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The gyrokinetic simulation using the gyrokinetic toroidal code (GTC) is carried out for the dissipative

trapped electron mode (DTEM), which is an important source for the electrostatic turbulence in the

pedestal of tokamak plasmas. The DTEM instability is identified for the edge plasmas, and its

dependence on the wavelength and collisional frequency is obtained by both simulation and theory. It is

shown for the first time that the linear gyrokinetic simulation results are fully consistent with that from

the analytic theory with edge parameters. This suggests that the GTC code can simulate accurately the

DTEM instability in the pedestal. It provides a useful benchmark for verifying gyrokinetic simulation

of edge plasmas. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4982816]

I. INTRODUCTION

Low frequency drift-wave turbulence induced by plasma

pressure gradient is an important candidate for anomalous

transport in tokamaks. In particular, turbulence driven by

trapped electron instabilities, namely, collisionless trapped

electron mode (CTEM) and dissipative trapped electron

mode (DTEM), can be responsible for the radial electron

transport in tokamak plasmas. The CTEM, excited by pre-

cessional resonance of the magnetically trapped electrons,

has been extensively investigated by analytical theory1,2 and

gyrokinetic simulation.3–6 Much understanding related to

physics of the DTEM have been gained, in particular, its lin-

ear instability properties, nonlinear saturation, and transport

characteristics. On the other hand, the DTEM in the tokamak

pedestal region is less understood.7 Using a simple Krook

collision operator, Cheng and Chen presented a linear theory

of DTEM for the instability condition and two dimensional

mode structures.8 Recently, the interest on the DTEM has

been revived by the observation of the so-called edge coher-

ent mode (ECM) observed in the Experimental Advanced

Superconducting Tokamak (EAST).9 In the H-mode regime,

the DTEM can play an important role in the pedestal region

since (1) the population of the trapped electrons increases

with radius and maximizes near the plasma edge, (2) the

edge plasma temperature drops rapidly and becomes so low

that the collisions cannot be ignored, and (3) the pressure

profile is so steep that the resonant interaction between the

drift waves and the trapped electrons is rather weak. In this

work, we use the gyrokinetic code GTC10 to investigate the

linear physics of DTEM in the tokamak pedestal. For the first

time, the pedestal DTEM simulations are fully consistent

with the analytical theory that includes the pitch angle scat-

tering collisions. This suggests that the GTC code can simu-

late accurately the DTEM instability for tokamak edge

plasmas. Accordingly, the GTC code should be useful for

simulating the DTEM turbulence at the tokamak edge, where

the plasma has sharp gradients and collisions are important.

In addition, this work provides an ideal example to

benchmark the capability of the gyrokinetic code in simulat-

ing the DTEM instability in the tokamak edge.

This paper is organized as follows. In Sec. II, we discuss

the simulation model and parameters. Then, the results for

the DTEM obtained from the GTC simulation are presented

and compared with an analytic theory in Sec. III. The analyt-

ical theory is given in detail in Sec. IV. Finally, the discus-

sions and conclusions are given in Sec. V.

