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Abstract

We have developed a new global eigenvalue code, multiscale analysis for plasma stabilities
(MAS), for studying plasma problems with wave toroidal mode number (1) and frequency (w)
in a broad range of interest in general tokamak geometry, based on a five-field Landau-fluid
description of thermal plasmas. Beyond keeping the necessary plasma fluid response, we further
retain the important kinetic effects including diamagnetic drift, ion finite Larmor radius, finite
parallel electric field (E))), ion and electron Landau resonances in a self-consistent and
non-perturbative manner without sacrificing the attractive efficiency in computation. The
physical capabilities of the code are evaluated and examined in terms of both theory and
simulation. In theory, the comprehensive Landau-fluid model implemented in MAS can be
reduced to the well-known ideal magnetohydrodynamic (MHD) model, electrostatic ion-fluid
model, and drift-kinetic model in various limits, which clearly delineates the physics validity
regime. In simulation, MAS has been well benchmarked with theory and other gyrokinetic and
kinetic-MHD hybrid codes in a manner of adopting the unified physical and numerical
framework, which covers the kinetic Alfvén wave, ion sound wave, low-n kink, high-n ion
temperature gradient mode and kinetic ballooning mode. Moreover, MAS is successfully
applied to model the Alfvén eigenmode (AE) activities in DIII-D discharge #159243, which
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faithfully captures the frequency sweeping of reversed shear AE, the tunneling damping of
toroidal AE, as well as the polarization characteristics of kinetic beta-induced AE and
beta-induced Alfvén-acoustic eigenmode being consistent with former gyrokinetic theory and
simulation. With respect to the key progress contributed to the community, MAS has the
advantage of combining rich physics ingredients, realistic global geometry and high
computation efficiency together for plasma stability analysis in the linear regime.

Keywords: eigenvalue approach, plasma waves and instabilities, kinetic effects,

general tokamak geometry

(Some figures may appear in colour only in the online journal)

1. Introduction

With the injection of high power radio frequency waves
and neutral-beam injection for heating and current drive,
the plasma confinement properties of fusion reactors are
mostly determined by various types of instabilities as the con-
sequences of releasing the excessive free energy in the distri-
bution functions, which give rise to the plasma profile relax-
ations through disruption events [1], anomalous transports
[2, 3], energy particle (EP) losses [4—0] etc. Specifically, the
global magnetohydrodynamic (MHD) activities are the most
crucial and fundamental constraints for limiting the plasma
current and pressure values in fusion devices [7], which can
be violent, such as sawtooth crash [8] and neoclassical tear-
ing mode [9], and that generally destroy the overall equilib-
rium stability and terminate the plasma confinement. In con-
trast to the macroscopic MHD instabilities, the microscopic
drift-wave instabilities are mild and lead to plasma turbulent
(anomalous) transport, which are mostly driven by the pres-
sure gradients of each plasma species in an ambient nonuni-
form magnetic field. Great efforts have been made to under-
stand the mechanisms of excitation, saturation and turbulent
transport for various types of drift-wave instabilities, which
restrict the confinements of particle, momentum and energy in
current tokamaks [10]. Moreover, the population of EPs can
be increased through external auxiliary heating and internal
fusion reaction (i.e. a-particle) processes, consequently EPs
can drive originally stable Alfvén eigenmodes (AEs) to be
unstable [11, 12], and generate new instabilities such as
fishbone [13] and EP modes [14] owing to resonant wave—
particle interactions. Due to the large finite Larmor radius
(FLR) and finite orbit width (FOW) of EPs, these EP-driven
instabilities are usually characterized by mesoscale or macro-
scale electromagnetic perturbations, which in turn induce large
EP transports and lead to fusion power loss. In addition, mod-
ern tokamak geometry is no longer the concentric circle, the
D shape, triangularity and elongation effects play important
roles to increase the device 3 limit (where 3 = 87 Py/Bj is
the ratio of the plasma pressure to the magnetic pressure). In
consideration of the above factors, comprehensive modelings
of macroscale MHD modes, mesoscale EP-driven instabilit-
ies such as AEs and microscale drift-wave instabilities using
realistic experimental geometry, are necessary for under-
standing the experimental phenomena, predicting the overall

plasma confinement, and optimizing fusion power plant
design [15].

There are two important approaches for modeling fusion
plasma, which deal with the time derivative operator differ-
ently, i.e. the eigenvalue approach by applying Fourier trans-
formation J, — —iw and the initial value approach by dis-
cretizing the operator numerically d;, — 1/A¢. There is no
doubt that the initial value approach is more powerful in
addressing the complex nonlinear physics phenomenon since
it allows the nonlinear dynamics such as mode—-mode coup-
ling/beating. But, the eigenvalue approach is more efficient
and accurate than the initial value approach in the linear
regime, which does not evolve the dynamics of physics quant-
ities and suffer the numerical error of time domain discretiza-
tion. Historically, many eigenvalue codes have been developed
based on the ideal or resistive MHD model for toroidal plas-
mas, such as NOVA [16], CASTOR [17] and MARS [18] for
low-n kinks, gap-mode type AEs and resistive wall modes
(RWMs), and ELITE [19] for high-n ballooning modes. The
corresponding kinetic-MHD hybrid versions, NOVA-K [12],
CASTOR-K [20] and MARS-K [21], can incorporate the kin-
etic effects using an extended energy principle such as wave—
particle resonance, FLR and FOW etc and recalculate the
stability spectra either in a perturbative [12, 20] or a nonper-
turbative manner [21]. However, most kinetic-MHD hybrid
eigenvalue codes use one-fluid MHD model for bulk plasmas
by ignoring its kinetic effects, which is good for describing
high frequency Alfvénic spectra that are mostly of the fluid
type. It is later found theoretically that the kinetic thermal
ion compression beyond the MHD physics can dramatically
alter the polarization of low frequency AEs such as for the
beta-induced AE (BAE) [22, 23], where acoustic spectra and
Alfvénic spectra couple together and should be treated on the
same footing by using physics model with essential kinetic
effects. Regarding the fully gyrokinetic simulation using the
eigenvalue approach, LIGKA [24] is developed for solving
the gyrokinetic moment and quasi-neutrality (QN) equations,
which can compute both the acoustic and Alfvénic spectra
using the exact distribution function in 5D phase space and
has the advantage in low frequency AE analysis [25, 26].
Besides the gyrokinetic model, it is worth mentioning that
the Landau closure technique for fluid approach (termed as
Landau-fluid) can capture the crucial kinetic effects such as
Landau resonance only using 3D spatial coordinates, and the
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closure operator is first formulated in Fourier space for phys-
ical problems with small spatial inhomogeneities [27] and
later extended to the configuration space to better incorpor-
ate the plasma nonuniformity, boundary and geometry effects
[28], which greatly saves computing cost by avoiding velo-
city domain calculation and has been widely used for plasma
turbulence simulations [29, 30]. Recently, FAR3D [31] has
captured the EP-AE Landau resonance in the well-circulating
limit (i.e. assume zero pitch angle A\ = uB,/E =0 for all
particles) by using a modified Landau closure [32], which
is numerically efficient for computing the unstable AE spec-
tra in 2D and 3D experimental geometries. It should also be
noted that above eigenvalue codes apply Fourier expansion
on the perturbations along poloidal and toroidal angles, which
requires the retention of a large number of poloidal harmon-
ics in the high-n regime for toroidal coupling. For comparison,
the well-known ballooning representation is well-established
for short wave-length modes that satisfy the scale-separation
from equilibrium [33], which transforms the two-dimensional
physical problem in the poloidal plane to two one-dimensional
problems (i.e. solving the parallel mode structure in the low-
est order and the radial envelope in the higher order), thus the
ballooning approach is more efficient at incorporating the tor-
oidal coupling effect for both theory and simulation, when the
radial envelope variation can be ignored in the high-n regime.
For example, the theoretical framework of general fishbone-
like dispersion relation (GFLDR) [34] applies the balloon-
ing approach and has many practical applications in EP phys-
ics, and DAEPS code [35] is developed based on GFLDR
that keeps the properly asymptotic behavior in ballooning
space. Meanwhile, the fluctuation polarization information
can be clearly reflected by the eigenvector solutions in bal-
looning space, for example, FALCON code [36] computes the
MHD continuous spectra based on the ballooning approach
and reveals the mixed polarization of the shear Alfvén wave
(SAW) and ion sound wave (ISW) through the Alfvénicity
parameter (i.e. the degree of Alfvénic polarization) on disper-
sion curves [37].

In fusion plasmas, each particle species contributes to both
the damping and driving of plasma spectra, and the relat-
ive importance depends on the specific wave—particle reson-
ance and plasma gradients. Thus, in order to make reliable
predictions for various plasma stabilities, both the stabil-
izing and destabilizing effects of each species should be
kept in the physics model to properly calculate the damp-
ing and growth rates. However, many plasma stability codes
based on kinetic-MHD and Landau-fluid models lack the
adequate kinetic effects of bulk plasmas associated with damp-
ing and driving. The nonperturbative gyrokinetic approach
[24] can deal with the kinetic effects, but requires a much
increased computational cost compared to the perturbative
kinetic-MHD approach [12]. To strike the balance between
these two methodologies in opposite limits, the nonperturb-
ative Landau-fluid approach [27] adopts particular closures
in order to guarantee the response function being close
to the gyrokinetic model, which can compute the plasma

spectra efficiently with certain kinetic effects in the linear
regime.

The purpose of this work is to demonstrate a new plasma
stability eigenvalue code developed for the global and exper-
imental geometry, namely, multiscale analysis for plasma
stabilities (MAS) with a five-field (6¢,0A,,0P;,0uy;,0n;)
Landau-fluid physics model formulated for bulk thermal plas-
mas, which incorporates the essential kinetic effects asso-
ciated with both driving and damping processes. The MAS
physics model has three key characteristics: first the fully
electromagnetic perturbations are considered, where the elec-
trostatic potential d¢ and parallel vector potential A are
explicitly evolved and the leading B, effect of drift reversal
cancellation is implicitly imposed. Second the thermal ion
dynamics are treated using an extended drift-ordering, which
keeps the ion-diamagnetic drift, ion-FLR and ion-Landau
damping effects. Third the thermal electron physics not only
covers the adiabatic electron response widely used in the
gyrokinetic simulation model [38, 39] (including the finite par-
allel electric field £} and electron-diamagnetic drift effects
in the lowest order), but also further extends to the electron-
Landau damping on the side of adiabatic regime (w < k| Vine)-
We then show our physics model can reduce to the well-
known ideal reduced/full MHD, electrostatic ion-fluid and
drift-kinetic models in various physics limits, which constitute
a hierarchy of models from simple to complex as a theoret-
ical benchmark. After implementing the physics model into a
general tokamak geometry represented in Boozer coordinates,
we present the MAS multi-scale physics capabilities of low-n
MHD modes, mediate-n AEs and high-n drift wave instabilit-
ies by carrying out a series of benchmarks, which show good
agreements with other fusion codes. Moreover, It is worth-
while mentioning that MAS can resolve MHD singularities
such as the Alfvénic and acoustic continuum resonances in a
physical manner by retaining the small-scale physics terms in
the higher order, rather than using the extra numerical viscos-
ity in most kinetic-MHD hybrid codes. In addition, MAS has
a few early benchmarks and applications on EAST and DIII-D
experiments with simplified models during code development
[40-42], which are covered by the comprehensive Landau-
fluid model presented in this work.

