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With strong gradients in the pedestal of high confinement mode (H-mode) fusion plasmas,

gyrokinetic simulations are carried out for the trapped electron and ion temperature gradient

modes. A broad class of unconventional mode structures is found to localize at arbitrary poloidal

positions or with multiple peaks. It is found that these unconventional ballooning structures are

associated with different eigen states for the most unstable mode. At weak gradient (low

confinement mode or L-mode), the most unstable mode is usually in the ground eigen state, which

corresponds to a conventional ballooning mode structure peaking in the outboard mid-plane of

tokamaks. However, at strong gradient (H-mode), the most unstable mode is usually not the ground

eigen state and the ballooning mode structure becomes unconventional. This result implies that the

pedestal of H-mode could have better confinement than L-mode. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4931072]

Although numerous theoretical models have been sug-

gested,1 a yet unexplained phenomenon in tokamak fusion

plasmas is the transition of low (L) to high (H) confinement

states, where H-mode2 has significant better confinement

property than that of the L-mode. Understanding of the H-

mode physics is not only important to make controlled fusion

more feasible but also that the existence of and transitions

among multi-equilibrium states are important fields of non-

linear physics in laboratory and the Universe. Drift wave tur-

bulence is one of the major causes that leads to the

anomalous transport widely observed in fusion and space

plasmas.3,4 In order to control the turbulent transport, it is

crucial to understand the underlying transport mechanism,

which may vary for different types of instability that drive

the turbulence. The correlation time and length are found to

be closely related to the mode structure of the turbulence.5

Therefore, the mode structure of the turbulence has a signifi-

cant effect on the transport level.6

In this letter, we show that the linear properties of two major

types of electrostatic micro-instabilities,3 namely, the trapped

electron mode (TEM) and ion temperature gradient (ITG) mode,

are completely different in the H-mode (strong gradient) and L-

mode (weak gradient) stages. With the conventional weak gradi-

ent, the mode structures for drift wave instabilities such as the

ITG and TEM are of ballooning type, peaking at the outboard

mid-plane of the tokamak (cf. Refs. 7 and 8). This type of solu-

tion has been intensively studied using the ballooning-represen-

tation9,10 by reducing one two-dimensional (2D) real space

eigen mode equation for the drift waves to two one-dimensional

(1D) ballooning space eigen mode equations. For the 2D case,

we solve the eigen equation in the poloidal plane. For the 1D

case, we solve the eigen equation in the parallel direction. The

most unstable solutions in the ballooning space found in the past

have usually the ballooning-angle parameter #k ¼ 0,11 which

corresponds to the solution localized at the outside mid-plane,

i.e., hp¼ 0 in our notation, where hp is defined as the local peak-

ing poloidal angle for the mode structure. For this reason, many

local eigenvalue codes such as HD712 assume implicitly

#k ¼ 0. The unconventional eigen modes with hp 6¼ 0 have been

recently discovered in the strong gradient parameter regime.

Typically, jhpj ’ or<p/2 have been shown to exist.7,8,13,14 In

this work, we find the most general unconventional eigen mode

structures from first principle gyrokinetic simulations. The

underlying physics is also explained and it has important impli-

cations for turbulent transport.

We first obtain linear electrostatic results from global gyro-

kinetic particle simulation using the GTC code15,16 with single

toroidal mode number n. The simulation parameters and pro-

files are similar to that of the recent H-mode experiments of the

HL-2A tokamak:17 toroidal magnetic field B0¼ 1.35 T, minor

radius a¼ 40 cm, major radius R0¼ 165 cm, safety factor

q¼ 2.5–3.0, magnetic shear s¼ 0.3–1.0, and R0/Ln¼ 80–160

with Te(r)¼Ti(r) and ne(r)¼ ni(r). Ln��(1/n)(dn/dr) and

LT��(1/T)(dT/dr) are density and temperature gradient scale

length. Typical electron temperature (also density) profiles used

in this letter are shown in Fig. 1. We start with g¼ Ln/LT¼ 1.0

for simplicity. Collisions are included in some cases but shown

little influence to the general results. Under these parameters,

no instability or only weakly unstable mode can be found when

the electrons are adiabatical. Thus, the major instability for

these simulation parameters is the trapped electron mode.