II. SIMULATION MODEL AND PARAMETERS

The GTC code is a three-dimensional global gyrokinetic

particle code using the Boozer coordinates for general mag-

netic field geometry in tokamaks.10 The GTC code invokes a

nonlinear df scheme11 for investigating waves and instabil-

ities, turbulence, neoclassical transport, and other important

physics in tokamaks.12,13 The GTC code has a low particle

noise level due to the use of the df scheme and a field-

aligned mesh. The implementations of a gyrokinetic Poisson

solver14 suitable for general magnetic field geometry and

guiding center equations of motion15 in magnetic coordi-

nates16 enable the code to efficiently simulate physics phe-

nomena in many magnetic confinement devices using

realistic numerical plasma equilibria. In order to simulate the

sharp gradient tokamak edge, we use a uniform particle load-

ing method to avoid the sharp temperature and density varia-

tion in the simulation domain, while keeping the real

gradient in weight pushing equation.14 The code is truly

global as it solves the gyrokinetic Poisson equation in real

space and has the unique capability to simulate a full poloi-

dal cross section using zero radial boundary conditions. The

finite difference method based on an unstructured mesh is

used in the current version of GTC,14 and the FEM Poisson

and Maxwell solver17,18 is under development. It has been

rigorously benchmarked against the existing analytic theories

and other gyrokinetic simulations for important issues such

as neoclassical transport19 and turbulent transport.14,20 In

particular, the linear frequency and growth rate of the ion

temperature gradient (ITG) mode and collisionless trapped

electron mode (CTEM) have been shown to agree well with

other codes for the tokamak core plasmas.4
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In the GTC simulation, the particle distribution is

decomposed into an equilibrium Maxwellian distribution F0

and a perturbed distribution function df . The latter one for

ions, i.e., dfi, is given by the gyrokinetic equation

@

@t
þ vjjb̂ þ vd

� �
� r

� �
dfi

¼ � vE � jpi þ
Zie

Ti
vjjEjj �

Zie

Ti
vd � rd/

� �
F0i; (1)

where Zi is the ion charge number, vd ¼ vg þ vc ¼ v2
jjr

�b̂=xci þ lb̂ �rB0=ðmxciÞ is the sum of the rB and cur-

vature drift velocity, vE ¼ cb̂ �rd/=B0 is the E� B drift

velocity and d/ is the perturbed electric potential, b̂
� B0=B0 is the unit vector along the field line, l is the mag-

netic momentum of particles, and B0 represents the equilib-

rium magnetic field, xci ¼ ZieB0=mic is the ion gyro

frequency, and jps � r ln n0 þ ½msv
2=ð2TsÞ � 3=2�r ln Ts

with s¼ i, e represents the ion or electron pressure gradient.

The perturbed electron distribution dfe consists of an adi-

abatic response df ð0Þe ¼ ed/F0=Te and non-adiabatic response

dge that satisfies the drift kinetic equation

@

@t
þ vjjb̂ þ vd

� �
� r � Cei

� �
dge

¼ �F0e vE � rlnF0e þ
@
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� �
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� �� �
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The df method used in the GTC efficiently limits the

Monte Carlo noise associated with the numerical particles.

We denote wi ¼ dfi=fi;we ¼ dfe=fe, so that one can write

d

dt
wi ¼ � vE � jpi þ

Zie

Ti
vjjEjj �

Zie

Ti
vd � rd/

� �
; (3)

d

dt
we ¼ � vE � jpe �

e

Te
vd � rd/þ @

@t

ed/
Te

� �� �
: (4)

The collisions on the electrons are dominated by the

electron-ion collisions, which can be represented for simplic-

ity by a pitch angle scattering operator, given by the follow-

ing Monte-Carlo process21,22

ntþDt ¼ ntð1� �eiDtÞ þ ðRn � 0:5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� n2

nÞ�eiDt

q
; (5)

where n ¼ vjj=v is the pitch angle of the particle motion, Dt
is the time step, and Rn is a random number uniformly dis-

tributed between 0 and 1 at the nth time step.

For simplicity, we shall assume concircular flux

surfaces. The tokamak edge parameters are R0=LTi ¼ 69:2,

R0=LTe ¼ 69:2, R0=Ln ¼ 69:2, mi=me ¼ 1837, q ¼ 0:85

þ1:10r=aþ 1:00ðr=aÞ2; e ¼ 0:3; n ¼ 26, where LTs ¼ 1=@r

ln Ts with s ¼ i; e is the scale length of the temperature gradi-

ent, Ln ¼ 1=@rlnn is the scale length of the density gradient,

e ¼ a=R0 with R0 the major radius of the tokamak, a
is the minor radius of the tokamak, and r is the radial

coordinate. The toroidal magnetic field is defined by

BT ¼ B0=½1þ ðr=aÞ cosðhÞ�, with h the poloidal angle. The

mesh for the electromagnetic field perturbations consists of

32 or 64 grids in the parallel or toroidal direction, and hun-

dreds of grids in the poloidal direction on each flux surface.