This paper is organized as follows. The theoretical formu-
lation of the electromagnetic Landau-fluid physics model in
MAS is introduced in section 2. In section 3, we present the
numerical schemes with respect to coordinate system, operator
discretization and matrix construction for solving the physics
equation set in general geometry with complexity. The reduc-
tions of the Landau-fluid model in various limits as theoretical
benchmarks are given in section 4, and the numerical bench-
marks of MAS for waves and instabilities of the reactive- and
dissipative-type are shown in section 5, in both low and high-n
regimes. The summary is given in section 6. The orientation
convention of flux coordinate system in MAS is introduced in
appendix A. Appendices B and C provide additional supple-
ments on ideal full-MHD and drift-Kinetic models, which are
relevant to MAS theoretical benchmarks.
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2. Electromagnetic Landau-fluid physics model the parallel momentum equation
An electromagnétic Lanc.iau-ﬂuid modgl is applied in Mgy — Aouy; — _by-VéP, — — 6B VP,
MAS code, which consists of dynamic equations for ot By
(59%), 0A||,0P;, 0uy;, 6nl~) based on the extended drift-ordering, 1
i.e. besides the resistive MHD physics, the present Landau- bo - VoP; FoaB VP
fluid model faithfully preserves kinetic effects including m, [m
ion and electron diamagnetic drifts, ion FLR, ion and elec- *Zi”io7\/ Evthe‘kﬂ ‘5”e||
tron Landau damping effects in a self-consistent and non-
perturbative manner. Compared to many other tokamak sta- {Electron—Landau}
bility codes using one-fluid ideal/resistive MHD description _Zinionllivi SA||, 4)
of thermal plasmas, the MAS Landau-fluid model covers a 4
broad frequency range from bulk plasma diamagnetic fre- {Resistivity }
quency to Alfvén frequency and a wide spatial range from . . .
. . g . . . and the ion continuity equation
ion Larmor radius to machine minor radius. The governing
equations of the Landau-fluid model include the vorticity oén;  cbyg x Vo by X K
equation ) + - Vg +2¢nig Vo -
t Bo BO
Su i Z; i
+nioBo - V [ =) —iw,, S50 2572 5
0cqgr 5¢>+ - (0.75p}V1) € V2 56 tiwnyi— V2 60 Bo _To
V2 i vt Phyz L {lon—FLR}
{lon—FLR} (Drift} —&—%V(SPi- box K _ 0, 5)
J Z; By
1
+By-V —ViéAH 5B v 210 {Drift}
By By
where Jjjo = ;=bo -V x By is the parallel equilibrium cur-
b() X K . 77_ . .
— 871 (VOP; + VoP,) - ——— =0, (1) rent density, kK =bg-Vbg is the magnetic field curvature,
By pi = vini/ ;i is the ion Larmor radius, vy = +/Tio/mi, Qei =
ZiBo/ (cm;), wipi = w*n i —|—w*T, is the ion diamagnetic fre-
the parallel Ohm’s law quency (Weni = —iggtbo x V-V and w.r; = —izg,Po X
VT V), n= 051’,’1’”0‘;;' and v, 1s the electron-ion col-
lision frequency. The electron perturbed pressure JP, in
DoA) — —cby- V6 +CT60 by - Von, + Ty 6B - Vg equations (1) and (4) can be expressed as
ot enep t enqoBy ‘
(Drift} OP¢ = 0neTeo + neodTe, (6)
where the electron perturbed temperature 7, is determine
cm here the el p bed temp 0T, isd ined by
+ ee\/>vthe|k|||5ue —1]||VL5AH, (2)  the isothermal condition
_,_/
{Electron—Landau} {Resistivity} bo - VT, + BidB VT, =0, (7
0
the ion pressure equation and the electron perturbed density dn, is calculated through
the QN condition
d5P;  cby x Vg bo X K o,
VP +2T;, PipcV o - eén, = Z;0n; +——=V 9
T + By o+ 201 PiocVig By e ¢. @®)
————
{Drift}

5u|
+ Ly PioBo - V B

|l> 7iFiLw*p,iZi”iOpi2v2L5¢
0

{Ion—FLR}
b() X K
+2FILP,0 V&T +2F,LTZ() V5P
Bo By
{Drift}
/2y k(10T =0 3)
loﬁ thi ||| i — Y

{Ion—Landau}

We have omitted the FLR modification on the ion polarization
density in equation (8), which is in the higher order of k2 o p?
compared to other ion FLR terms in equations (1), (3) and (5).

The electron parallel perturbed velocity du, . in the electron
Landau closure term of equations (2) and (4) are calculated by
inverting Ampere’s law

R
eneoéune = Zinioéun,-—i—EVL(SAH ©)

{Drift}
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and the thermal ion perturbed temperature 67; in the ion
Landau closure term of equation (3) can be expressed as

1
5Ty = — (5P
njo

— (5n,-T,-0). (]O)

Equations (1)—(10) form a closed system of Landau-fluid
formulation based on the extended drift-ordering, namely,
incorporating the ion and electron diamagnetic drifts on an
equal footing with E x B drift, as well as keeping ion and
electron Landau damping effects and ion FLR. Note that the
leading effect of parallel magnetic field perturbation B has
been imposed in the last term on the LHS of equation (1)
(i.e. interchange term) through the perpendicular force bal-
ance implicitly, which leads to a modification on the mag-
netic drift (i.e. drift reversal cancellation by replacing VB, /By
with ) and is shown to be important on KBM [44, 45],
internal kink [42] and the low frequency Alfvén mode recently
identified in DIII-D [46]. On the other hand, the perpendic-
ular compressibility associated with 0B, gives rise to the
fast wave branch, which is removed from the Landau-fluid
model to avoid the numerical pollution on the slow mode spec-
tra of physics interest [47]. Moreover, the well-known gyro-
viscosity cancellation [48] has been considered in the deriv-
ations of equations (1), (3) and (5) for thermal ions based on
the Braginskii model [49]. The electron model described by
equations (2) and (7) retains both the adiabatic and convective
responses to the electromagnetic fields, which is also consist-
ent with the adiabatic density response in gyrokinetic simula-
tions, namely, equation (19) of [39].

3. Numerical method

MAS solves (0¢,0A),0P;,0u;,0n;) in general geometry
using the Landau-fluid model described in section 2, which
applies the finite difference discretization in the radial dir-
ection and Fourier decompositions in the poloidal and tor-
oidal directions. Specifically, MAS first constructs the Boozer
coordinates based on the EFIT equilibria, second expands the
physical operators in Boozer coordinates and constructs the
matrix equation in the form of a general linear eigenvalue
problem, and third solves the eigenvalues and eigenvectors of
the matrix equation. The coordinate system, operator discret-
ization and matrix structure are described in this section.

3.1 MAS coordinate system: Boozer coordinates

The general flux coordinates use the poloidal magnetic flux v
as the radial coordinate, and choose the proper poloidal angle 6
and toroidal angle ( to guarantee the straight field line nature of
the grids aligned along the o = ¢ (¢) 8 — { direction. Boozer
coordinates are one special case of general flux coordinates,
which additionally have the simple forms of the B field in
both covariant and contravariant representations besides the
straight field line property

By =0(4,0) Vi +1(¥) VO +g(4) V¢ (11)

and
By =¢q(v) Vi x V,

where 1(v)), g(¢) and ¢ (v) only depend on 1, and 6 (v,6)
arises due to the nonorthogonality of (1),6,() coordinates

[50]. The Jacobian can then be obtained using equations (11)
and (12) as

Vi x VO — 12)

| 8()a (W) +1()

J(1,6) = (Vi) x V6 V()™ 5
0

13)

The gradient and Laplacian operators in general flux coordin-
ates (including Boozer coordinates) can be expressed as [51]

V= aVll)—&—aVQ—&-aVC

14
90 ac (14)

and

2_ 10 w0 5 owe
\% =790 Jg aw—i—]g
10 )
_ Po
+J6 [Jg o0
10 P
_ 2 P¢
WER {Jg o9

where g%« = V¢, - Vs represents the metric tensor ele-
ment, with £, and £ being the (¢, 6, ) dimensions of Boozer
coordinates. Considering equations (11)—(15), the Landau-
fluid model in section 2 can be expanded in Boozer coordinates
straightforwardly, which fully retains the complex geometry
effects in a concise form.

We then show the mesh system of MAS in a Cartesian
coordinate system in figure 1, which is regularly aligned along
1, € and (. It is noted that the poloidal plane grids with the
same ( angle are on a curved surface in figure 1(a), and the dif-
ference between ¢ and the cylindrical angle ¢, i.e. v (¢,0) =
¢ — (, relies on 9 and € for an axisymmetric tokamak as
shown in figure 1(c). In order to obtain a straight field line
system, the choice of 6 coordinate in equations (11)-(13) is
also different from the geometric poloidal angle as shown in
figure 1(b). The contravariant basis vectors (V, V0, V() sat-
isfy the right-handed rule by equation (13), and the conven-
tion of the basis vector direction in MAS is introduced in
appendix A. In addition, EFIT equilibrium represented in cyl-
indrical coordinates (R,,Z) is used as the input for MAS
to construct Boozer coordinates (1),6,(), and the mapping
algorithm between these two different coordinates is left to a
separate work.

P P
P 2
a6 778 ag}

0 0
69 ¢
+Jg 69+Jg 8C}

9 B
2
a6 778 ac}’

s5)

+Jg%

3.2. Operator discretization and matrix structure

For numerical convenience, we define

(16)
= (71'6'(5(,25, ($AH/B(),(SPI-7 i5u||,»/Bo,5n,-)T
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Figure 1. The mesh grids regularly aligned along Boozer coordinates 1), 8, and ¢, which are viewed in the Cartesian coordinate system
(X,Y,Z). (a) The X-Y plane view of mesh grids on the flux surface, and the X-Y plane view of mesh grids in the ¢ =0 poloidal plane where
the color denotes the Z coordinate. (b) The X — Z plane view of mesh grids in the ¢ =0 poloidal plane. (c) The v (1, 0) difference between

Boozer toroidal angle ¢ and cylindrical angle ¢.

as the unknown vector, then equations (1)—(5) can be cast into
a matrix equation by considering equations (6)—(10)

AX = wBX, 17
where w is the eigenvalue of frequency, A and B are two
sparse matrices of operators which are independent of w. The
unknown vector X is represented in Boozer coordinates as

X=Xy (¥)exp(—imf + in(), (18)

where m and n are the poloidal and toroidal mode numbers,
i.e. Fourier conjugates of Boozer poloidal angle 6 and toroidal
angle (.

