
Parallel equilibrium current effect on existence of reversed shear Alfvén eigenmodes
Hua-sheng Xie and Yong Xiao

Citation: Physics of Plasmas 22, 022518 (2015); doi: 10.1063/1.4913487
View online: http://dx.doi.org/10.1063/1.4913487
View Table of Contents: http://aip.scitation.org/toc/php/22/2
Published by the American Institute of Physics

Articles you may be interested in
Unconventional ballooning structures for toroidal drift waves
Physics of Plasmas 22, 090703 (2015); 10.1063/1.4931072

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/2143602159/x01/AIP-PT/Pfeiffer_PoPArticleDL_062117/17.04.07_3_Prod_1640x440px_EN_USA2.JPG/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Xie%2C+Hua-sheng
http://aip.scitation.org/author/Xiao%2C+Yong
/loi/php
http://dx.doi.org/10.1063/1.4913487
http://aip.scitation.org/toc/php/22/2
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4931072


Parallel equilibrium current effect on existence of reversed shear Alfv�en
eigenmodes

Hua-sheng Xiea) and Yong Xiaob)

Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou 310027,
People’s Republic of China

(Received 15 August 2014; accepted 12 February 2015; published online 26 February 2015)

A new fast global eigenvalue code, where the terms are segregated according to their physics

contents, is developed to study Alfv�en modes in tokamak plasmas, particularly, the reversed shear

Alfv�en eigenmode (RSAE). Numerical calculations show that the parallel equilibrium current

corresponding to the kink term is strongly unfavorable for the existence of the RSAE. An improved

criterion for the RSAE existence is given for with and without the parallel equilibrium current. In

the limits of ideal magnetohydrodynamics (MHD) and zero-pressure, the toroidicity effect is the

main possible favorable factor for the existence of the RSAE, which is however usually small. This

suggests that it is necessary to include additional physics such as kinetic term in the MHD model to

overcome the strong unfavorable effect of the parallel current in order to enable the existence of

RSAE. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913487]

I. INTRODUCTION

In toroidal plasmas, the discrete shear Alfv�en eigenmo-

des (AEs) can be destabilized by fast particles and can there-

fore degrade the confinement.1 Recently, a specific AE,

namely, the reversed shear AE (RSAE), usually localized

around the minimum value of the safety factor q (qmin) for a

reversed shear tokamak plasma, has been intensively studied

in experiments.2–7 The frequency of the RSAE mode usually

sweeps up or down when qmin drops in time. It also provides

an indirect method for measuring the safety factor profile.3

Hence, it is important to study the properties of the RSAE.

The present work is inspired by a recent experiment in the

HL-2A tokamak.8 Under that RSAE experimental parameters,

NOVA9 cannot find the RSAE mode.8 However, the KAEC

code10 seems to have found an eigenmode as in the experiment

by excluding the kink term or including kinetic effects.8,11 The

existence of RSAEs has also been studied intensively theoreti-

cally, including the effects of energetic particle,12 toroidicity,13

finite plasma pressure,14–16 pressure gradient,17,18 density gradi-

ent,19 as well as some kinetic effects.10,20 The effect of the par-

allel equilibrium current corresponding to the kink term has

also been studied recently by Deng et al.21,22 using the GTC

code and an analytical model for the dispersion relation, where

the toroidal coupling is ignored.

In the literature, three different approaches have been

employed to study Alfven eigenmodes, particularly, the

RASE. The first approach is to solve a reduced model equa-

tion analytically, usually a 1D eigenvalue equation (e.g.,

Refs. 12 and 23). The second is to solve a more complicated

model equation numerically by finding its eigenvalues and

eigenfunctions (e.g., Refs. 9 and 10). The third is to use large

scale simulation to solve a more general set of equations

(e.g., Refs. 21 and 24).

In this paper, all these three approaches are used to study

RSAE. First, we provide a set of coupling AE equations for

toroidal plasmas that retain the exact self-adjointness of the

original ideal magnetohydrodynamic (MHD) equation, and is

not limited to large toroidal and poloidal mode numbers.