An unstructured poloidal mesh is used with grid size about

0:5qi or 1:0qi in the radial or poloidal directions to simulate

the short perpendicular-wavelength modes.

III. GYROKINETIC SIMULATION RESULTS FOR EDGE
DTEM

Figs. 1(a) and 1(b) show the electrostatic potential on

the poloidal plane for plasma without collisions and with col-

lisions, respectively. For the collisional case, the effective

collisional frequency is ��e ¼ 0:2, with ��e ¼ �TeqR0=vthee3=2

where the typical electron collisional frequency �Te

¼ lnKniZ
2
i e4=4pe2

0m2
ev3

the, vthe �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Te=me

p
is the electron

thermal velocity, lnK is the Coulomb logarithm, and e0 is the

dielectric constant of the vacuum. As can be seen in Fig.

1(a), there is no unstable mode in the collisionless case.

However, Fig. 1(b) shows that in the collisional case, an

unstable DTEM mode is excited. The latter can be attributed

to the dissipative response of the magnetically trapped elec-

trons.23 It is also found that the most unstable region is not

the poloidal position with the worst curvature (around

h ¼ 0). This unusual mode structure can be attributed to the

strong pressure gradient in the pedestal region, where the

magnetic drift frequency is much smaller than the diamag-

netic frequency.24

Fig. 2 shows the dependence of the linear growth rate

and real frequency on the poloidal wavelength. The solid

curve is from the analytical theory given in Sec. IV, and the

open circles are from our GTC simulation. One can see that

the GTC results are fully consistent with that from the theory

and the short-wavelength modes have higher growth rates

than the long-wavelength modes, which shows that the GTC

simulation model works properly for the tokamak pedestal.

As shown in Fig. 2(a), the linear growth rate increases with

khqs, which is due to the finite Larmor radius effect in the

non-adiabatic ion response.23,25

In Fig. 3, we scan the linear growth rate with various

collisional frequencies. The collisional frequency is changed

by solely varying the background electron density. One can

see that the linear growth rate increases with the effective

collision frequency for ��e < 1, which is a typical signature

of the DTEM instability. For the given parameters, the real

FIG. 1. Electrostatic potential on the poloidal plane for ��e ¼ 0 (a), ��e ¼ 0:2
with passing particle (b).
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frequency of the DTEM is wandering around xr �
0:1Cs=Ln; which is roughly independent of the collision fre-

quency and consistent with the theory given in Section IV.

Fig. 4 shows that at high collision frequency (��e > 1),

collisions can mitigate the growth of the short wavelength

modes and enhance the growth of long wavelength modes.

The electron response contains both dissipative and resonant

components. It is found that the collisions destabilize the

long wavelength mode, while damp the short wavelength

mode. The physics mechanism requires further investigation.

However, the theoretical model in Section IV is not suitable

for ��e > 1, since the collision frequency becomes larger than

the bounce frequency. Therefore, in Fig. 4, we show only the

simulation results.

In Fig. 5, we show the linear DTEM growth rate vs.

ge � d ln Te=d ln ne ¼ Lne=LTe and find that the growth rate

increases linearly with the latter. This trend is similar to that

of the CTEM,4 while the underlying physics is different. In

the DTEM, the instability is driven by the dissipative

response of the bulk electrons,26 which contains a compo-

nent proportional to the temperature gradient or ge. But in

the CTEM, the instability is driven by toroidal precessional

resonance, where the non-adiabatic response also contains a

component proportional to the temperature gradient or ge.