The structures of matrices A and B are shown in figures 2(a)
and (b). Based on the definition of X in equations (16)
and (18) with n being linearly conserved in an axisymmet-
ric tokamak, it is natural to partition A and B into blocks
in three levels, i.e. 5 X 5 physics variable blocks in terms of

(6¢,6A|‘,5P,~,6u|‘i,6n,~) in the first level, each physics vari-
able block is further partitioned into M x M poloidal blocks
(where M is the number of m-harmonics) in terms of poloidal
coupling between m-harmonics in the second level, and each
poloidal block is an R x R dimension submatrix (where R is the
radial grid number) which represents the radial dependence of
operators in the third level.

Specifically, all orders of poloidal coupling, i.e. m+ Am
with Am > 1, can be handled in MAS with the constraints
m+ Am < My, and m — Am > mpy,;, when the physical oper-
ator has 6 dependence, while the poloidal coupling is not
necessary (i.e. Am = 0) when the physical operator does not
rely on 6. The structures of the physics variable block with and
without poloidal coupling are shown in figures 2(c) and (e),
respectively, which correspond to the purple and red shaded
regions in figure 2(a). The radial discretization is incorpor-
ated in each poloidal block, for example, figure 2(d) shows

the detailed structure of the green shaded region in figure 2(c),
where the finite difference method with second order accur-
acy (i.e. three radial grids are involved) is applied for discret-
izing the radially differential operators (i.e. first and second
order derivatives with respect to 1), and the Dirichlet bound-
ary condition is applied at the inner and outer-radial boundar-
ies. Figure 2(f) shows the diagonal matrix for the operator with
zeroth derivative at v, which corresponds to the cyan shaded
region in figure 2(e).

The numerical framework of MAS is constructed in
MATLAB. Besides implementing the A and B matrices for
discretized physical operators, we solve eigenvalue w and
eigenvector X of equation (17) by using eigs in MATLAB,
which is efficient for finding solutions in the specific w range
of interest. For example, the numerical simulation of reversed
shear AE (RSAE) in figure 6 is performed on a laptop with
Intel Core 19 CPU (2.3 GHz, 8-Core), which takes about 3 min
using R =513 radial grids and M = 17 coupled m-harmonics.
The detailed cost of CPU time includes 140s for mapping
Boozer coordinates based on EFIT equilibrium, 40s for pre-
paring the physical operator matrices, and 10 s for solving the
matrix equation, namely, equation (17).

4. Theoretical benchmarks: reductions of
Landau-fluid formulation in various limits

In order to delineate the validity regime of the present Landau-
fluid model in a clear and concise manner, in this section we
show the reductions to several well-known reduced models
within the interested limits.

4.1. Ideal full-MHD model

Using the ideal MHD ordering, the terms of the Landau-
fluid model described in section 2 labeled by {drift}, {Ion
FLR}, {Ion Landau}, {Electron Landau} and {Resistivity}
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Figure 2. (a) and (b) show the structures of the A and B matrices respectively, where the blue lines represent the non-zero elements. The
M x M poloidal blocks are shown in panels (c) and (e), which correspond to the purple and red shaded regions in A respectively. The sparse
R x R dimension submatrices are shown in panels (d) and (f), which correspond to the green and cyan shaded regions in (c¢) and

(e) respectively. The yellow shaded regions in (b) represent the identity submatrices.

are negligibly small and thus removed. Equations (1)—(5) then
reduce to

d ¢ JH()
atV2v25¢+Bo ( V25A|)—<SB V(B>

0
— 87 (VOP; + ViP,) - bOBX E_o, (19)
0
D%~ by -V, 20
at cDo \Y% (b ( )
85P,- cby % V&;zb by X &
o + B VPiy+2L PiocVp B,
Suyy;
+ Ty PioBo - v( B(')' ) —0, @1
dduy;
g i _ e 7P, — L 5B VP,
ot By
1
~bo: VoP,— 0B VPo,  (22)
8(57’11' Cbo X V5¢ b() XK
ot + By -Vnjo +2cngVoop - By
ouy;
+ noBo - v( “i ) —0. 23)
By

Note that the charge and current densities of ion and electron
species are equal to each other due to the one-fluid MHD con-
straint, and thus equations (8) and (9) become

edn, = Z;0n; (24)

and

eneoéuHe = Z,nioéu‘ li- (25)
Moreover, equations (6) and (7) still hold for computing JP,,
while equation (10) is not used in the ideal full-MHD limit,
since the §7; related term has been dropped in equation (21).
As illustrated in section 2, an effective 6BH model is
imposed in equation (19) by modifying the interchange term
using k instead of VB /By, which is important for the quant-
itative accuracy of low-n MHD instabilities such as m =n =
1 kink mode [52]. Thus, equations (19)—(25) together with
equations (6) and (7) comprise the ideal full-MHD model in
this work, which captures important MHD compressibilities
including E x B drift compression in the presence of a non-
uniform magnetic field and parallel sound wave, as well as the
leading 9B, effect of drift reversal cancellation. Though the
potential equations using (5 ¢,04 ) are very different from the
classic ideal full-MHD equations using electromagnetic fields
(E,B), these two forms are equivalent for full-MHD physics in
the regimes of w < €); and k|| < k_, and the detailed deriva-
tion is shown in appendix B. Compared to classic (E,B) form,
the (§¢,§AH) form well separates key physics terms in the
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vorticity equation and greatly simplifies the numerical imple-
mentation by using the scalar equation rather than the vector
equation. Furthermore, the (5¢,6AH) form removes the high
frequency fast wave with w =k V4 ~ Q, which is free of
spectral pollution in traditional MHD stability computation
using the (E,B) form [47].

It should be noted that the JE) role is subtle in the
framework of ideal ful-MHD. On one hand, 5EH =0 is
a typically ideal MHD constraint in equation (20), on the
other hand, Zini05E|| = —by-VéP, — (I/BO) 0B -VP, 75 0
has been imposed in equation (22), which gives rise to the ISW
as pointed out by J. Freidberg in [53].

4.2. Reduced-MHD model using slow sound approximation

Considering the fact that ISW is not a major concern in the
Alfvén frequency regime, such as for toroidal AE (TAE) etc,
one can further simplify the ideal full-MHD model described
in section 4.1 by applying the slow sound approximation
[54], i.e. retaining the E X B drift compression due to a non-
uniform magnetic field in equations (21) and (23) and effect-
ive 0B)| modification of the interchange term of equation (19)
while removing the parallel sound wave by setting du)); =
ouy|, = 0. Equation (22) is then removed from the system, and
equations (21) and (23) become

D6P;  cby x Vi bo x &
-VPip+2I;, P : =
at -+ BO \Y% i0 + il ,00V6¢ BO 0
(26)
and
ag?i + Do ZV(S(b -Vnijy +2cnigVée - bo X 1 =0. 27
0

It has been shown that the diamagnetic drift convection
on MHD E x B flow is important for the perpendicular
momentum balance in the high-n regime that applies drift-
ordering [55], thus the equivalent term is also retained in the
vorticity equation of the reduced-MHD model here:

0 ¢ 1
o — V> 5¢+zw*pl v15¢+130 -V (&)Vi(SAH)
%,—/
{Drift}
53 v( ”0) 87V (6P, + VoP,) - 0 g,
By By

(28)

Equations (6), (7), (20), (24) and (26)—(28) constitute a closed
system, which is referred to as the drift reduced-MHD model
or the ideal reduced-MHD model, depending on whether the
second term related to w,,, ; in equation (28) is included or not.
One may argue the consistency issue that the diamagnetic drift
term is only kept in equation (28) while not in equations (26)
and (27) in the drift reduced-MHD model. The reason is that
diamagnetic drift corrections on P, and §P; are higher order
effects for MHD modes near the Alfvén frequency, due to the
partial cancellation of diamagnetic drifts between ion and elec-
tron species in the total pressure equation (i.e. for 0P, + 6 P;),

considering that T,y ~ Tjo [48]. The w,, ; term in equation (28)
can be considered as the lowest order FLR effect [56], which
can affect the AE mode structure and frequency found in recent
gyrokinetic simulations [57]. The reduced-MHD model using
slow sound approximation is efficient for computing high fre-
quency AEs such as TAE, as well as validating advanced mod-
els with more physics effects.

4.3. Electrostatic ion-fluid model

In the electrostatic limit that 5A|| — 0, the Landau-fluid model
in section 2 reduces to the three-field electrostatic ion-fluid
model with adiabatic electrons [58]. We shall further demon-
strate the valid regime of the electrostatic approximation,
which is useful to differentiate the electrostatic and elec-
tromagnetic drift wave instabilities, such as ion temperature
gradient mode (ITG) and kinetic ballooning mode (KBM).
Ignoring the second order FLR term and kink drive in

equation (1) and defining vg = ‘TI‘U bUBX"‘ and vq - V = iwy, we
have
TZ;
—kai(SAH = — (w — w*p,l) kz (5¢ + wdl(SP
A i0
8
2 deOPe, (29)
CTeO

and from equations (2), (6) and (7), dP, can be expressed as

Wip e

—0A ||+7(5¢

5P, = — (1 - (30)

) eny,y w

w eo CkH

where the electron Landau damping and resistivity effects
. T Vg

are ignored, w*pe w*ne+w*Te, Wn,e = —igrbo X TR -

V and w,r, = bo x VT, -V. Then one can express

0A|| in terms of 6¢ and OP; as

ki_ 87 Z,?n,-n

A ck (UJ - w*PJ) 7% T T, Wdi §¢
R+ S (1 22)
87\'2?}1,’[)
—ck Ty W 0P a1
I k2k2 8melne (1 _ M) Zinig
H 2Ty de w o

Meanwhile, considering equations (2) and (7), we can write
equation (4) as

Z: k 1 k Z; wp.i
buyp =t Log+—Zllap, 2 (1 2l gy
m; w minjy w cm; w . (32)
{1} {m} {ur}

Substituting equation (31) into equation (32), it is straight-
forward to compare the electrostatic contributions (denoted
by terms {I} and {II}) with electromagnetic contributions
(denoted by term {III}) to find out the validity regime of elec-
trostatic approximation. In the limit of 6A; — 0, we have the
following relations:

(W—wip) < k‘z‘ VA (33)
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and

2.2
kHvthi

; (34)
Wai (W — wap,i)

Bi <KL}

namely, when the low frequency condition (much lower than
Alfvén frequency) and the low B, condition (much smaller

than the threshold 3, = k% p; %) are satisfied simul-
taneously, dA| related terms can be safely ignored without
sacrificing much physics accuracy compared to the original

electromagnetic Landau-fluid model.