Then, a fast global eigenvalue code, namely AMC (Alfv�en

Mode Code), is developed to calculate continuum spectrums

and the frequencies and mode structures of AEs, which can be

used effectively to benchmark other large simulation codes.

Finally, we apply this new code to study the parallel equilib-

rium current effect on the RSAEs in detail. An improved crite-

rion is found for the RSAE existence for both with and

without the parallel equilibrium current. Numerical and ana-

lytical results show that the parallel equilibrium current is

strongly unfavourable for the existence of the RSAE. This

finding will help other MHD codes such as NOVA to find

RSAE in tokamak experiments, e.g., the aforementioned HL-

2A experiment, i.e., these codes need to include additional

physics such as kinetic term in their MHD model in order to

overcome the strong unfavorable effect of the parallel current.

The paper is organized as follows. Section II describes

the formalism and numerical scheme for the linear ideal

MHD vorticity equation. Section III solves the preceding

equation and discusses the importance of the parallel current

in finding RSAE in both theory and simulation. Summary

and discussion are given in Sec. IV.

II. MODEL AND FORMALISM

We start from the linearized ideal MHD vorticity

equation13,15–17,25

r � x2
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where the stream function U is defined from plasma displace-

ment vector using n ¼ ðrU � bÞ=B; j ¼ b � rb ¼ ðr� bÞ
�b is the magnetic field curvature, b ¼ B=B is the unit equilib-

rium magnetic field, Jk ¼ ðc=4pÞb � r � B is the parallel equi-

librium current, Q ¼ ðb � rUÞ=B, and dP¼ ðb�rU �rPÞ=B
þðCPrU � b� jÞ=B with CP¼Peþ7Pi =4 to correctly treat

the effective geodesic compressibility.15,23 Equation (1) holds

for a large aspect ratio (�¼ r =R0� 1) tokamak plasma to the

second order, and we have assumed low beta b�O(�2). The

first term is the inertial term, the second term is the field line

bending term, the third term is kink term, and the last one is

ballooning term. In Eq. (1), each physics term is well separated;

thus, it is more convenient for physics studies than the original

set of MHD equations, such as the equations used by NOVA9

and GTAW.26 Note that, since the electrostatic potential d/ is

related to U by d/¼ @U=@t, therefore, the mode structure of

U is also similar to that of d/.

Similar to Refs. 13, 15, and 17, we consider a shifted

circular flux surface equilibrium. The flux surface is defined

by the usual cylindrical coordinate ðR;/c; ZÞ

R ¼ R0 þ rs cos hs � DðrsÞ; (2a)

/c ¼ �fs; (2b)

Z ¼ rs sin hs; (2c)

where R0 is the major radius and the Shafranov shift D(0)¼ 0.

The relations between flux coordinates (r, h, f) and geometry

coordinates (rs, hs, fs) are r¼ rs, f¼ fs, and h ¼ hs

�ð�þ D0Þ sin hs, with D0 being the radial derivative of the

Shafranov shift D(r). Assuming U ¼
P

UmðrÞ expðinf� imhÞ
and expanding Eq. (1) to O(�2), we obtain a coupled equation

Lm;m�1Um�1 þ Lm;mUm þ Lm;mþ1Umþ1 ¼ 0; (3)

where the operators Lm,m and Lm,m61 are defined as

Lm;m ¼
@
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Here, �x ¼ x=xA; xA ¼ VA=R0, km¼ n � m=q, VA¼ vA(0) is

the on-axis Alfv�en velocity, a ¼ �R0q2db=dr is the normal-

ized pressure gradient, �jr ¼ �ð1=2� 1=q2Þ þ ðrD0Þ0=2þ D0 is

the averaged radial component of the curvature. The normal-

ized ion-sound speed term c2
s ¼ ½2=ðV2

AR2
0Þ�½Te þ ð7=4ÞTi�=mi

corresponding to the geodesic acoustic coupling can be calcu-

lated from kinetic theory.15,23

The above equations, which are improved from Refs.

