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Abstract. Lower hybrid (LH) wave has been widely used for non-inductive current drive in modern tokamak experiments with
high power injection. LH parametric instability (PI) has been observed in many LH experiments and considered as the most likely
candidate which causes the decrease of LH current drive efficiency. Traditional LH PI theories are mostly based on the electro-
static model given the fact that the slow wave branch in LH frequency range is a quasi-electrostatic wave. However, electrostatic
description is not accurate for the plasma parameters of scraped-off layer(SOL) region where LH PIs are observed in current fusion
experiments. Thus, in this work, we include the electromagnetic correction for slow wave and build up the corresponding nonlinear
dispersion relation of PI. The electromagnetic effects on two major decay channels, i.e., ion sound quasi-mode (ISQM) and ion
cyclotron quasi-mode (ICQM) are discussed.

INTRODUCTION

Parametric instabilities(PIs) of lower hybrid(LH) wave have been observed in experiments [1], and the nonlinear ef-
fects are confirmed to play significant role to wave-plasma coupling, propagation, absorption and plasma confinement.

The nonlinear dispersion relation based on the electrostatic (ES) model for LH waves are widely used to analyze
the parametric processes during the wave injection [2][3], however, the electromagnetic (EM) effects of LH waves
can not be ignored in the edge of modern tokamak, especially in the scraped-off layer (SOL) where PIs are observed.
Thus, in order to analyze the LH wave parametric processes accurately and comprehensively, the EM effects need to
be taken into account in the nonlinear dispersion relation of LH waves. In this work, we derived a new EM nonlinear
dispersion relation for LH PIs in the SOL region of tokamak. Using plasma and LH wave antenna parameter on EAST
tokamak and comparing the results between ES and EM LH PI dispersion relations, we found that: 1. The parallel
nonlinearity contributes to the growth rates of ion cyclotron quasi-mode decay (ICQM) and ion sound quasi-mode
decay (ISQM) in both ES and EM PI models, especially for the cases of small scattering angle decay. 2. The EM
effect modifies both the nonlinear coupling coefficient through parallel nonlinearity and linear polarizations of three
waves (pump wave, low frequency wave and sideband wave), which decreases the growth rates of PI compared to the
ES results.

Reduced electromagnetic model for slow wave

Since slow wave in lower hybrid frequency range (aka LH wave) is a quasi-electrostatic wave, a reduced EM model
[4] is applied in this study by removing the compressional magnetic perturbation associated with fast wave(whistler
wave).

The poisson’s equation and Ampere’s law are:

∇2φ = −4π(Ziδni + qeδne), (1)
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where φ and δAz are the ES potential and parallel vector potential.
Electron species is described by using drift kinetic equation:

∂Fe

∂t
+ vz

∂Fe

∂z
+ ∇⊥ · (Ve⊥Fe) + v̇z

∂Fe

∂vz
= 0, (3)

where Ve⊥ = vz
δB⊥
B0

+
cb0×∇φ

B0
+

∂∇φ
∂t

e
meΩ

2
ce

and v̇z = −
qe
me

[(
b0 + δB⊥

B0

)
· ∇φ + 1

c
∂δAz
∂t

]
.

Ion species is described by 6-dimensional Vlasov equation:
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= 0, (4)

where Ẋi = Vi, V̇i = Zi
mi

(
δE + 1

c Vi × B0

)
, and δE = −∇φ − 1/c(∂δAz/∂t)b0. For LH waves, the parallel inductive

electric field ∂δAz/∂t in the ion’s equation of motion could be ignored.
Eqs. (1-4) form a closed system, and the correspondingly linear dispersion relation in uniform plasmas is:
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FIGURE 1. The comparison of slow LH wave
linear dispersion relations between ES model
[2], reduced EM model (Eq. (5)) and Stix fully
EM model [5].

where Xi and Xe are the ion and electron susceptibilities, P =

1 +
2ω2

pe

k2
z v2

e

[
1 + ξeZ (ξe)