4.4. Comparison with the drift-kinetic model in uniform
plasmas

In order to evaluate the accuracy of Landau resonance in the
MAS physics model, it is necessary to compare the analytic
dispersion relation in uniform plasmas between the Landau-
fluid model with the drift-kinetic model. Dropping the terms
associated with non-uniform plasma equilibrium and ion-FLR
effects, equations (1)—(6) reduce to

0 ¢
v Vidp+by V(VI6A)) = 35)
06A
el = —cby-Vip + CTieObo -Vone + %\/Evthdkn ‘51/{”8,
ot eng e 2
(36)
OOP; 2
or iHPiObO'V5u||i+ni0ﬁ\/§"thi|k|||5n =0, (37
86u||,
ni;n;o = 7b0 . VéPe - b() . V5Pi
ot
m, |
- Ziniofvthe|k| | (38)
e \ 2
ég“+nwov&%_n, (39)
and
0P, = 0n,Tyy. 40)
—iwt+ik-x

Taking the ansatz e and applying the Fourier trans-
form: 0; = —iwt, V, =ik, and by - V = ik||, the linear dis-
persion relation of kinetic Alfvén wave (KAW) based on
equations (8)—(10), (35)-(40) is

2
w TeO Z nio Z nio
—1| [RF (e, RY¥ (¢)| = 12 02,
lkzvz ] [ e (5) TzO ezneo (5) nO 1Ps
(41)
where p; = Cs/Qei, Cs=/Too/mi, Qi = L”ﬁo, and Vy =

By/\/4mnjom;. R, and R; are the plasma response functions
for electron and ion species in Landau-fluid

RF (&) = 42)

1
1 *i\/§|£e|

and
&l +i7=

. — (43)
=286l — =& + Ty lsl + iz

RiLF (fi) =

where equation (42) is only valid in the regime of w < k| Vihe
due to the fact that the electron inertia term is ignored in the
Landau-fluid model.

For comparison, the linear dispersion relation of the drift-
kinetic model with both ion and electron species is

1| [ TS - e
(44)
where
RS (&) =1+6Z(&) (45)
and
R (&) = 1+&Z(%), (46)

and the derivation of equation (44) is shown in appendix C.
It is seen that in uniform plasmas, the Landau-fluid disper-
sion relation equation (41) has the same form as the drift-
kinetic model result equation (44), where the differences are
only from the definitions of the plasma response functions R,
and R;. In order to guarantee the accuracy of the Landau res-
onance, the coefficients in equations (42) and (43) have been
compared with the benchmarking on the analytic dispersion
relation in uniform plasmas, for example, FiH = 3 should be
applied in equation (43) in order to match the drift-kinetic
result equation (46) asymptotically in both the &; — +oo and
& — 0 regimes [27]. The comparison of R, and R; between
the Landau-fluid model and drift-kinetic model are shown in
figure 3, and it can be seen that the differences are small in
the interested ranges, i.e. the electron adiabatic regime and ion
inertia regime.

We list the features of the Landau-fluid model and sev-
eral reductions in table 1, of which details are described in
sections 2 and 4. It is seen that the comprehensive Landau-
fluid model is constrained by ideal full-MHD model in the
long wavelength limit, electrostatic ion-fluid model in the
low frequency (w < wy4) and low-8 limit, and drift-kinetic
model with Landau resonance in the uniform plasma limit,
which guarantees the reliability of physics model for diverse
physics issues with complex polarization features in realistic
experiments.

On the other hand, in order to better delineate the validity
regime, the restrictions of the MAS Landau-fluid model are
clarified by comparing with a fully gyrokinetic approach such
as LIGKA [24, 59]. In LIGKA code, all plasma species includ-
ing thermal ions, thermal electrons and EP ions are described
by using a gyrokinetic model, and the important wave—particle
resonance and FOW effects are obtained numerically through
realistic particle orbit integrals in phase space, which provide
accurate kinetic responses in both the Alfvénic and acous-
tic frequency ranges. In addition, LIGKA can also solve the
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Figure 3. The comparisons of R, and R; between the Landau-fluid model and drift-kinetic model. The dependences of the real and
imaginary parts of R, on &, are shown in panels (a) and (), and the real and imaginary parts of R; on £; are shown in panels (¢) and

(d). The green shaded regions in (a) and (b) indicate the adiabatic electron regime, and the purple shaded regions in (c¢) and (d) indicate the
ion inertia regime, where the two models agree with each other and cover a broad frequency range of typical ion scale waves and instabilities.

Table 1. Comparison of the involved physics effects between the comprehensive Landau-fluid model and simplified models from reductions

in various limits.

E x B drift Acoustic
Model compression compression Diamagnetic drift ~ Ion-FLR  JE| Landau resonance 0A)|
(I) Landau-fluid Yes Yes Ion, electron Yes Finite Ion, electron Yes
(II) Ideal full-MHD Yes Yes No No Zero No Yes
(IIT) Ideal reduced-MHD Yes No No No Zero No Yes
(IV) Drift reduced-MHD Yes No Ion only No Zero No Yes
(V) Electrostatic ion-fluid Yes Yes Ion only Yes Finite Ion only No
(VD) Uniform drift-kinetic No Yes No No Finite Ion, electron Yes

SAW and ISW spectra based on the reduced gyrokinetic model
that uses well-circulating approximation [60], which is suit-
able in the Alfvénic frequency range but suffers error in the
acoustic frequency range. Compared to a fully gyrokinetic
approach, the main physics restrictions of the MAS model
include (i) the EP ions are not considered yet; (ii) the thermal
ions are described by three-moment equations (3)—(5) where
the trapped ion and FOW effects are absent and the plasma
response deviates from gyrokinetic response in the low fre-
quency regime (i.e. the thermal ion magnetic drift frequency
Wy = —iC;{'O b"B% - V); (iii) the isothermal condition is applied
for the thermal electron model, which drops the electron tem-
perature gradient drive, and other restrictions are the same as
for the thermal ion.

In particular, with the addition of further thermal ion dia-
magnetic drifts on top of the model in section 4.4, the response
function of three-moment closure in slab geometry has been
derived by equation (13) of [27], which can fit the drift-kinetic
response quantitatively, i.e. equation (12) of [27], and is con-
sistent with the corresponding term in the gyrokinetic disper-
sion relation that uses well-circulating approximation, e.g. D
functions in equation (10) of [22] and equation (1) of [26].
Thus, the thermal ion model in MAS can incorporate the

diamagnetic drift and parallel ion Landau damping effects
being close to gyrokinetic model when the magnetic drift fre-
quency of the thermal ion is small, such as in the Alfvénic
frequency range w ~ w4 >> wgy;, while the thermal ion kinetic
particle compression (KPC) terms in the gyrokinetic disper-
sion relation, i.e. N and H functions in equation (1) of [26],
cannot be fitted by the current MAS model, which require the
implementation of more closures associated with wg; [29] than
the Hammett—Perkins closure deployed already [27]. In sum-
mary, the MAS Landau-fluid model is more appropriate for
computing spectra in the Alfvénic frequency range that agree
with the gyrokinetic dispersion relation quantitatively, while
the error associated with wy; is amplified in the acoustic fre-
quency range where the parallel ion Landau damping is still
qualitatively valid.

5. Numerical benchmarks

In order to present the MAS capabilities for addressing certain
plasma problems and to verify the numerical implementation,
in this section we carry out MAS benchmark simulations of
typical plasma waves and instabilities.
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Figure 4. The drift-kinetic solution of KAW (a) frequency and (d) damping rate, and MAS simulations of KAW (b) frequency and
(e) damping rate based on the Landau-fluid model. (c) and (f) are the relative errors of frequency and damping rate between drift-kinetic

theory and MAS simulations, respectively.

5.1. Normal modes: KAW and ISW with Landau damping

There are two branches of normal modes in the linear disper-
sion relation of the drift-kinetic model from equation (44):
one is the high frequency solution of KAW with w~

ki Vay/1 —|—ki_p§, and the other is the low frequency solu-
tion of ISW with w = k|| Cy, which is solved from RPK (&) +

% ZET";‘:RPK (&) ~0with §, < 1and & > 1[61]. We compare
the KAW and ISW solutions from MAS simulations with drift-
kinetic theory, in order to verify that the Landau-fluid model
can treat the kinetic ion and electron responses accurately in
uniform plasmas. The ISW branch is mostly determined by
the response functions in equations (42), (43), (45) and (46),
which have been compared in figure 3 showing good agree-
ments in the electron adiabatic regime (£, < 1) and ion inertia
regime (&; > 1), thus it is proven that the Landau-fluid model
is valid for ISW, and so we do not show repetitive numerical
simulations of ISW here. Next, we benchmark the MAS sim-
ulation results of KAW branch against the drift-kinetic theory.

Two species cylindrical plasma with uniform magnetic
field in the axial direction is applied in the simulation, which
consists of proton ions and electrons. The following equi-
librium and perturbation parameters are fixed in the bench-
marks: the magnetic field Bo = 1.0'T, ion and electron tem-
peratures Tjo = T,0 = 1.0keV, and the parallel wave vector
kj=n/Ry=4.0m~" (where n is the axial mode number,
and the cylinder axial length is 2w Ry with Ry = 1.0 m). We
then scan the plasma density in the range of njy =n. €
[1.0 x 10" ecm™3,5.0 x 101 cm*3] ,and k| p, in the range of

[0.01,0.36]. The MAS simulation results of KAW frequency
and damping rate are shown in figures 4(b) and (e), which
agree well with drift-kinetic theory solutions (figures 4(a) and
(d)) inmost 8 — k| p; domains. It is also seen from figure 4 that
the KAW damping rate has a much more sensitive dependence
on k| p; compared to the frequency.

