the nonlinear dynamics of BAEs
excited by energetic electrons, where BAE saturates and chips.
This is attributed to a new paradigm, where the radial vari-
ation of the mode amplitudes and the toroidal precessional
drifts of energetic electrons leads to distinct stages of nonlinear
2D dynamics. Our new paradigm of 2D wave-particle interac-
tion can be extended to other Alfvén eigenmodes in toroidal
geometry with radial variations of mode amplitude and radi-
ally asymmetric particle dynamics. For example, the reversed
magnetic field has the shear reversed point, so the evolution
of the radial dependence of the toroidal precessional drift is
different from current analysis, which can be the explanation
for the RSAE’s [37, 38] chirping behavior. And within our
theoretical framework, considering additional physics such as
the sideband effect, ballooning structure, thermal particle kin-
etic effect and so on, we can foresee abundant physics. Finally,
our paradigm suggestions, for the first time, that the perpen-
dicular dependence of the wave-particle interaction plays an

essential role for the nonlinear dynamics, which could have
implications beyond the fusion application. And we hope our
work can contribute to the development of a comprehensive
theoretical understanding of frequency oscillation, which is
dedicated as our future work.
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