IV. DTEM THEORY FOR TOKAMAK EDGE

The theoretical results presented in Figs. 2 and 3 are

from a gyrokinetic theory applied to the pedestal region,27

where one assumes that x � x�e 	 xde, �i
e 
 xbe. Here,

x�e is the electron diamagnetic frequency, xde ¼ k? � vde,

and xbe ¼
ffiffi
e
p

vthe=qR with the inverse aspect ratio e ¼ r=R0.

For convenience, the particle distribution function is

expressed as

fs ¼ F0s �
esd/

Ts
F0s þ dHse

ik?qLs ; (6)

where F0s is the equilibrium distribution function with

s ¼ i; e for ions and electrons, respectively, �esd/F0s=Ts is

the adiabatic part of the perturbed distribution function, dHs

is the non-adiabatic or kinetic part of the perturbed distribu-

tion function, k? is the wave vector perpendicular to the

static magnetic field, qLs ¼ v?=xcs is the Larmor radius, and

xcs ¼ esB=msC is the gyro-frequency. In the long wave-

length limit k?ke 
 1, the Poisson equation solved for the

electrostatic field becomes the quasi-neutrality condition

n0e2d/
Te

1þ Z2
i s

	 

¼ hZieJ0dHii � hedHei; (7)

where J0 ¼ J0ðk?qiÞ is the zeroth order Bessel function,

s ¼ Te=Ti, and h� � �i denotes the integration over the velocity

space. The collisions, parallel resonance, and magnetic drifts

for the ions can be neglected in the low frequency limit

x
 kjjvti. Thus, dHi has the following solution after simpli-

fying the ion gyrokinetic equation

dHi ¼�
Zie

Te
s 1þx�e

x
1þ gi

miv
2

2Ti
� 3

2

� �� �� �
F0iJ0 k?qið Þd/;

(8)

where the electron diamagnetic frequency x�e ¼ khTeLnc=eB.

In tokamaks, the electrons can be separated into passing

and trapped electrons. Accordingly, it is convenient to define

a pitch angle variable j � ½Eð1þ eÞ � lB0�=2eE, where E is

the kinetic energy of particles, for a large aspect ratio circu-

lar tokamak, such that 0�j� 1 and j� 1 correspond to the

FIG. 3. Linear growth rate vs. ��e for khqs ¼ 0:6.

FIG. 4. Linear growth rate vs. khqs for ��e ¼ 1:5 and collisionless (��e ¼ 0:0)

with R0=LTi ¼ 120, R0=LTe ¼ 120, and R0=Ln ¼ 120.

FIG. 5. Linear growth rate vs. ge with ��e ¼ 0:1; khqs ¼ 0:1, and other

default parameters.

FIG. 2. Linear growth rate (a) and real frequency (b) vs. khqs for ��e ¼ 0:2.
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trapped and passing electrons, respectively. For the low fre-

quency drift waves, the response of the passing electrons

remains adiabatic. However, the kinetic response of the

trapped electrons must be calculated from the kinetic equa-

tion, and it can be obtained conveniently by averaging the

electron drift kinetic equation over their bounce orbit.

Moreover, in the steep pressure gradient region, the magnetic

drift can be ignored. For the electron-ion collisions, we use a

pitch angle scattering or the Lorentz collision operator,

which can also be bounce averaged. The electron distribution

can then be obtained by solving the bounce averaged gyroki-

netic equation27

dHetr ¼ �
ed/
Te

Q vð ÞFoe 1�
J0 2 1þ ið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j=�ef f

p� �
J0 2 1þ ið Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1=�ef f

p� �
2
64

3
75; (9)

dHep ¼ 0; (10)

where dHetr is the kinetic distribution function for the

trapped electrons, dHep is the kinetic distribution function

for the passing electrons, v is the particle velocity, QðvÞ
¼ 1þ x�e=x� ½1þ geðmev2=ð2TeÞ � 1:5Þ�; e is the inverse

aspect ratio, �ef f ¼ �e=xe, and �e ¼ lnKnee4=4pe2
0m2

ev3.