These TEM simulations show that both conventional

and unconventional ballooning mode structures can exist for

various gradients and toroidal mode numbers (n¼ 5–30), as

shown by Fig. 2. In these sub-figures, q profiles are similar.

For Figs. 2(b)–2(i), the global density (also temperature) pro-

files and toroidal mode numbers are not the same but all are

under strong gradient. The novel features include: (a) the

mode can have anti-ballooning structure (i.e., jhpj > p=2,

e.g., Fig. 2(g)); (b) the mode can have multiple peaks (e.g.,

Fig. 2(b)). Considering that the trapped particles are mainly
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located at the low magnetic field side, i.e., the outboard side,

the anti-ballooning structures of TEM are not expected. The

3D mode structure of the electrostatic potential can be repre-

sented by the Fourier series d/ðr; h; fÞ ¼ einfP
m d/m

ðrÞe�imh, where m is poloidal mode number. To explore the

formation of these different eigenmode structures, we com-

pute the d/mðrÞ for several typical conventional and uncon-

ventional mode structures, as shown in Fig. 3. For the

conventional ballooning structure, the poloidal eigen modes

d/mðrÞ are almost radially symmetric (Gaussian-like) and

positive in amplitude. And, d/m has a large overlap with

d/mþ1, i.e., d/m ’ d/mþ1. However, for the unconventional

structures, the poloidal eigen modes d/mðrÞ can be radially

either symmetric or asymmetric, and the amplitude for each

symmetric mode can be either positive or negative, as shown

by Figs. 2(b)–2(d). Under stronger gradients, the radial peak-

ing position of d/mðrÞ is also not at the corresponding

rational surface position rs any more, where nq(rs)¼m.

Next, we consider ITG mode by reducing the density

gradient to R0/Ln< 40 and keeping the other parameters the

same as those for the TEM case, e.g., R0/LT> 80 and thus

gi¼ Ln/LT> 2.0. To completely exclude the contribution of

the kinetic electrons, we use adiabatic electrons in the simu-

lations. It is found that the preceding unconventional mode

structures still exist and exhibit even more structural varia-

tions. For example, the anti-ballooning structure is found for

this ITG simulation, as is shown in Figs. 4(a) and 4(b).

Actually, the mode structure with global profiles and multi

modes coexisting in the initial value simulation can be even

more complicated. For example, two modes with similar

growth rates can be excited in different radial locations, as

shown in Figs. 4(c) and 4(d). Multi modes coexist with close

peaking positions in the initial value simulation can also lead

to hp¼ hp(t), i.e., rotate poloidally with time. Thus, the

unconventional mode structures are not limited to TEM and

can be common for drift waves.

These unconventional linear behaviors can be under-

stood from the following eigenmode analysis. We start with

the ITG eigen mode equation8,10

q2
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where r¼ �n/(qkhqi), �n¼ Ln/R0, gs¼ 1 þ gi, x¼ r � rs, rs is

the rational surface, x¼xr þ ic is the complex mode fre-

quency normalized by the electron diamagnetic frequency,

and the poloidal wave number kh¼ nq/r. Eq. (1) can be

derived from the gyrokinetic theory with adiabatic electron

FIG. 1. Typical electron temperature (also density) profiles used in this let-

ter. HL-2A L-mode edge plasma profile is weak gradient R0L�1
T < 40. HL-

2A H-mode edge plasma profile is strong gradient R0L�1
T > 80.

FIG. 2. Conventional (a) and unconventional (b)–(i) 2D ballooning struc-

tures of electrostatic potential in (X,Z) plane for TEM observed in GTC sim-

ulation, where (a) uses HL-2A tokamak edge weak gradient L-mode plasma

parameter (R0L�1
n < 40) and (b)–(i) use edge strong gradient H-mode pa-

rameters (R0L�1
n > 80). Collisions are only included in (e) and (g).