]
, ξi = ω/kzvi, ξe = ω/kzve, vi =

√
2Ti/mi,

ve =
√

2Te/me, nz = ckz/ω and n⊥ = ck⊥/ω are the parallel and per-
pendicular refractive indices. Here, we compare the linear dispersion re-
lations of LH wave from reduced model (Eq. (5)), Stix’s fully EM model
[5] and electrostatic model [2] in Figure 1, where we use EAST SOL pa-
rameters [1], i.e., nz = 2.11, fLH = 2.45GHz, Te = 100eV and B = 1.8T .
It can be seen that above reduced EM model accurately describes the
slow LH wave dispersion relation.

Nonlinear dispersion relation

In order to delineate the EM LH PI dispersion relation in a concise
manner, we utilize fluid approach for the derivation of nonlinear cou-
pling in this article, and kinetic approach will be reported systematically
in a future publication. We use ω and k to represent wave frequency
and wave vector for pump wave (ω0,k0), sideband wave (ω1,k1) and
low frequency wave (ω,k), which satisfy the 3-wave coupling relations
ω = ω0 +ω1 and k = k0 +k1. Here, it should be noted that the sign of ω1
is opposite to ω0 and |ω1| < |ω0|, which represents the lower sideband
wave.

The electron fluid velocities for pump wave, sideband wave and low frequency wave are UL
⊥ = −

ieφ
meΩce

b0 × k⊥
and UL

z = −
iekz
meω

(φ− ω
ckz
δAz), where Ωce = qeB0/cme is the electron cyclotron frequency, and kz and k⊥ are the parallel

and perpendicular wave vectors. The polarization drift is dropped due to the fact that wave frequency is much smaller
than electron cyclotron frequency. Linearizing Eq. (3) and combining Eq. (2), the linearized relation between ES
potential and parallel vector potential is δAz =

nzP
P−n2 φ. Please note that we omitt the subscripts for different waves in

fluid velocity equations.
The parallel ponderomotive force for the low frequency wave is Fpz = −me

2 (UL
0⊥ · ∇UL

1z + UL
1⊥ · ∇UL

0z + UL
0zb0 ·

∇UL
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1zb0 · ∇UL
0z) +
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2c (UL

0⊥ × δB1⊥ + UL
1⊥ × δB0⊥), where δB0,1 = ∇δA0z,1z × b0.
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By defining the ponderomotive potential Fpz = −qeb0 · ∇φp, we can obtain the low frequency ponderomotive
potential as:
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where n0 = ck0/ω0, n1 = ck1/ω1 and n = ck/ω are the refractive indices for pump, sideband and low frequency waves,
and P0, P1 and P are the elements of corresponding susceptibility. Terms {I} and {II} in Eq. (6) are the electromagnetic
effects on ponderomotive force compared to the former electrostatic result [2, 3], where the parallel nonlinearity is
corrected. In the ES limit, i.e., n2

0 � P0 and n2
1 � P1, Eq. (6) reduce to the well-known ES form [2, 3]. Note that the

ponderomotive potential φp contains both nonlinear ES potential and nonlinear parallel vector potential contributions
as φp = φNL − (1/c)(ω/kz)δANL

z . Thus, only giving φp in v̇z and remove the third term in Eq. (3), the nonlinear electron

density perturbation at low frequency is δnNL
e = χe

k2

4πeφp, where χe =
2ω2

pe

k2v2
e
[1 + ξeZ(ξe)] is the susceptibility of electron

species with respect to ponderomotive potential φp, and the plasma function Z is kept here for the thermal effect of
low frequency wave.