Inserting the ion and electron responses in Eqs. (8)–(10)

in the quasi-neutrality condition, i.e., Eq. (7), and treating

the ion as proton, i.e., Zi ¼ 1; one obtains the following inte-

gral equation for the pedestal DTEM dispersion relation:

X� 2
ffiffiffiffiffi
2e
p

p3=2

ð1

0

djK jð Þ
ð1

0

t
1
2e�t � J0

ffiffiffi
j
p

x
	 

J0 xð Þ

 !

� X� 1þ ge t� 3

2

� �� �� �
dtþ Xs

� Xsþ 1ð ÞC0 bð Þ þ gib C0 bð Þ � C1 bð Þð Þ ¼ 0; (11)

where t ¼ mev2=2Te, x ¼ 2ð1þ iÞ= ffiffiffiffiffiffiffi
�ef f
p

, X ¼ x=x�e,

b ¼ ðk?qiÞ2 � k2
?Ti=mix2

ci, Cn ¼ InðbÞe�b, n¼ 0,1, and In is

the nth order modified Bessel function. Instead of using the

approximation given in Ref. 21, we can be more precise by

numerically evaluating the integral on the left hand side of

Eq. (11). Choosing the latter, Eq. (11) then becomes an alge-

braic equation from which the eigenvalue X � Xr þ iXi can

be obtained. The results are shown in Fig. 6 for e ¼ 0:2,

��e ¼ 0:1, 0.5, 1, s ¼ 1, gi ¼ ge ¼ 1, and R0=Ln ¼ 69:2. We

see that for ��e ¼ 0:1, the longer wavelength modes are sta-

ble, and as ��e increases, the stable region becomes smaller.

Fig. 6 also shows that the growth rate increases with khqi,

while the real frequency decreases with khqi. The unstable

mode propagates in the electron diamagnetic direction since

Xr > 0. One can see that Xr does not change much when ��e
increases from 0.1 to 1.0, confirming that the real frequency

is mainly determined by the collisionless response of the

electrons.

V. CONCLUSION AND DISCUSSION

In this section, we summarize our simulation and phys-

ics results as follows. We have used the GTC code to simu-

late the DTEM instability in the tokamak edge region. The

gyrokinetic DTEM results are for the first time verified by

an analytical theory for the edge region, which not only

demonstrates that the GTC code can accurately simulate

the DTEM instability but also provides a useful benchmark

for the DTEM simulation in the edge region, where the

plasma density and temperature gradients are steep and col-

lisions can be the dominant destabilizing factor. The ana-

lytical model numerically integrates the trapped electron

response and gives a more accurate DTEM dispersion rela-

tion. Our results show that for ��e < 1, the electron-ion col-

lisions can drive the DTEM instability, and the shorter-

wavelength modes are easier to excite than the long-

wavelength modes. For weak collisions, even the long-

wavelength modes can be stable. This may infer that the

DTEM turbulence in the edge will have a relatively lower

transport. The linear growth rate of DTEM increases line-

arly with ge, a phenomenon similar to CTEM but with dif-

ferent physics mechanism. These linear verification studies

provide a solid foundation for the gyrokinetic simulation to

investigate the interesting nonlinear physics in the tokamak

pedestal. In the future, we will use the GTC simulation to

study the nonlinear saturation physics and transport physics

of DTEM. Combining these future works with the results

shown in this paper, we could achieve better understand-

ings of the ECM (edge coherent mode) found in experi-

ments.9 Due to the steep gradient in the edge, the profile

flattening effect could be significant in the nonlinear stage.

Another difficulty may come from the pitch angle scatter-

ing operator, which does not conserve the particle momen-

tum as is known.

(a) (b)

FIG. 6. Theoretical linear growth rate

and real frequency vs. ðkhqiÞ2 for dif-

ferent collisional frequencies.
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