13, 15, 17, 25, and 27, recover the exact self-adjointness of

ideal MHD equation and are also not limited to large toroidal

and poloidal mode numbers. The detailed comparisons

between our equations and those in other literature are given

in Appendix A. The proof of the self-adjointness is provided

in Appendix B. This set of model equations supports a wide

range of modes such as the Alfv�en eigenmodes (Global AE,

Toroidal induced AE, RSAE, and more) and internal kink

mode as well as ideal ballooning mode (IBM).

The above equations can be solved numerically for both

continuum spectrums and eigenmodes. The continuum spec-

trums are obtained by setting the determinant of the coeffi-

cients of the second-order derivative terms to zero.28 The

eigenmodes are obtained by solving a matrix eigenvalue prob-

lem AX ¼ kBX, with x2¼ k. The central difference scheme

is used for the discretization of Eq. (3), df=dr ¼ ðfjþ1 � fj�1Þ=
ð2DrÞ and d2f=dr2 ¼ ðfjþ1 � 2fj þ fj�1Þ=Dr2. The zero

boundary conditions are used in the computation. The eigen

matrix dimension is ðNm � NrÞ2, where Nr is radial grid num-

ber and Nm ¼ mmax � mmin þ 1 is number of the m mode

numbers, with m 2 ½mmin;mmax� in the computation.

A new code named AMC is developed based on the

above numerical scheme. To speed up computation, the

sparse matrix method is used to calculated the eigenvalue

(mode frequency) and eigenvector (mode structure).

Compared to other codes (which usually use root finding

scheme) such as NOVA,9 KAEC,10 and GTAW,26 this new

code is easier to use and much faster to run. A typical run

with Nr¼ 512 and Nm¼ 10, AMC can find an eigenmode in

seconds or less, whereas NOVA and KAEC usually require

minutes. Moreover, AMC can also calculate all the Nd

(Nd¼Nr�Nm) eigenvalues and eigenvectors for the system

in minutes, without losing solutions. Here, the eigenvalues

contain both continuum and discrete spectrums. The mode

structures are usually singular for the continuum spectrums

at some radial locations, whereas the mode structures for the

discrete spectrums are usually global and smooth, which are

our main interests. The benchmarks of AMC are provided in

Appendix C.

One should also note that although the triangularity and

elongation have been excluded in our model, i.e., the

Lm;m62;3;… terms have been omitted in Eq. (3), the higher

order continuum gaps (and AEs) may still exist, as can be

seen in the panel (b) of Figs. 1 and 2. These higher order

couplings occur in an indirect way, e.g., Um could be coupled

to Umþ2 since Um is directly coupled to Umþ1 and Umþ1 is

also coupled to Umþ2.

III. PARALLEL EQUILIBRIUM CURRENT EFFECTS ON
MODE EXISTENCE

In this paper, we study only the lowest order parallel

equilibrium current effects for the RSAEs, which can be rep-

resented by the kink term in Eq. (1). For the case without the

kink term, Lm,m should be modified to Lnew
m;m ¼ Lm;m � ð3kmk0m

þ rkmk00mÞ. Similar explicit expressions for the kink term are

022518-2 H. S. Xie and Y. Xiao Phys. Plasmas 22, 022518 (2015)



also obtained in Refs. 22 and 27. Note also that if the term

ðk2
mÞ
0

is missing in Eq. (4), the Lnew
m;m would be inaccurate to

be Lnew
m;m þ 2kmk0m.

Since RSAE is usually a single m dominant mode, fol-

lowing Refs. 12, 13, 15, and 17, we can obtain the following

dimensionless equation to manifest each physics term by

simplifying and expanding Eq. (3) at the zero shear point

@

@x
Sþ x2ð Þ @

@x
Um þ Q� S� x2

� �
Um ¼ 0; (6)

where x¼m(r � r0)=r0. Here and below, the subscript 0

represents the quantity at r0, with r0 being the radius at

qmin. The expression for S is unchanged from that in Refs. 15

and 17

S ¼ mq2
0

�km0ð Þr2
0q000

�x2

v2
A0

� k2
m0

 !
; (7)

where we have ignored the compressibility term c2
s and

Shafranov shift term. However, Q ¼ Qtor þ Qpressure is

changed to Q ¼ Qtor þ Qpressure þ Qnew. We find that the

improvement of L in our equations does not affect the Qtor in

Q, i.e.,

Qtor ¼ 2
mq2

0 �km0ð Þ
r2

0q000

�2 þ 2D0�ð Þ
1� 4k2

m0q2
0

: (8)

