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Impurity is an important factor that can affect significantly turbulent transport in tokamaks. In

order to study the impurity physics, we implement a new impurity module in the gyrokinetic

particle simulation code GTC (Gyrokinetic Toroidal Code). With an improved numerical

scheme, we expand the validity of gyrokinetic Poisson equation in the GTC to the short

wavelength region, for both non-zonal and zonal parts of the perturbed Poisson equation.

Verifications of this new scheme are carried out on the linear instability and zonal flow response.

The linear simulation of the ion temperature gradient (ITG) instability including the impurity

ions shows that the new Poisson solver can obtain the correct linear growth rate and frequency at

the thermal ion gyro-radius scale. The residual zonal flow with impurities obtained via the new

zonal flow solver is consistent with the numerical and analytical predictions in the large aspect-

ratio limit. The nonlinear simulation of the ITG turbulence shows that the turbulent transport

is significantly reduced by the impurity ions through decreasing the linear growth rate of the

instability. Published by AIP Publishing. https://doi.org/10.1063/1.5038158

I. INTRODUCTION

Impurity ions exist universally in magnetically confined

plasmas, besides majority ions (thermal ions) and electrons.

The impurity ions may come from the erosion of the device

wall or the plasma sputtering in the divertor. Common kinds

of impurity include Carbon, Oxygen, and Tungsten. The ther-

malized alpha particles can also be regarded as one impurity

species in the burning D-T plasmas. External impurity injec-

tion is observed to lead to long wavelength turbulence sup-

pression, confinement improvement, and ion thermal

diffusivity reduction in the experiments in TEXTOR-94,1

DIII-D,2,3 JET,4 and TFTR.5 Various theories are raised to

interpret how the impurity can affect the plasma confinement

and transport. As one candidate, the impurity mode is excited

when the impurity ions have a density profile that increases

with the magnetic flux, in contrast with the thermal ion and

electron density profile, even if there is no temperature gradi-

ent for thermal ions.6 In the sheared slab geometry and the

long wavelength limit (k?qi < 1), analysis shows that this

mode can suppress (or enhance) ion temperature gradient

(ITG) mode when the impurity ions have the outwardly (or

inwardly) peaked density profile.7 One numerical calculation

using the kinetic impurity ions and adiabatic electrons shows

that the impurity modes and the ITG mode are strongly cou-

pled and can affect each other significantly.8 The impurities

can also affect various trapped electron modes.9 A recent

research based on the gyrokinetic integral equation and the

eigenvalue approach finds that the coupled ITG and TEM can

be affected by the impurity ions.10 Under some special condi-

tions, the impurity acoustic modes coupled with the drift

modes can produce an outward transport for the impurity

from a quasilinear calculation,11 which is considered to

explain the favorable improved lower confinement regime

(the I-Regime).12,13 On the other hand, the presence of the

impurity ions may impact the level of zonal flow,14 an impor-

tant figure suppresses the radial correlation length of the tur-

bulent fluctuations and thus regulates the turbulent transport.15

The gyrokinetic simulation has been successfully used to

understand the nonlinear turbulent transport of the particle,

momentum, and energy in both ion and electron channels, par-

ticularly originated from the drift wave instabilities such as

ITG,15–22 electron temperature gradient (ETG) mode,23–25

trapped electron mode (TEM),26–28 and kinetic ballooning

mode (KBM).29–31 In this work, we utilize the massively paral-

lel 3D global particle simulation code GTC (Gyrokinetic

Toroidal Code),15,32,33 one of the major gyrokinetic fusion

simulation codes, to study the drift wave instability and turbu-

lence with the impurity ions. We implement a novel numerical

scheme that is capable to solve the perturbed and flux averaged

gyrokinetic Poisson equation with the impurity ions for arbi-

trary perpendicular wavelength. We verify these capabilities by

a linear instability benchmark with the HD7 code10 and simu-

lating the correct zonal flow response with the impurity ions.