FIG. 3. The real part of Fourier d/mðrÞ for conventional and unconventional

mode structures. The corresponding poloidal cross section mode structures

of (a)–(d) (n¼ 20, 10, 5, 10, respectively) are taken from Figs. 2(a), 2(b),

2(g), and 2(i), respectively. The dashed lines are corresponding rational sur-

face positions rs, where nq(rs)¼m.
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assumption. The corresponding 1D eigen mode equation in

the ballooning space is

r2

x2

d2

d#2
þ k2

hq
2
i 1þ s2 #� #kð Þ2
h i�

þ 2�n

x
cos#þs #� #kð Þsin#½ � þ x� 1

xþ gs

�
d/̂ #; #kð Þ ¼ 0;

(2)

where #k is the ballooning-angle parameter, which represents

an as yet undetermined radial wavenumber.10 The relation

between the ballooning space electrostatic potential

d/̂ð#; #kÞ and real space d/ðx; hÞ can be found in Refs. 8

and 10. Using the Fourier basis d/ðx; hÞ ¼
P

m d/me�imh,

Eq. (1) can be rewritten as the 2D eigenmode equation
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where z¼ khsx. To solve the eigenvalue problem of Eq. (3),

only a few number of m modes need to be kept for the solu-

tion to reach convergence.

With suitable approximations (cf. Ref. 22), both Eqs. (2)

and (3) can be reduced to the Weber equation u00 þ ðbx2

þaÞu ¼ 0 (here, the argument x is # and z for Eqs. (2) and

(3), respectively), which has solutions with the eigenvalues

aðxÞ¼ ið2lþ1Þ
ffiffiffiffiffiffiffiffiffiffi
bðxÞ

p
and eigenfunctions uðxÞ¼Hlði

ffiffiffi
b
p

xÞ
e�ibx2=2, where Hl is l-th Hermite polynomial and l¼0, 1,

2,…, which represent a series eigenstates. With the original

equations, i.e., Eqs. (2) and (3), which can only be solved

numerically, the eigenstates take a more complicated form.

Eqs. (2) and (3) can be solved numerically by transform-

ing it to a matrix eigenvalue problem as x3M3X þ x2M2X
þxM1X þM0X ¼ 0, with X is the discrete representation

of the electrostatic potential. We use finite difference to dis-

cretize the system, which yields sparse matrices for Mi

(i¼ 0, 1, 2, 3). Using the companion matrix method, the non-

linear eigenvalue problem can be transformed to a standard

eigenvalue problem as AY ¼ xBY, where Y ¼ ½X1;X2;X3�
� ½X;xX;x2X�; A ¼ ½O; I;O; O;O; I;�M0;�M1;�M2�; B
¼ ½I;O;O; O; I;O; O;O;M3�, and I and O are unit and null

matrix, respectively. Thus, all the solutions of this eigen sys-

tem can be obtained (cf. Ref. 18 for details of similar treat-

ment). The advantage of this method is that it can show the

complete set solutions of the discrete eigen system and help

us to understand the distribution of eigenvalues in the com-

plex plane. The solution in Refs. 7 and 8 using iterative

solver is actually just one of the solutions obtained here and

may not be the most unstable or most important, which

depends heavily on the initial guess. This companion matrix

method has been verified by comparing the numerical solu-

tions with that from the shooting method and the analytical

solution for the Weber equation.

By solving Eq. (2) in the 1D ballooning space, the

unconventional ballooning structures occur when either the

most unstable solution is not the ground eigen state (l 6¼ 0)

or the ballooning angle #k 6¼ 0. Both of these two conditions

can be met in the strong gradient regime. The most unstable

solution with #k 6¼ 0 has been discussed by others (cf. Refs.

13 and 19). Here, we focus on the unconventional ballooning

structure caused by the non-ground eigen state. The follow-

ing parameters are used to solve Eq. (2): s¼ 0.8, khqi¼ 0.4,

q¼ 1.0, gs¼ 3.0, and #k ¼ 0. As is known from the afore-

mentioned analytical analogy, Fig. 5 shows that a series of

solutions can exist for Eq. (2), where R/LT and R/Ln are

changed simultaneously to ensure g¼ Ln/LT¼ const., and

one should also note that the frequency is normalized by the

electron diamagnetic frequency. For the weak gradient case

FIG. 4. Unconventional ITG (n¼ 10) mode structures in GTC. (a) and (b)

Anti-ballooning structure. (c) and (d) Two modes co-exist (or, one mode

with two radius peaks) at different radius positions. One has hp ’ p/2 and

another has hp ’ �p/2.