The KAW damping rate varies non-monotonically with 3
from both drift-kinetic theory and MAS simulation, which
is explained as follows. The KAW parallel phase velocity

can be approximated, i.e. as v, = w/kj| = Va4 /1 + kip}, then
the ratios of v, to ion and electron thermal velocities, which

determine the Landau resonance strength, can be estimated by

Vp [1 >
: V2V Bi 0
and
Vp 1 /m, ,
L= :1/7 [0 11+ k2 p2. 48
& ﬁvthe Be \ m; s “

Equations (47) and (48) indicate that the ion and elec-
tron Landau dampings favor high- and low-3 plasma condi-
tions, respectively (i.e. 3; ~ 1 for & ~ 1, and S, ~ m,/m; for
& ~ 1). In figure 4(d) of the drift-kinetic results, the dashed
and solid lines correspond to the local maximal damping of
KAW dominated by electron and ion species respectively, and
the magenta circles mark the weakly damped region (i.e. a
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valley of damping rate variation along [3) due to the lack of
resonance condition kj| vy < w < k| vihe. When B. gets close
to and smaller than m,/m;, the high frequency solution of
equation (44) is no longer KAW (which assumes electron
adiabatic response dominates) and becomes the inertia Alfvén
wave where the parallel phase velocity is greater than vy, as
indicated by the region on the left hand side of the dashed line
in figure 4(d). There are relatively large differences on both
frequency and damping rate in this low-3 regime (8, ~ m,/m;)
when comparing MAS simulation results (figures 4(b) and (e))
and drift-kinetic theory (figures 4(a) and (d)), because we drop
the electron inertia term in equation (2) of the Landau-fluid
model and thus remove the trivial inertia Alfvén wave physics.
As we expected, the MAS simulations of KAW frequency and
damping rate are consistent with drift-kinetic theory in the 3
regime of recent tokamaks (i.e. 5, ~ §; € [0.001,0.1]), while
the extremely low- and high-/ regimes with relatively large
discrepancies are out of scope for a tokamak plasma study.
With regard to practical applications, MAS is able to sim-
ulate the mode conversion processes of KAWs [62] in a
wide S-domain where both electron and ion Landau damp-
ing effects are properly taken into account. Furthermore,
although ion Landau damping is much weaker than elec-
tron Landau damping for KAWs in tokamak plasmas with
B ~0.01, the KAWs can form the radially bounded states
due to the geometry effect, such as kinetic beta-induced AE
(KBAE) due to geodesic magnetic curvature, which suffers
much stronger ion Landau damping in the regime of w ~ wy;

(wi = /2T /mi/q/Ro) [22, 59].

5.2. Low-n MHD instability: ideal internal kink mode

In section 4.1, we have shown that the MAS Landau-fluid
model can faithfully cover the ideal full-MHD physics except
for fast wave. However, the MHD reduction of the Landau-
fluid model still applies separate heat ratios for ion and elec-
tron species, which differs from the one-fluid MHD treatment
that uses a single heat ratio in equations (56) and (58)—(61)
of appendix B. The relation of heat ratios between the one-
fluid MHD and Landau-fluid reduction in section 4.1 can be
deduced from equations (6), (7), (20)—(25) as

TPy = Pe +T'i1 Pio = Peo + Ty Pio, 49)
where Py = P,y + Pj. In equation (49), the unity heat ratio for
the electron is consistent with its isothermal assumption in the
Landau-fluid model, and the MHD isotropic condition requires
I = I‘i“. Thus we can adjust I'; | and FiH synchronously in
the MAS simulation to represent an effective I of the one-fluid
MHD.

MAS has been benchmarked with other kinetic-MHD
hybrid and gyrokinetic codes for m =n =1 internal kink
mode in DIII-D shot #141216 [42], and the comparison of
kink growth rate is shown in figure 5. Besides the excellent
agreement of cross-code comparison with the nonideal effects
being suppressed in all benchmarking codes, the benchmark
shows that kink growth rate scales almost linearly with £,
which is due to the combination of global pressure gradient

%x10%  Growth rates, full ideal MHD
‘ : .

® XTOR-K
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Figure 5. The comparison of internal kink growth rate between
different codes in the ideal full-MHD limit for DIII-D shot #141216
at t = 1750 ms. Good agreement is obtained between codes using
the kinetic-MHD hybrid and gyrokinetic models. (Note that MAS
joins this benchmark study with the former name ‘GAM-solver’.)
Reproduced courtesy of IAEA. Figure from [42]. Copyright (2022)
TAEA.
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Figure 6. The poloidal mode structures of (a) electrostatic potential
0¢ and (b) parallel vector potential dA|. The radial profile of
poloidal harmonics of (¢) ¢ and (d) dA||. The black solid and
dashed lines denote ¢ = 1 and g = 2 rational surfaces, respectively.

drive and local current gradient drive at the g = 1 surface. The
mode structures of electrostatic potential ¢ and parallel vec-
tor potential JA|| are shown in figure 6, where J¢ is domin-
ant by the m =1 poloidal harmonic, while dA| exhibits the
large m =0 and m =2 sidebands as comparable to the m =1
primary poloidal harmonic, which is caused by the ideal MHD
constraint (i.e. —bg - Vg — (1/c)9,0A; = 0). We then per-
form the S scan for different I" values as shown in figure 7,
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Figure 7. The kink growth rate dependence on the ratio of the
plasma pressure to the magnetic pressure. The blue diamond line,
red square line and black circle line represent the results using heat
ratios of ' =0, =1 and I" = 5/3, respectively.

where it is found that the kink growth rates almost remain the
same between I' = 1 and " = 5/3. However, when we remove
all plasma compressibilities by setting I' = 0, the kink growth
rate increases nearly by a factor of two compared to the finite-
I" cases, which indicates the importance of the finite-3 effect
on internal kink mode that requires the retention of E X B
drift compression due to non-uniform magnetic field, parallel
sound wave and 6B)| modification on the MHD interchange
drive simultaneously, and recent full-MHD theory and sim-
ulation also draw similar conclusions [52, 63]. In summary,
MAS is capable of simulating macroscopic MHD instability
with a Dirichlet boundary condition in the plasma edge, and
both the ideal full-MHD model and comprehensive Landau-
fluid model with bulk plasma kinetic effects can be applied.

5.3. High-n drift wave instabilities: ITG and KBM

The MAS simulations of drift wave instabilities are carried
out using the Cyclone Base Case (CBC) parameters [64].
The (s — a)-like concentric circular geometry is applied with
Ry =83.5 cm and a = 0.36Ry, and the g = 1.4 rational sur-
face is located at r=0.5a with magnetic shear s=0.78.
The proton thermal ion (Z; =e) temperature profile is
equal to the thermal electron. At r=0.5a, Tip =T, =
2223 eV, R()/LT,' = R()/LTL) = 69, R()/Lm' = R()/Lne = 2.2, and
1; = Lyi/L7; = 3.14, where Ly and L, are the scale lengths
of temperature and density, respectively. The magnetic field
strength on the magnetic axis is B, =2.01 T. The toroidal
mode number n=10 is chosen in the simulations corres-
ponding to kgps = 0.22 at r=0.5, and the poloidal harmon-
ics m € [8,24] are kept, which are enough to include the res-
onant perturbations on each rational surfaces in the radial
domain. To verify the ITG and KBM dispersion relations with
former gyrokinetic simulations [45], we fix the plasma tem-
perature and vary the density for the g, scan in the range of
Be € [0,0.02].

It should be pointed out that the thermal ion KPC term
has a complex dependence on (w,k) in the first-principle
gyrokinetic model [22, 26, 60], and the effective heat ratios
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Figure 8. Comparison of kgp; = 0.22 (n = 10) mode between MAS
and GTC simulations using CBC equilibrium with different 3,
values [64]. (a) Real frequency and (b) growth rate dependences

on Be.

i1 ) (w,k) are no longer constant. Here, we focus on present-
ing the MAS simulation capability of ITG and KBM in the
Landau-fluid framework, and the constant FiH and I';| are
used for all cases in the (3, scan, of which dependencies
on (w,k) require more detailed derivations and are out of
the scope of this paper. Considering that the particle parallel
dynamics are much faster than the perpendicular in anisotropic
magnetized plasmas, I';| and I';, are generally different from
each other, FiH = 3 is chosen for the quantitative correctness of
ion parallel Landau damping [27] as confirmed in section 4.4,
and we apply the commonly used heat ratio values in the per-
pendicular direction, i.e. I';; =1 and I';; =5/3, for the fol-
lowing simulations of ITG and KBM.

As shown in figure 8(a), MAS simulations using I';; =
1 agree well with GTC first-principle results on both ITG
and KBM frequencies, while the absence of the collisionless
trapped electron mode (TEM) branch in MAS is due to the fact
that trapped electron dynamics is not yet included in Landau-
fluid model. Meanwhile, the finite-3 stabilization effect on
ITG and the onset of KBM are observed in the 3, scan with
I';1 =1, as shown in figure 8(b), which are consistent with
gyrokinetic simulations [45]. For I';; =5/3 cases, only the
KBM branch of wggm > wy; 1s unstable, while the ITG branch
of wirg ~ wy; becomes stable, because I';; > 1 amplifies the
wy; related term in equation (3) which effectively stabilizes the
low frequency ITG mode. There are relatively large growth
rate differences between MAS and GTC results, which are
attributed to trapped electron effects upon ITG [65] and KBM
[66], and the fact that the thermal ion KPC term in the gyrokin-
etic dispersion relation [22, 26] cannot be fitted by the present
Landau-fluid model in MAS, as illustrated in section 4.
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Next we show the mode structures of d¢ and JA
for ITG at B,=0.0022 and KBM at (,=0.02 in
figures 9 and 10(a)—(d). Both ITG and KBM show balloon-
ing structure in 0¢ and anti-ballooning structure in dA||. The
ITG perturbation exhibits a more obvious ballooning angle
than KBM, which deviates from out-midplane, and the KBM
eigenmode structure is close to the ideal ballooning mode
being self-adjointness in the high 3, regime. Figure 9(e) shows

- 14, ES

0.4

0.2

0.7

the ITG polarization, where the amplitude of the electrostatic
parallel electric field Eﬁs = —bg - Vi¢ is almost the same as
the net parallel electric field Eﬁet = —bg-Vép—(1/c)0i0A),
which indicates the quasi-electrostatic nature of ITG mode.
In contrast, the EI‘lIet amplitude is much smaller than EES for
KBM due to the partial cancellation between longitudinal
and transverse electric fields as shown in figure 10(e), which

indicates the KBM polarization is predominantly Alfvénic,
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ie. \Eﬂ‘e‘| ~0< \Eﬁs| Building on the above linear verific-
ations of ITG and KBM, MAS can be applied for studying
ion-scale drift wave instabilities in both the electrostatic and
electromagnetic regimes.

6. Applications: bulk plasma kinetic effects on AE
in DIII-D geometry

Both theory [67-69] and experiment [70] have shown that
the ideal MHD description of bulk plasmas is incomplete for
AE activities, of which kinetic effects can damp AEs and
thus determine the EP-driven thresholds, resolve the singu-
larity arising from the resonance between MHD modes and
Alfvén continua, and form kinetic AEs by trapping KAWs
in the local potential well of the Alfvén continuous spec-
tra, etc. In this section, we carry out MAS simulation of AE
activities of interest in DIII-D experimental geometry, includ-
ing RSAE, TAE, KBAE and beta-induced Alfvén-acoustic
eigenmode (BAAE), in which both the MHD and kinetic
physics are well validated. The parallel and perpendicular
heat ratios for the Landau-fluid, full-MHD and reduced-MHD
models are (Fiu,ru) = (3,7/4), (Fi||aFiL) =(7/4,7/4) and
(Ty,Tis) = (0,7/4), respectively.

We focus on DIII-D shot #159243 with comprehensive dia-
gnostics on RSAE and TAE [71], of which the equilibrium
at 805 ms has been used for recent V&V studies between
gyrokinetic and kinetic-MHD hybrid codes [72]. The magnetic
field geometry, safety factor g, bulk plasma density and tem-
perature profiles (n., T., T;) are described in figure 3 of [72].
The toroidal mode n = 4 continuous spectra of SAW and ISW
as well as discrete AEs are shown in figure 11.