This shows that the analysis of RSAE in Refs. 13, 15, and 17

still holds, though their starting equation does not satisfy the

self-adjointness and misses a ðk2
mÞ
0

term. This is because that

the main difference between the self-adjoint and non-self-

adjoint L operator is the derivative term related to k0m, and

k0m0 ¼ 0 for RSAEs. The same holds for the ðk2
mÞ
0

term, i.e.,

ðk2
mÞ00 ¼ 0. That is, the equations in Refs. 13, 15, and 17 can

be used for RSAEs, but, would be subtle for other AEs and

other modes (e.g., internal kink and ballooning modes) when

k0m 6¼ 0, as mentioned in Appendix A.

Qnew is due to the absence of the kink term in Eq. (1).

For the case with the kink term, Qnew¼ 0. For the case with-

out the kink term

Qnew ’
r0km0 k00m

� �
0

r0 k2
m

� �00
0=2
’ 1: (9)

We note that Eq. (6) is much broader in application than

ideal MHD modes. When dealing with fast particle driven or

kinetic driven RSAEs modes, we simply replace the Q in

Eq. (6) by Qeff ¼ Qf þ Qtor þ Qpressure þ Qkinetic þ :::. The

existence of RSAEs requires Qeff>Qcritical, with Qcritical

’ 1=4 (Ref. 12), in general, where Qeff depends on several

factors, such as fast ion (Qf), plasma pressure gradient

(Qpressure), toroidal coupling (Qtor), kinetic effects (Qkinetic),

etc. Here, Qeff can be understood as the Schr€odinger poten-

tial, and Qeff>Qcritical can be understood similarly as the

Suydam’s criterion.12 These terms can be either favorable or

unfavorable. We find that for the case without the kink term,

the Qnew in Eq. (9) is always larger than zero, which also

makes easier Qeff>Qcritical¼ 1=4. Therefore, the parallel

equilibrium current is always an unfavorable effect. The

above result is similar to the RSAE model equation by Deng

et al.21,22 However, in Deng’s model equation, if the parallel

equilibrium current is included, the RSAE will not exist;

whereas in our equation, the RSAE can still exist, as will be

FIG. 1. The q-profile is Eq. (10) and v2
AðrÞ ¼ 1þ 3r2. Under these parame-

ters, a fine global RSAE mode only exists when the kink term is removed.

FIG. 2. The q-profile is Eq. (11) and v2
AðrÞ ¼ 1. A fine global RSAE mode

exists for both cases with and without kink term.

022518-3 H. S. Xie and Y. Xiao Phys. Plasmas 22, 022518 (2015)



shown later. Nevertheless, one should keep in mind that the

above analytical existence criteria Qcritical¼ 1=4 is not rigor-

ous but can provide useful insight for our following cases

since the coupling between mode m and mode mþ 1 is weak

and our following cases are still RSAE-dominated. Even in

the current fluid limit, a more rigorous treatment needs to

resort to numerical computation rather than the current ana-

lytic estimate.

Next, we verify the above conclusion numerically using

the AMC code we developed. For simplicity, we focus on

the zero-shift and zero-pressure limits, i.e., D(r)¼ 0 and

b¼ 0, which follows c2
s ¼ 0 and a¼ 0 (also Qpressure¼ 0).

Hereafter, if not specified, the frequency x and the radius r
are normalized by xA and minor radius a, respectively.