FIG. 5. In Eq. (2), series of solutions exist. For weak gradient (�n¼ 0.5), the

most unstable solution (red “x”) is the ground state (a) and (b), which is the

conventional ballooning structure. For strong gradient (�n¼ 0.2), the most

unstable solution (red “x”) is not the ground state (c) and (d), which repre-

sents the unconventional ballooning structure.
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(�n¼ 0.5), we find that the most unstable solution is the

ground state (Fig. 5(a)), which is the conventional ballooning

structure (Fig. 5(b)). For the strong gradient case (�n¼ 0.2),

the most unstable solution is not the ground state (Figs. 5(c)

and 5(d)), which corresponds to the unconventional balloon-

ing structure. More detailed analysis21 of Eq. (2) for present

discussion of the unconventional mode structure can be

obtained by extension of Refs. 20 and 22.

We have demonstrated that, with strong gradient, the

most unstable solution can shift from ground state to other

non-ground states, which is analogous to the quantum jump

between energy levels. Physically, the jump behavior can be

understood from the effective potential.20 The jump happens

from one potential well to another, which leads to different

energy levels. It is not transparent that the non-ground eigen

state in the 1D ballooning space corresponds to the uncon-

ventional mode structure in the 2D poloidal plane. Next, we

confirm this link by showing that the non-ground 2D eigen

state solved from Eq. (3) can form the unconventional mode

structures observed in the preceding gyrokinetic simulation.

The solutions in Refs. 7, 8, and 13 are just weak asymmetric

solutions of our series solutions. Almost all the mode struc-

tures in Figs. 2 and 4 have also been found in the 2D eigen

solutions of Eq. (3). Two examples are shown in Fig. 6.

Therefore, conventional and unconventional series solutions

have been found in both 2D eigen solver and GTC initial

simulations. The condition for the jump of the most unstable

eigen state to non-ground state is �n<�c, where �c is a critical

gradient parameter which depends on other parameters. In

GTC simulations of the HL-2A parameters, the typical criti-

cal density (or temperature) gradient value is R0/

Ln¼ 40–120.

The results from the gyrokinetic simulation and eigen

mode analysis show that the unconventional mode structures

exist mainly in the strong gradient regime or the H-mode. In

the weak gradient regime or L-mode, conventional mode

structures still prevail. This can indicate different transport

behavior between H-mode and L-mode.23 In the conven-

tional ballooning structure, the neighboring Fourier modes

d/m ’ d/mþ1, the effective correlation length may be esti-

mated as the width of radial envelope of the modes, say, DA.

Whereas, in the unconventional ballooning structures, espe-

cially for anti-ballooning structure, d/m ’ �d/mþ1 can

occur, i.e., a 180� phase shift for the neighboring Fourier

modes, which can change the effective correlation length to

the distance of neighboring mode-rational surfaces Drs.

Considering that Drs � DA, we can expect that the H-mode

can have better confinement.

To summarize, a broad class of unconventional balloon-

ing modes is found for electrostatic drift waves (TEM and

ITG) by the gyrokinetic simulation, which is shown to be

common in the strong gradient regime. These unconven-

tional mode structures are shown to correspond to the non-

ground-state solutions of the eigen mode equation. These

results may have important implications for the turbulent

transport in tokamaks, i.e., the turbulent transport mecha-

nism in the H-mode can be rather different from that in the

L-mode, which requires further investigation by self-

consistent nonlinear gyrokinetic simulations.

Discussions with L. Chen, H. T. Chen, Z. X. Lu, and Z.

Lin are acknowledged. The work was supported by the

National Magnetic Confinement Fusion Science Program

under Grant Nos. 2015GB110000 and 2013GB111000, the

Recruitment Program of Global Youth Experts.