Substituting linear and nonlinear electron density perturbations into the Poisson’s equation, the nonlinear equa-
tion for low frequency wave is Λφ = − 4πe

k2 δnNL
e , where Λ = 1 + Xi + Xe, Xi and Xe are defined by Eq. (5) for low

frequency wave.
The nonlinear density perturbation of sideband wave satisfies the continuity equation: ∂δnNL

1e
∂t + 1

2

(
δnL

e + δnNL
e

)
∇ ·

UL∗
0 = 0, where ∗ means the conjugate of complex number, δnL

e is the linear electron density perturbation integrated
from linearized Eq. (3) at low frequency, δnNL

e is nonlinear electron density perturbation, and UL∗
0 is the linear electron

fluid velocity at pump wave frequency. Thus, the nonlinear equation of sideband wave can be obtained as Λ1φ1 =

− 4πe
k2

1
δnNL

1e , where Λ1 = 1 + X1i + X1e, X1i and X1e are defined by Eq. (5) for sideband wave. (The subscript ”1” should
be added to ω1, k1, ξi1, ξe1, n1 and P1 in Eq. (5).)

Coupling nonlinear equations of low frequency wave and sideband wave together, we can readily get the nonlin-
ear dispersion relation for EM slow wave:

ΛΛ1 = M, (7)

where the nonlinear coupling coefficient M = Xe−Λ
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represents the parallel nonlinearity contribution. cs =

√
Te/mi, δ1 is the angle

between pump and sideband waves, and u = ck0⊥|φ0|/B0 is the amplitude of E × B motion at pump wave frequency.

Electromagnetic effects on non-resonant decays

In this section, we solve Eq. (7) analytically for ISQM and ICQM decays, which are two major decay channels
observed in experiments [1]. For non-resonant decay, the low frequency mode suffers strong Landau damping
with Λ(ωr,k) , 0, while sideband wave frequency is in LH frequency range, which is a propagating wave with
Λ1(ω1r,k1) ≈ 0. Thus, the growth rate γp of PI can be derived by expanding Eq. (7) as γp = −γ1L + 1

∂Λ1/∂ω1r
Im

(
M
Λ

)
,

where γ1L and ω1r are the linear Landau damping rate and the real frequency of sideband wave. Considering ωr ≈ kcs
for ISQM and ωr −Ωci ≈ kzvi for ICQM, the PI growth rate dependences on density and scattering angle δ1 are given
in Figures 2 and 3. The dashed lines are the results from PI models without parallel nonlinearity, i.e., set η|| = 0 in Eq.
(7), and the solid lines are the results with finite η|| in Eq. (7). The black lines represent the results with applying ES
approximation n2 � P (i.e., P

n2−P = 0) in Eq. (7)(i.e., the ES model used in previous LH PI studies [2][3]).
The parallel nonlinearities increase the growth rates of both ISQM and ICQM from both ES and EM PI models.

Compared to ES results, it is seen that EM effect stablizes the LH PIs by modifying the linear dielectric constants
of all three waves (pump wave, low frequency wave and sideband wave) and nonlinear coupling coefficient through
parallel nonlinearity. It is also noted that the EM effects cause much weaker effect on the ExB component of coupling
coefficient compared to the parallel component in Eq. (7). The mechanism of EM stabilization of PIs can be understood
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FIGURE 2. The comparison of ISQM PI growth rate be-
tween ES model [2][3] and reduced EM model for (a)
small scattering angle δ1 = 10◦ and (b) large scattering
angle δ1 = 90◦. The dashed lines represent the results
when η|| = 0 in Eq. (7).

FIGURE 3. The comparison of ICQM PI growth rate be-
tween ES model [2][3] and reduced EM model for (a)
small scattering angle δ1 = 10◦ and (b) large scatter-
ing angle δ1 = 90◦.The dashed lines represent the results
when η|| = 0 in Eq. (7).

as follows: the electrostatic approximation assumes that light speed is infinity compared to the wave phase velocity,
which magnifies the plasma susceptibility, i.e., the wave electric fields give rise to larger plasma density perturbations
compared to electromagnetic model with taking into account the finite ratio of light speed and wave phase velocity.
In electromagnetic model, the smaller plasma susceptibility leads to the smaller density perturbations by pump wave
and sideband wave, which nonlinearly form a weaker ponderomotive force and decrease the growth rates of PIs.
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