6.1. RSAE: kinetic effects resolve the MHD singularity arising
from Alfvén continuum resonance

RSAE is frequently observed in the NBI heated plasmas in
the presence of a reversed magnetic shear, and the formation
mechanism has been well understood theoretically [73-76].
At 805 ms of DIII-D shot #159243, RSAE is found as the
dominant instability in recent V&V study [72], and is simu-
lated by MAS here to clarify the roles of MHD and kinetic
effects on RSAE physics. We compute the RSAE mode struc-
ture and dispersion relation using hierarchical physics models
introduced in sections 2 and 4. Specifically, the ideal reduced-
MHD model using slow sound approximation in section 4.2,
the ideal full-MHD model in section 4.1, and the Landau-fluid
model without and with ion FLR terms labeled by {Ion-FLR}
in section 2 are used for comparison in order to delineate dif-
ferent level physics.

The comparison of n =4 RSAE mode structure between
four models in different levels are shown in figure 12. In the
lowest order of MHD physics, all models exhibit that RSAE
locates around the g, = 2.945 surface, indicating that MAS
can correctly deal with the basic nature of RSAE. Beyond
the MHD physics, we shall show that the bulk plasma kinetic
effects have non-trivial influences on the mode structure in the

higher order. At the radial locations where the RSAE reson-
ates with the Alfvén continuum (i.e. the intersections between
RSAE and Alfvén continua in figure 11), the reduced and full-
MHD models show unphysical spikes on the mode structure
in figures 12(e) and (f), which are due to the MHD singu-
larity arising from Alfvén resonance. In the early study of
MHD, the MHD singularity has been avoided by excluding
the Alfvén resonance region from the simulation domain when
it does not affect the AE potential well much [77], however,
this method is not valid for our RSAE case. When the kin-
etic terms responsible for small scale physics are retained in
the model, such as finite E, Landau damping and ion FLR
effects etc, this MHD singularity can be resolved in a phys-
ical manner through SAW-KAW mode conversion in the res-
onance region, where the mode structures become smooth, as
shown in figures 12(g) and (k). Moreover, the KAWs suffer
Landau damping and the residual parts (fine scale perturb-
ations) superpose on the RSAE in the radial domain above
the m = 12 continuum where KAW can propagate. It is also
found that the ion-FLR effect can enhance KAW perturbations
by comparing figures 12(g) and (%), which is consistent with
former kinetic study [78]. Meanwhile, the bulk plasma kin-
etic effects non-perturbatively modify the RSAE 2D poloidal
mode structure by breaking the radial symmetry as shown
in figures 12(c) and (d), which is characterized with a tri-
angle shape with radial phase variation. On the other hand,
the RSAE real frequencies from the four models in figure 12
are 60.0kHz, 60.6 kHz, 62.5kHz and 62.8 kHz respectively,
and the kinetic influences are weak. However, the one-fluid
MHD calculations cannot provide the damping rate inform-
ation, while the Landau-fluid calculations give the damping
rates y,/w = —1.82% and 7,;/w = —1.67% respectively, by
incorporating radiative damping, Landau damping and con-
tinuum damping, and the ion-FLR effect on damping rate is
modest consistent with the minor change of mode structure.
The n=4 RSAE mode structures obtained from MHD and
Landau-fluid models in figure 12 are consistent with other per-
turbative and non-perturbative codes from figures 5 and 6 of
[72] respectively, which indicate the reliability of the MAS
hierarchy physics model and the accuracy of the numerical
implementation.

We then simulate RSAEs from n=3 to n =06 using the
comprehensive Landau-fluid model in section 2, and compare
this with other gyrokinetic and kinetic-MHD hybrid codes in
[72] (note that the EP non-perturbative effect on RSAE real
frequency in this shot has been proved to be small). The RSAE
real frequencies from MAS show good agreements with other
codes in figure 13(a), and MAS further gives the damping rates
in figure 13(b), which are ignored by the kinetic-MHD hybrid
codes and are difficult to measure in the initial value gyrokin-
etic codes. The increase of RSAE frequency with n number
in figure 13 can be explained by the following estimation of
RSAE frequency in low- plasmas:

1/2
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Figure 11. n =4 Alfvénic and acoustic continua for DIII-D shot #159243. The thick and thin lines represent Alfvénic and acoustic branches
respectively. The colorbar represents the normalized AE radial amplitude.
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Figure 12. The 2D poloidal mode structure of §¢ for n = 4 RSAE using () ideal reduced-MHD model (f = 60.0 kHz), (b) ideal full-MHD
model (f = 60.6 kHz), (¢) Landau-fluid model without ion-FLR terms only (f = 62.5 kHz, v4/w, = —1.82%), and (d) comprehensive
Landau-fluid model (f = 62.8 kHz, v4/w, = —1.67%). (e)—(h) are the corresponding radial structures of each poloidal harmonics.

where wgeoa = 1/2I'Py/ (minjy)/Ro is the geodesic acoustic mechanical system, dw is determined by toroidicity, fast ion,
frequency, and dw represents the deviation of the discrete pressure gradient, etc and has a modest correction on wWrsaEg.
eigenmode from the reverse shear extreme point of the Alfvén It has been known that the principal dominant poloidal har-
continuum. Analogous to the zero-point energy in a quantum  monic m of RSAE satisfies m — 0.5 < ngmin < m [75], thus it
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damping rates obtained from MAS.

is straightforward to show that wrsag increases with (n,m) =
(3,9),(4,12),(5,15),(6,18) in terms of gmin = 2.945 based
on equation (50).

More importantly, equation (50) indicates that wgrsag relies
on gmin sensitively, which commonly exhibits an upward fre-
quency sweeping pattern when g, decreases with time from
experimental observations [71, 73, 74]. In order to further val-
idate our model, we scan the gn, in the range around the
experimental value by adding a small constant Ag to the gq-
profile in the simulation, and m > ngn;, is satisfied for all
gmin Values with n=4 and m = 12. It should be pointed out
that the Grad-Shafranov relation breaks when finite Ag is
induced without making other modifications on equilibrium,
however, this inconsistency is ignorable since Ag/gmin ~
0(1072). The n=4 Alfvén continua and RSAE amplitudes
for the continuously varied g, are shown in figure 14(a).
AS @min decreases, the extreme point of the m =12 con-
tinuum upshifts and induces the RSAE to chirp up in fre-
quency as shown by the yellow circle lines, and meanwhile the
extreme point of the m = 11 continuum downshifts closely to
the m = 12 continuum. When g, decreases below the RSAE-
TAE transition threshold grag = (2m — 1) / (2n) = 2.875, the
m =11 and m = 12 continua begin to merge with each other by
exchanging the extreme points, and two TAE gaps form at both
sides of the g, surface, as shown by the gni, = 2.865 case
(gmin < gtaE)- The corresponding poloidal harmonic struc-
tures are shown in figure 14(b), and it can be seen that as g,
drops, the amplitude of the sub-dominant m =11 harmonic
becomes larger and finally comparable to the principal dom-
inant m = 12 harmonic, which indicates the transition from
RSAE to TAE. So far, the main RSAE physics associated with
bulk plasmas have been well validated with important kinetic

characteristics in MAS, including mode structure/dispersion
relation, RSAE-Alfvén continuum interaction/mode conver-
sion, and RSAE-TAE transition.

6.2. TAE: kinetic effects enable tunneling interaction between
Alfvén gap mode and continuum

TAE is also routinely observed in fusion experiments, which is
formed by toroidicity and magnetic shear in the continuum gap
of neighboring poloidal harmonics m and m + 1. In the same
DIII-D shot, the ECE data shows n = 4 — 6 TAEs at the same
time with RSAEs [71]. The TAE simulations in this subsection
are performed using the comprehensive Landau-fluid model in
section 2.

We first analyze the n =4 TAE mode structure, frequency
and damping rate as shown in figure 15. In DIII-D plasmas,
the TAE exhibits radially global structure that consists of mul-
tiple poloidal harmonics. For the n =4 mode, there are mul-
tiple TAE eigenstates with discrete frequencies, as shown in
figure 11, and the corresponding mode structures are featured
by radial quantum number p varying from 1 to 4, as shown
in figure 15. As the p number increases, the TAE real fre-
quency (w,) decreases and the damping rate (y,) increases, and
the ratios are v, /w, = —1.07%, —1.1%, —2.04%, —3.01% for
p =1,2,3, 4 respectively. It has been studied analytically [69]
and numerically [79, 80] that the bulk plasmas kinetic effects
can lead to the tunneling interaction between TAE and Alfvén
continuum in the absence of AE-continuum resonance, which
still results in a superposition of KAW and TAE mode struc-
tures. In figures 15(e)—(h), the fine scale structures correspond
to KAW perturbations as the tunneling strength between TAE
and Alfvén continuum, which increases with p number and is
determined by the higher order kinetic terms as well as the tun-
neling distance between TAE and the nearest SAW continuum.

Next, we choose the p = 1 and p =2 TAEs for the n number
scan, which are weakly damped and observed in experiment
[71, 72]. In order to clarify various physics effects on the TAE
dispersion relation, the ideal reduced-MHD, drift reduced-
MHD, and comprehensive Landau-fluid models are applied
for comparison in figure 16. All models indicate that bothp = 1
and p =2 TAE frequencies increase with n number, while the
detailed characteristics and the interpretations of underlying
physics are listed below:

1. In figure 16(a), the ideal reduced-MHD results indicate
that the frequency of the p=1 TAE branch approaches
to a constant as the n number increases, and this constant
corresponds to the high-n ballooning mode theory predic-
tion, which requires the separation between the radial scale
lengths of plasma equilibrium, TAE envelope and poloidal
harmonics.

. The ideal reduced-MHD Alfvén continua with different n
numbers are compared in figure 16(b), which show the
same TAE gap structure. Thus the increase of TAE fre-
quency with n number is completely due to the breaking of
the scale-length separation condition in the ideal reduced-
MHD framework.
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Alfvén continua for different n numbers.

. The increase of the p =2 TAE frequency with n number is
faster than the p = 1 TAE branch as shown in figure 16(a).
The p=2 TAE envelope scale-length is shorter thanthe
p=1 TAE, and it requires narrower poloidal harmonics
(corresponding to higher m and n numbers) in order to sat-
isfy the scale-length separation condition and approach the
frequency limit predicted by the ballooning mode theory.

. The drift reduced-MHD simulation of TAE shows a higher
frequency compared to the ideal reduced-MHD simulation
for each n number as shown in figure 16(a), and the fre-
quency increase is close to the Alfvén continuum upshift by
ion diamagnetic frequency w; ; measured from figure 16(c),
thus the TAE frequency modification by plasma diamag-
netic effect is mainly due to the change of TAE gap
structure.