First, the following reversed shear safety factor profile is

chosen24

qðrÞ ¼ qm þ c1ðr2 � r2
mÞ

2 þ c2ðr2 � r2
mÞ

3; (10)

where c1¼½ðqa�qmÞr6
mþðq0�qmÞð1�r2

mÞ
3�=½r4

mðr2
m�1Þ2� and

c2 ¼ ½ðqa � qmÞr4
m � ðq0 � qmÞð1� r2

mÞ
2�=½r4

mðr2
m � 1Þ2�. The

Alfv�en velocity profile related to the density profile is given by

v2
AðrÞ ¼ 1=qðrÞ and qðrÞ ¼ 1=ð1þ 3r2Þ. The following param-

eters are chosen to calculate the RSAE mode structure: n¼ 4,

R0=a ¼ 5; qm ¼ 1:91; q0 ¼ 2:0; qa ¼ 3:5, and rm¼ 0.5.

The results for the two cases with and without the kink

term are shown in Fig. 1. The 1D and 2D mode structures in

panels (c) and (d) of Fig. 1 show that, for the case without

the kink term, a fine global RSAE mode can be found.

Whereas, for the case with the kink term, only a rough global

mode can be found, as shown by panels (e) and (f) in Fig. 1.

So, the kink term is unfavorable for the existence of RSAE,

which is consistent with our previous simple analytical

model. Here, Qtor¼ 0.2578 for our numerical parameters.

We note that, although Qtor is larger than the analytical criti-

cal value 1/4, the global RSAE mode still does not exist well

for Qnew¼ 0. This is because the analytical critical value 1/4

is a crude estimate.

Second, it would also be interesting to see whether the

pure toroidicity factor (i.e., Qf¼Qpressure¼Qkinetic¼…¼ 0

but Qtor 6¼ 0) can trigger RSAE in a global code. Our numeri-

cal calculations by the AMC code show that it is possible

although difficult.

The following q profile is chosen

q rð Þ ¼ qm

1� r � 0:5ð Þ2=w2
q

h i ; (11)

with qm¼ 1.87 and wq¼ 2.5. The toroidal mode number

n¼ 10 is employed to make Qtor� Qcritical¼ 1=4.

Fig. 2 shows the RSAE mode structures for the cases

with and without kink term. For both cases, a fine global

RSAE mode can be identified. And, the mode structures for

both cases are similar except a slight difference in frequency.

This indicates that the kink term mainly affects whether the

RSAE can exist, but barely affects the mode structure with

the existence of the RSAE. Since the terms in Qeff are

decoupled, Qnew can be used to mimic other physics effects,

such as Qf, Qkinetic, to excite RSAE. In other words, we can

suppress the kink term artificially to excite the RSAE.

However, this method is only useful for identifying the

RSAE mode quickly.

A simulation verification is shown in Fig. 3 using GTC

code,22 where the q profile is given by q ¼ 1:948� 0:31

ðw=wwÞ þ 0:31ðw=wwÞ
2
, with w the poloidal flux and

ww ¼ wðr ¼ aÞ ¼ 0:0105B0R2
0, with B0 the magnetic field at

the magnetic axis. The corresponding a=R0¼ 0.200. The pa-

rameters are similar to that in Fig. 2 and also yields Qtor �
Qcritical¼ 1=4 for n¼ 10. Fig. 3 shows that a fine global

RSAE mode can be found for both cases. We have used the

antenna to excite the eigenmode in this simulation to over-

come the continuous damping and noise.

This work mainly focuses on upsweeping RSAE

(qmin<m=n), which is close to the lower side of the accumu-

lating point in Alfv�en continuum. The downsweeping RSAE

(qmin>m=n), which is close to the upper side of the contin-

uum accumulating point, has also been found in this model.

But it is sensitive to the parameters used and only exists in a

narrow region. Reference 19 has discussed a possible favor-

able “localizing” effect to the qmin>m=n mode. However, a

complete understanding of the down-sweeping RSAE still

requires further study.