1F. Wagner, Plasma Phys. Controlled Fusion 49, B1 (2007).
2F. Wagner et al., Phys. Rev. Lett. 49, 1408 (1982).
3W. Horton, Rev. Mod. Phys. 71, 735 (1999).
4A. Hasegawa, Phys. Fluids 12, 2642 (1969).
5Z. Lin, I. Holod, L. Chen, P. H. Diamond, T. S. Hahm, and S. Ethier, Phys.

Rev. Lett. 99, 265003 (2007).
6Y. Xiao, I. Holod, W. Zhang, S. Klasky, and Z. Lin, Phys. Plasmas 17,

022302 (2010).
7T. Xie, Y. Z. Zhang, S. M. Mahajan, and A. K. Wang, Phys. Plasmas 19,

072105 (2012).
8D. Dickinson, C. M. Roach, J. M. Skipp, and H. R. Wilson, Phys. Plasmas

21, 010702 (2014).
9J. W. Connor, R. J. Hastie, and J. B. Taylor, Phys. Rev. Lett. 40, 396

(1978).
10J. W. Connor and J. B. Taylor, Phys. Fluids 30, 3180 (1987).
11G. Rewoldt, W. M. Tang, and M. S. Chance, Phys. Fluids 25, 480 (1982).
12J. Q. Dong, L. Chen, F. Zonca, and G. D. Jian, Phys. Plasmas 11, 997

(2004).
13R. Singh, S. Brunner, R. Ganesh, and F. Jenko, Phys. Plasmas 21, 032115

(2014).
14D. P. Fulton, Z. Lin, I. Holod, and Y. Xiao, Phys. Plasmas 21, 042110

(2014).
15Y. Xiao, I. Holod, Z. Wang, Z. Lin, and T. Zhang, Phys. Plasmas 22,

022516 (2015).
16Z. Lin and T. S. Hahm, Phys. Plasmas 11, 1099 (2004).
17H. S. Xie, Y. Xiao, Z. Lin, and D. F. Kong, “Gyrokinetic simulations of

the HL-2A tokamak H-mode edge turbulence. I. Electrostatic physics,”

(unpublished).
18H. S. Xie and Y. Xiao, Phys. Plasmas 22, 022518 (2015).
19Z. X. Lu, Phys. Plasmas 22, 052118 (2015).
20L. Chen and C. Z. Cheng, Phys. Fluids 23, 2242 (1980).
21H. T. Chen, private communication (2015).
22W. Horton, D. Choi, and W. M. Tang, Phys. Fluids 24, 1077 (1981).
23L. Chen, private communication (2014).

FIG. 6. Typical unconventional mode structures from 2D eigen solution for

Eq. (3). (b) is similar to Figs. 2(c) and 2(d), and (c) and (d) are similar to

Figs. 4(d) and 4(c).

090703-4 H. S. Xie and Y. Xiao Phys. Plasmas 22, 090703 (2015)

http://dx.doi.org/10.1088/0741-3335/49/12B/S01
http://dx.doi.org/10.1103/PhysRevLett.49.1408
http://dx.doi.org/10.1103/RevModPhys.71.735
http://dx.doi.org/10.1063/1.1692407
http://dx.doi.org/10.1103/PhysRevLett.99.265003
http://dx.doi.org/10.1103/PhysRevLett.99.265003
http://dx.doi.org/10.1063/1.3302504
http://dx.doi.org/10.1063/1.4731724
http://dx.doi.org/10.1063/1.4861628
http://dx.doi.org/10.1103/PhysRevLett.40.396
http://dx.doi.org/10.1063/1.866493
http://dx.doi.org/10.1063/1.863760
http://dx.doi.org/10.1063/1.1643919
http://dx.doi.org/10.1063/1.4868425
http://dx.doi.org/10.1063/1.4871387
http://dx.doi.org/10.1063/1.4908275
http://dx.doi.org/10.1063/1.1647136
http://dx.doi.org/10.1063/1.4913487
http://dx.doi.org/10.1063/1.4921331
http://dx.doi.org/10.1063/1.862907
http://dx.doi.org/10.1063/1.863486

	l
	n1
	n2
	d1
	f1
	f2
	f3
	d2
	d3
	f4
	f5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	f6