. The comprehensive Landau-fluid simulation shows the
highest TAE frequency compared to the ideal and drift
reduced-MHD results in figure 16(a), and the frequency dif-
ferences come from the plasma compressibility and kinetic
effects. As the n number increases, both p=1 and p=2
TAE frequencies get closer to the upper continuum of the
TAE gap, and consequently enhance the radiative damping.

In order to further elucidate the tunneling mechanism
between the TAE gap mode and Alfvén continuum, we com-
pare the n =6 and n =8 TAE mode structures with the same
radial quantum number p = 1 based on the Landau-fluid sim-
ulations as shown in figures 17 and 18, where the TAE fre-
quencies, radial positions and amplitude contours are plot-
ted together with the Alfvén continua. For the n =6 case in
figure 17, the radial profile of each poloidal harmonic exhib-
its the fine scale perturbation with small amplitude on the

top, because the KAWs are excited at TAE frequency through
tunneling effect in presence of the fourth-order kinetic terms
such as the ion-FLR and finite ). Here, the KAW frequency
and n number are the same with TAE, and the coupling loca-
tion associated with k|| is determined by the KAW dispersion
relation. For comparison, the tunneling effect in the n = 8§ case
is much stronger than the n =6 case, along with the higher
amplitude of fine scale structure in figure 18 as well as the
larger damping rate in figure 16(a). The main causes can be
summarized as:

1. The n=8 TAE frequency is closer to the accumulating
points of the upper continuous spectra, which shortens the
tunneling distance and then reduces the cut-off loss of KAW
energy.

. The radial width of the TAE poloidal harmonic of the n =8
case is narrower than the n =6 case, which gives rise to a
higher k value and increases the kinetic terms such as ion-
FLR and finite £} for KAW excitation.

. The amplitude of KAW perturbation is related to the radiat-
ive damping strength, namely, a fraction of the TAE energy
tunnels to the short-wavelength structure so that the kinetic
dissipations (such as Landau damping) can take place.

In addition, the n =8 TAE-KAW coupling extends to the
plasma core region (in the range of 0.2 < /47 < 0.35) with
large amplitude oscillations, shown in figure 18, which no
longer attributes to the tunneling effect. Instead, the TAE
frequency touches the upper continuous spectra in the core
region and Alfvén resonance happens, which results in the
mode conversion and KAW excitation. In the plasma edge
(v/1r > 0.85), although the m > 39 poloidal harmonics of the
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Figure 18. The interaction between TAE (n =8, p = 1) and Alfvén continua. Other details are the same as figure 17.

n =8 TAE are close to the upper continuum, the KAWs due to
the tunneling interaction or Alfvén resonance are not obvious,
because the low edge temperatures weaken the kinetic effects.

6.3. KBAE and BAAE: kinetic effects determine the
existences of low-frequency Alfvénic fluctuations

The low frequency AE, KBAE with w ~ [7T;/(27T,)+
2)'/2C, /Ry and BAAE with w ~ C/ (gRo) in toroidal plas-
mas, are also studied using the MAS Landau-fluid simula-
tions. In DIII-D discharge # 159243, KBAE and BAAE are not
observed together with RSAE and TAE, since the bulk plasma
damping becomes heavier in the low frequency regime which
exceeds the EP drive and stabilizes the modes. Although EP
drive is not incorporated in this work, MAS is able to analyze
the stable KBAE and BAAE by providing the damping rate,
frequency and mode structure in a non-perturbative manner,
which could serve as important channels for indirect heating

20

of bulk plasmas by energetic particles (include « particle). As
shown in figure 11, there exist both n =4 KBAE and BAAE
at the rational surface of g = 3 in the frequency regime, being
close to the theoretical prediction, and the details are explained
as follows.

The BAE gap is generated due to the geodesic magnetic
curvature associated with E x B drift compression in finite-3
plasmas, which is below the TAE gap as shown in figure 11. In
the continuous spectra between TAE and BAE gaps, the con-
tinuum accumulation point (CAP) at the rational surface with
kj; ~ 0 has a finite frequency, which is called BAE-CAP fre-
quency as wpag—cap = [7Ti/ (2T,) +2]1/2 C;/Ro. When the
kinetic effects are incorporated, the continuous SAW spec-
tra around BAE CAP are discretized into radially bounded
states, i.e. KBAEs, which are caused by trapping the inward
propagating KAWs in the continuum potential wells. In
figure 11, a typical KBAE locates in the continuum potential
well of m =12 SAW, and the mode frequency and damping
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Figure 19. The n = 4 KBAE mode structures. (a)—(d): the poloidal contour plots and poloidal harmonic radial plots of electrostatic
potential 6¢ and parallel vector potential 6A)|. (¢) The poloidal harmonic radial plots of parallel electric field E||, where the thin lines with

circle represent Eﬁs

rate are fipae = 46.5kHz and ~,;/w, = —6.1%, respectively,
which suffers larger bulk plasma damping than RSAE. On the
other hand, the center of the BAAE gap is around 10kHz in
figure 11, which is formed due to the coupling of Alfvénic
and acoustic continua through geodesic magnetic curvature.
Here, the criterion of Alfvénic and acoustic polarizations for
the ideal full-MHD continua in figure 11 is determined by
the maximal amplitude poloidal harmonic among the coupled
SAWs and ISWs. It is seen that the upper continuous spectra of
the BAAE gap only contain the purely acoustic branch while
the lower ones contain both Alfvénic and acoustic branches,
which is consistent with former theory and simulation [81,
82]. In the BAAE gap, a discretized BAAE is found above
the m = 12 Alfvén continuum with a low frequency of fy,e =
10kHz and a large damping rate of v;/w, = —25.1%. As to
the experimental relevance, the low-frequency Alfvénic fluc-
tuations in the BAAE gap of the Alfvén continuum have been
observed during sawtooth cycle in ASDEX Upgrade [83],
DIII-D [84] and EAST [85] etc, of which frequency increases
with increasing VT,. However, it has been debated for a long
time whether the heavily damped BAAE really exist, and
recent gyrokinetic analyses support the view that the reactive-
type KBM instability with w ~ w.,; is responsible for these
low-frequency Alfvén modes [59, 83, 86].

The mode structures and polarizations of KBAE and BAAE
are shown in figures 19 and 20, respectively. Both the KBAE
and BAAE exhibit weakly ballooning structures in the elec-
trostatic potential §¢, which are dominated by the m =12
principal poloidal harmonic and m =11 and m = 13 poloidal
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= —by - V¢ and the thick lines represent Eﬁe‘ = —bo- Vo —(1/c)0,04,.

sidebands with smaller amplitudes. From figure 19(c), it is
noted that the peak amplitude of the m =12 harmonic of
KBAE deviates from the ¢ = 3 rational surface where kH ~ 0,
which is due to the radial symmetry breaking of the m =12
continuum potential well above the BAE-CAP frequency as
shown in figure 11. For comparison, the peak amplitude
of the m =12 harmonic in BAAE is located at the ¢ = 3
rational surface (i.e. the Alfvénic-acoustic coupling location)
as shown in figure 20(c), which is consistent with the res-
ults of theory and gyrokinetic simulation in the presence of
normal magnetic shear. Compared to the d¢ structure, the
amplitudes of the m =11 and m =13 poloidal sidebands of
0A|| increase and get close to the m = 12 principal poloidal
harmonic for both KBAE and BAAE, which are shown in
figures 19(c), (d) and 20(c), (d). Moreover, the radial struc-
tures of electrostatic parallel electric field Eﬁs =—by-Vio

—bo . V&b - (1/6‘) 6,6AH

and net parallel electric field Eﬁ"t =
are shown in figures 19(e) and 20(e) for KBAE and BAAE,
respectively. One can see that |E)*| < [EP| is valid for
all poloidal harmonics of KBAE in figure 19(e), indicat-
ing the Alfvénic polarization that ¢ and dA| terms in E{‘k‘
are comparable and mainly cancel with each other. For the
BAAE case in figure 20(e), the Alfvénic polarization (i.e.
|E|[*'| < |E}®]) is only valid for the m = 12 principal poloidal
harmonic, while the m =11 and m =13 poloidal sidebands
exhibit acoustic polarization since the [E[|*'| ~ [E}®| and 04|,
effect is weak. This special polarization nature of BAAE is
also discovered by the former MHD [81, 87] and gyrokinetic
simulations [82, 88].
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Figure 20. The n = 4 BAAE mode structures. The captions of (a)—(e) are the same as figure 19.

Based on MAS simulations, we conclude that the bulk
plasma kinetic effects are crucial to the existences of KBAE
and BAAE:

. The formation of discretized KBAE requires high order kin-
etic terms beyond the MHD model. Our Landau-fluid model
covers KBAE physics by keeping the ion-FLR, diamag-
netic drift and Landau damping effects consistent with the
gyrokinetic model [§9-92].

. Previous gyrokinetic simulations [82, 88] have shown that
the BAAE in nomenclature [81] suffers severe Landau
damping in the regime of T; ~ T,, which is beyond the
one-fluid MHD physics. Our Landau-fluid model incorpor-
ates the Landau damping physics in the BAAE simulation
(recall v;/w, = —25.1%), and supports recent GFLDR the-
ory analysis [93] on the view that BAAE is more difficult
to excite than other AEs.

7. Summary

In this work, a five-field Landau-fluid eigenvalue code MAS
has been developed to analyze bulk plasma stability with kin-
etic effects. The formulation of the MAS physics model has
been well examined and gauged through comparison with the
ideal MHD, electrostatic ion-fluid and drift-kinetic models in
different limits. Meanwhile, MAS is numerically verified and
validated for the typical reactive- and dissipative-type eigen-
modes in fusion plasmas, including internal kink, ITG and
KBM. Furthermore, the common AE activities in experiments,
such as frequency sweeping of RSAE, radiative damping of
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TAE, and low frequency AEs including KBAE and BAAE,
have been produced by MAS using the experimental paramet-
ers of a well-diagnosed DIII-D shot. The main physical and
numerical features of MAS can be summarized as follows.

1. Broad range of validity regime. The Landau-fluid phys-
ics model in MAS can recover ideal full-MHD, electro-
static ion-fluid and drift-kinetic models in the limits of long
wavelength, electrostatic and uniform plasma, respectively.

. Bulk plasma Kkinetic effects. Besides the fundamental
MHD physics, the MAS Landau-fluid physics model fur-
ther incorporates various kinetic effects of bulk plasma self-
consistently, including ion and electron diamagnetic drifts,
ion-FLR, ion and electron Landau resonances and finite
parallel electric field E),.

. Nonperturbative approach. With retaining abundant kin-
etic effects, the Landau-fluid equation set can still be
applied to a generalized linear eigenvalue problem for w,
which does not involve the complex w dependence and has
a numerical convenience similar to MHD models [17, 43].
Consequently the eigenmodes are solved nonperturbat-
ively with respect to the kinetic terms, which can give the
kinetic-determined and kinetic-modified mode structures
directly.