IV. SUMMARY AND DISCUSSION

In this study, we developed a fast eigenvalue code AMC

to study Alfv�en eigenmodes and ideal MHD instabilities in

tokamaks. By using this code, we verified that the equilib-

rium parallel current contribution Qnew, which corresponds

to the kink effect, is usually unfavorable for the existence of

RSAE. We show by both analytic theory and numerical

FIG. 3. GTC simulation of RSAE: (a) q(r) profile; (c) and (d) electrostatic

potential / on poloidal plane without and with kink term. Parameters:

n¼ 10, R0=a ¼ 5:0; qmin ¼ 1:87. Under these parameters, RSAE exists for

both with and without parallel equilibrium current cases.
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calculation that the artificial suppression of the kink term in

the simulation will help to find RSAEs. In the ideal MHD

and zero-pressure limit, the main favorable term is the toroi-

dicity term Qtor. Although small, the toroidicity effect Qtor

can also excite RSAE in certain parameter regime. To

remove the spurious imaginary frequencies from the ideal

MHD modes, it is necessary to construct a self-adjoint opera-

tor for the MHD model equation.
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APPENDIX A: THE OPERATOR L

A slight difference between Eqs. (3) and (5) and those in

Refs. 13, 15, and 17 is that the Lm,m61 term, in this paper, is

exactly self-adjoint30 (all eigenvalues x2 are real), whereas

the Lm,m61 term in Refs. 13, 15, 17, and 25 has broken the

self-adjointness of the ideal MHD equation to the order of

O(�2). The break of the self-adjointness of the L operator will

bring spurious imaginary parts to the eigenvalues. A term

ðk2
mÞ
0

(Refs. 27 and 28) in Lm,m, coming from the cancelation

between the kink term and the field line bending term, is also

missed in Refs. 13, 15, and 17, which is important for low m
modes (see below and Fig. 4).

Several test runs for the stable AEs show that the eigenval-

ues of the self-adjoint Eqs. (3)–(5) are indeed all real numbers,

and some small imaginary parts (e.g., 10�6) originated from the

discrete errors can be suppressed by using larger Nr. Whereas,

the numerical results using the non-self-adjoint equations in

Refs. 13, 15, 17, and 25 will give artificial non-real eigenvalues.

The imaginary parts of those eigenvalues can be large to 10�2,

which is consistent with the order of approximation, i.e., O(�2).
To avoid these non-real solutions, we retain the self-adjointness

of Eqs. (3)–(5), though the difference is merely in second order.

When the self-adjointness of L is satisfied, we find that a slight

difference in the second order term would not affect the results

too much. For example, solving the ideal MHD part of Eq. (35)

in Ref. 27, which is self-adjoint, will give results similar to

those from the AMC code in the zero-b limit. This indicates

that the second order approximation is adequate. Fig. 4 shows

how the inaccurate expressions for L affect the solutions, where

a TAE case is solved and the parameters are taken from Ref. 28

(see Appendix C). Panels (a) and (b) give all the solutions using

the non-self-adjoint Eq. (82) in Ref. 25 and the self-adjoint

MHD part of Eq. (35) in Ref. 27. We can see that several artifi-

cial imaginary frequencies will arise when the self-adjointness

is broken. Panels (c) and (d) show the effects of the ðk2
mÞ
0

term.

When this term is missed, both the mode structure and eigen

frequency will be affected. For example, the dominant m¼ 1

mode is shifted outward and concave in panel (c) at range

0< r< 0.65 instead of the bulging structure in panel (d) at

range 0< r< 0.57.

Note also that there exists a sign difference in the defini-

tion of Lm,m61 between Refs. 15 and 17. This barely affects

the solutions, which is mainly because that Lm,mþ1 and

Lm,m�1 are symmetric. However, one should be careful that

moving v2
AðrÞ out of the @r derivative as in Refs. 17 and 22

will break the self-adjointness.

APPENDIX B: DISCRETIZATION THE SELF-ADJOINT L
OPERATOR

The operator L̂ in an arbitrary second order ODE

L̂y 	 aðxÞy00 þ bðxÞy0 þ cðxÞy ¼ ky, where a, b, and c are

real functions of x, is not always self-adjoint, i.e., the eigen-

values of the above equation are not always real numbers.

However, a self-adjoint Sturm-Liouville operator in the fol-

lowing form always gives real eigenvalues:

L̂ ¼ d

dx
f xð Þ d

dx


 �
þ g xð Þ: (B1)

We can discrete this operator properly to an equivalent ma-

trix and to show that the corresponding matrix is self-adjoint

(Hermitian). Then, the linear ODE is transformed to an

eigenvalue problem AX ¼ kBX in the matrix form.