. Experimental geometry. The MAS code is developed
based on realistic experimental geometry using Boozer
coordinates, which has simple forms of the Jacobian and
By field and thus simplifies the physics formulation expan-
ded in complex geometry while still capturing all geometry
effects through the metric tensors.
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5. Resolve MHD singularity. The MHD singularity arising
from the interactions between discretized eigenmodes and
continuous spectra with either Alfvénic or acoustic polariz-
ation, is well-resolved in MAS through keeping the small-
scale kinetic terms in the Landau-fluid model, which res-
ults in smooth mode structures at the interaction location
rather than the spikes in traditional MHD calculation. Thus,
MAS can properly address the bulk plasma damping effects
on AEs in a physical manner, namely, continuum damping,
Landau damping and radiative damping.

. Wide and practical applications for fusion plasma prob-
lems. MAS has been successfully benchmarked and val-
idated for the Landau damping of normal modes (e.g.
KAW and ISW), the macroscopic MHD modes (e.g. kink),
the microscopic drift-wave instabilities in low- and high-3
regimes (e.g. ITG and KBM), and typical AEs (e.g. RSAE,
TAE, KBAE and BAAE) with different polarizations which
are widely observed in experiments.

. Well-circulating limit for bulk plasma. The moment
equations in the Landau-fluid model approximate the bulk
plasma dynamics in the well-circulating limit, which is
more accurate for a high aspect-ratio device with a large
fraction of passing particles.

We present the physics model, numerical scheme, verific-
ations and validations of the MAS code systematically, as
the demonstration of an efficient tool for analyzing plasma
activities in theoretical and experimental applications. The
MAS code and data in this work are available for collabor-
ative communication, please contact the first two authors for
more details. Although MAS is capable of describing many
ion-scale waves and instabilities with essential kinetic effects,
it still lacks the trapped particle effects of bulk plasma such
as neoclassical inertia [86] and TEM drive [94], which can be
important in the regimes of low frequency (i.e. close to thermal
ion magnetic drift frequency w ~ wy;) and low aspect-ratio. On
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the other hand, the EP resonance associated to curvature drift
is necessary for AE excitations, of which response function
with important FLR and FOW effects cannot be easily fitted
by the Landau closure technique. Thus, in general, EP dynam-
ics require a gyrokinetic treatment with high fidelity [22, 24].
We plan to extend the MAS formulation to include trapped
thermal particle and EP dynamics in future studies, and at the
same time keep the computational advantage of high efficiency
with these upgrades.
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Appendix A. The orientation convention of the
basis vector in Boozer coordinates

MAS uses the right-handed Boozer coordinates (1,0, (), of
which the contravariant basis vectors satisfy Vi) x VO -V( =
J~1'> 0. Specifically, V4 is orthogonal to the magnetic flux
surface and always points to the edge, V( is chosen to be along
the co-current direction (same as the toroidal plasma current
I, direction), and the V0 direction can then be determined by
the right-handed rule. Each combination of contravariant basis
vector directions is shown in figure 21, and the EFIT coordin-
ates (R, ¢, Z) (right-handed cylindrical coordinates) are shown
as the frame of reference.
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Figure 21. The reference right-handed cylindrical coordinates (R, ¢,Z) in EFIT are shown by the grey color, where the unit vector (ﬁ is
along the counter-clockwise direction from the top view of the tokamak. (a) I, and V( are opposite to the direction of é, and V@ is along
the counter-clockwise direction in the poloidal plane. (b) I, and V( are along the direction of (f), and V0 is along the clockwise direction in

the poloidal plane.

Appendix B. Ideal full-MHD equations in
(6¢,0A,6B)|) potentials

The one-fluid MHD model using electromagnetic fields (E,B)
has been widely applied to describe the bulk plasma dynam-
ics in many fluid and fluid-kinetic hybrid codes. It is useful to
map the classic ideal full-MHD equation set using (E, B) fields
to the form using (6¢,0A),6B,,) potentials, which could con-
nect our Landau-fluid model and ideal full-MHD model. Let us
start from the linearized ideal full-MHD equation set in terms
of (E,B)

1 1
p0785u = —VOoP+ -46J x By + —Jo X (5B, (&2))

ot c c
¥ x 6B = sy, (52)

Cc
DB _ v« sE (53)
ot
1
SE + ;5u x By =0, (54)
P

% =—v-VPy—TPyV v, (55)

where du is the MHD perturbed velocity, pg = njom; is the
plasma mass density, I" is the one-fluid MHD heat ratio, Py =
P+ Pipand 6P = 0P, + 6 P; are the total equilibrium and per-
turbed pressures, Jy and 4J are the equilibrium and perturbed
currents, By and JB are the equilibrium and perturbed mag-
netic fields, and JE is the perturbed electric field.

Using equation (54) and the definition 6E = —Vd¢p —
(1/c) 8,0A, we can derive the parallel Ohm’s law straightfor-
wardly, which serves as the dynamic equation for A

QoA

o = by Voo, (56)
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Meanwhile, we can decompose the MHD velocity into the
electrostatic and inductive parts of perpendicular E x B drift
and the parallel motion

B cbg x Vl(sgf)
= 730

00A
ot

ou =

+ Bibo X + 6MHbQ. 67
0

The unstable MHD modes in strongly magnetized plasmas
are commonly characterized by the mode structures elong-
ated along By field lines with k) <k, then the approxim-
ations V x (6A;bg) ~ 0B, and V x A ~ 6B by are valid
for most plasma regimes of interest. Following [75, 76], we
can derive the coupled equations for d¢, 0B and duj; by
taking the proper projections of equation (51) while consid-
ering equation (57). First, we operate V - [(bg/By) % ---] on
both sides of equation (51), and yield the ideal MHD vorticity
equation as the dynamic equation for §¢

0 c 1
Yv.[ & B.-VI|I—v.(B A
atv (VZ\VJ—&b)—F 0 V{B%V ( oV 10 ||):|
J|
—87rV5P-bOXH—47T6B~V(IO>:O. (58)
0 c By

Next, by taking V| x [By x ---] on equation (51), we have the
dynamic equation for 6B

i&zéBH _ 4

= — 59
Vi or By (59)

Vi6P+ V3B,

where the inertia term on the LHS of equation (59) contributes
to the high frequency CAWs and is often omitted in the low
frequency regime w < €1,;. It should also be pointed out that
the higher order terms in k|| /k_ are omitted in equations (58)
and (59). The plasma parallel momentum equation remains the
same with the classic ideal full-MHD model, which is derived
by taking the dot product between equation (51) and the unit
vector of magnetic field by

0oy _

a (©0)

0B
P0o by - VOP — — - VP,
By
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where we also use the equilibrium force balance VPy=
%Jo x By to derive above form. Substituting equation (57) into
equation (55), the MHD pressure equation in terms of poten-
tials can be expressed as

9P b XV0b Gp  orpeevss. 20K
ot B() 0
L p, LB TPyBy -V ad 61)
OBQ ot BO ’

where we have dropped the term *Biobo X 858% -V Py on the
RHS of equation (61), as the convection is mainly caused
by the slow modes characterized with |cV | d¢| > |0,0A | |
in strongly magnetized plasmas. Equations (56) and (58)—
(61) consist of a closed equation set as an ideal full-MHD
framework in terms of potentials (5(,75, 6AH,5B||). Note that
equation (59) reduces to the perpendicular force balance rela-
tion 476 P + 6B) By = 0 by removing the undesired fast wave
(i.e. the inertia term), which has been considered in the deriv-
ation of the interchange term in equation (58) [76] and gives
the leading 0B effect implicitly, i.e. drift reversal cancellation
[44, 45]. Thus equation (59) is redundant and can be dropped.
Meanwhile the 6B|| term in equation (61) is O (/3) order small
and can also be dropped, then we can arrive at the (5(;5, 5AH)
form in section 4.1.

Next we show a simple benchmark of the above potential
form of MHD equation set against the analytic dispersion rela-
tion in the uniform plasma limit. By removing the equilibrium
non-uniformities, the MHD shear Alfvén wave can be derived
using equations (56) and (58) as

W =k V3, (62)
and the MHD slow and fast wave branches can be obtained
from equations (59)—(61) as

4RV

KC+ K V4 B
(eC+i2v3)*

2

2:

1+ , (63)

where C; = /T'Py/pp. Comparing equations (62) and (63)
with the results from the classic MHD model using (E,B)
fields [53], it is seen that the analytic dispersion relations of
potential form are valid in the regime of k|| < kL, which is
consistent with the assumption made for the derivations of
model equations of potential form.

Hence, the MHD equations in terms of potentials
(5¢),5A||,§BH), equations (56), (58)—(61), can be used to
compare to the comprehensive Landau-fluid model or other
advanced models using potentials straightforwardly for val-
idating simulation results and delineating the new physics
effects.

Appendix C. Plasma dispersion relation using the
drift-kinetic model

Here, we briefly explain the derivation of the drift-kinetic
dispersion relation equation (44). In uniform plasmas and
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magnetic field, the drift-kinetic equation for each particle spe-

cies is

where the subscript o = i, e stands for the ion and electron spe-
cies, mq, Zo and v| represent particle mass, charge and par-
allel velocity, respectively. Considering dn, = [ dvdf,, and
Na00U | = fdvaéfa, equations (8), (9) and (64) form a
closed linear system of drift kinetic model in uniform plas-
mas. Applying the Fourier transforms 0, — —iw and by - V —
ik||, and substituting the Maxwellian equilibrium distribution
Me, v‘z‘ +2uBy

3/2
Jfa0 =nNao (zﬂm—;o) exp( - = ) into equation (64),
the perturbed distribution Jf,, can be solved as

(i) (2

The corresponding dn,, and duj|, are then calculated by integ-
rating equation (65) over the velocity space

Zo

9 by ) o, 1 904
ar IO 7 Ma

af a0
av‘

(bo Végp + , (64)

Zo
Ton

5 = ulldl &4)mo 65)
Ck|

w — kv

ong = ZTnZO ( ¢ — 5A||> [(14+6aZ(Ea)]  (66)
and
Zoy W
5u\|a = 7?.40](7” (&b c k ! 5A||) [l +§(XZ(£O<)]7 (67)

where £, = w/ (\@knv,ha) Vihae = \/ Ta0/Mq is the thermal

speed, and Z(&,) = ff+°° e tz)dt is the plasma dis-
persion function. Substituting equatlons (66) and (67) into
equations (8) and (9) and after some algebra, we can arrive
at the desired equation for the linear dispersion relation of the
drift-kinetic model, i.e.

2

el Z 4
[k;uvz - {1+§e @Hfse Zz( +&Z(&))
[ 0 ene
Zn,
= Sk (68)

It is seen that the SAW and ISW are coupled through finite
K ol p? and decoupled in the long wavelength limit of k2 o p2— 0.
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