For simplicity, the finite difference approach is used to

discretize the Sturm-Liouville operator in the form of Eq.

(B1), i.e., L ¼ fjðyjþ1 � 2yj þ yj�1Þ=Dx2 þ f 0jðyjþ1 � yj�1Þ=
ð2DxÞ þ gjyj. The corresponding finite difference matrix is

shown to be self-adjoint. Here, the matrix B is unit matrix and

FIG. 4. The effects of the non-self-adjoint L for n¼ 1 TAE mode. Eigen fre-

quencies from (a) the non-self-adjoint Eq. (82) in Ref. 25 and (b) the self-

adjoint Eq. (35) in Ref. 27. Panels (c) and (d) show the radial mode struc-

tures and frequency for cases without (Refs. 13, 15, and 17) and with (this

paper) ðk2
mÞ
0
correction.
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can be ignored, whereas A is a real tridiagonal matrix. That is,

we need only to show that A is symmetric, i.e., A ¼ AT , or

more explicitly, the matrix elements Aj,jþ1¼Ajþ1,j, i.e.,

fj

Dx2
þ

f 0j
2Dx
¼ fjþ1

Dx2
�

f 0jþ1

2Dx
; (B2)

where the prime is the derivative. Equation (B2) can be

shown to hold to O(Dx2). Therefore, the matrix A is self-

adjoint to O(Dx2).

Equation (6) and the Lm,m operator in Eq. (4) are in the

Sturm-Liouville form and thus self-adjoint. The self-

adjointness of the operator Lm,m61 in Eq. (5) can be shown in

a similar manner.

APPENDIX C: BENCHMARK OF THE AMC CODE

Benchmark of the AMC code is given in this Appendix.

First, the global AE (GAE) in cylinder geometry is solved

by the AMC code and the result is compared to that from the

KAEC code,10 with the density profile q¼ 1.0–0.98(r=a)2, the

safety factor profile q¼ 1.001þ 2.0(r =a)2, zero-pressure, the

toroidal mode number n¼ 0, and the poloidal mode number

m¼ 2. The eigenmode frequencies from these two codes agree

with each other, i.e., xAMC
GAE ¼ 1:3842 and xKAEC

GAE ¼ 1:3843.10

Their mode structures are also similar to each other.

Second, the TAE result in Ref. 28 is compared to that

from the AMC code. The profiles and parameters are: q ¼ 1:0
þ1:0ðr=aÞ2; q ¼ 1:0, n¼ 1, and R0=a¼ 4. The eigenmode

frequencies in Ref. 28, and calculated by NOVA, KAEC,

and AMC are shown in Table I. The radial mode structures

[Fig. 4(d)] from these codes are also similar. As mentioned,

we also find that the ðk2
mÞ
0

term we add back in Lm,m is impor-

tant to this low m mode. Otherwise, the frequency and mode

structure will not match this well [Fig. 4(c)].

We give a further comparison of the odd and even

TAEs.29 The profiles and parameters are: q¼ 1.35þ 1.2

(r=a)2, q¼ 1=[1þ 2.0(r=a)2], n¼ 1, and R0=a¼ 4. The odd

and even continuum accumulating points (accu.) and eigen-

mode frequencies calculated by NOVA, KAEC, and AMC

are also shown in Table I. They are consistent with each

other. The continuum spectrum and mode structure calcu-

lated by AMC is shown in Fig. 5. From Table I and panel (b)

in Fig. 5, we find that the odd eigenmode frequency is

slightly below the continuum spectrum and the even eigen-

mode frequency is slightly above the continuum spectrum,

as expected. The 2D (r,h) contours in panels (d) and (f) show

the ballooning and anti-ballooning structures of even and

odd TAEs.

Finally, we have also compared the ideal MHD RSAE

results with KAEC in Refs. 10 and 16, and GTC and HMGC

in Ref. 21. Similar mode frequencies and mode structures

are obtained, despite some minor differences. In addition,

the AMC code has also been successfully applied to the HL-

2A experiment for the Alfv�en modes.31
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