Then, we show by the nonlinear ITG simulation that the impu-

rity ions can decrease the thermal ion heat diffusivity, which

favors the plasma confinement and is consistent with the cur-

rent experimental observation.1–5 This decrease in the ion heat

diffusivity is a combined effect from the linear instability drive

and the residual zonal flow regulation. For the cyclone base

case parameters employed, the preceding two impurity effects

are opposite to each other: the reduction of zonal flow by the

impurities tends to less regulate the radial transport, while the

decrease in linear growth rate by the impurities leads to a low

turbulence saturation level. The decrease in heat diffusivity sug-

gests that the change in the linear drive dominates the change

in the turbulent transport. Our work reveals the role of impuri-

tyz ions in the linear and nonlinear phase of the ITG turbulence.a)yxiao@zju.edu.cn
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Our simulation provides a solid proof that the GTC is able to

simulate the impurity turbulent transport with verifications on

the linear instability and zonal flow response, respectively.

This paper is organized as follows. In Sec. II, we intro-

duce the electrostatic simulation model used in GTC. In Sec.

III, we describe the traditional approximation used in the

GTC to solve the perturbed Poisson equation with the impu-

rity ions, which is suitable for the long wavelength modes.

We then develop a new scheme to extend the traditional

Poisson equation to cover arbitrary wavelength modes. In

Sec. IV, we demonstrate the error of the traditional method

and verify the linear ITG instability including impurities by

comparing the GTC simulation with previous numerical

results. We convert the flux averaged Poisson equation to a

matrix problem in the large aspect-ratio limit to include the

impurity ions properly in Sec. V. In Sec. VI, we calculate the

zonal flow response through the new zonal flow solver

described in Sec. V and show the agreement on the residual

zonal flow level between the GTC simulation and the theo-

retical result. In Sec. VII, we carry out the nonlinear simula-

tion on the ITG mode with impurities and investigate the

effect of the impurities on the ITG turbulent transport.

Finally, the summary is made in Sec. VIII.

II. SIMULATION MODEL

In electrostatic GTC simulation, the gyrokinetic Poisson

system evolves with two standard steps in particle-in-cell (PIC)

simulation for a loop: first, compute electric potential based on

gyrocenter distribution; second, compute gyrocenter motion in

five-dimensional phase space consisting of gyrocenter position

X, magnetic moment l, and parallel velocity vjj. The ions

dynamics is described by gyrokinetic Vlasov equation34

dfa
dt
� @fa
@t
þ _X � rfa þ _vjj

@fa
@vjj
¼ 0; (1)

where the gyrocenter velocity and parallel acceleration can

be calculated by

_X ¼ vjjb̂ þ vE þ vd;

_vjj ¼ �
1

ma

B�

B
� lrBþ Zar/ð Þ:

(2)

Here, the subscript a ¼ i; z stands for main ion particles and

impurity ion particles, and Za and ma are the charge and

mass of particle. / is the electrostatic potential, B ¼ Bb̂ is

the equilibrium magnetic field, and

B� ¼ Bþ
Bvjj
Xa
r� b̂; (3)

where Xa is the gyrofrequency for particle a. vE is the E� B
drift defined as

vE ¼
b̂ �r/

B
: (4)

The magnetic drift vd ¼ vc þ vg, where the magnetic gradi-

ent drift is given by

vg ¼
l

maXa
b̂ �rB; (5)

and the curvature drift is given by

vc ¼
v2
jj

Xa
r� b̂: (6)

In order to control discrete particle noise, the df method35 is

applied. The distribution function is decomposed into equilib-

rium part f0a and perturbed part dfa, with the equilibrium part

being the solution of non-perturbed Vlasov equation

@f0a

@t
þ vjjb̂ þ vd

� �
� rf0a �

1

ma

B�

B
� lrB

@f0a

@vjj
¼ 0: (7)

With the definition of particle weight wa � dfa=f0a, we can

rewrite (1) as

dwa

dt
¼ 1� wað Þ �vE �

rf0a

f0a
þ Za

ma

B�

B
� r/

1

f0a

@f0a

@vjj

 !
: (8)

The electrons follow a drift kinetic equation, which is essen-

tially Eq. (1) in the long perpendicular wavelength limit. This

electron drift kinetic equation is solved by the fluid-kinetic

hybrid electron model.26 In the leading order, the electron

response is adiabatic and dne ¼ ed/
Te

n0e. Thus, the perturbed

electron distribution is decomposed into an adiabatic compo-

nent and a non-adiabatic particle, i.e., dfe ¼ ed/
Te

f0e þ dge. The

electron weight we � dge=fe are evolved according to the fol-

lowing equation:26

dwe

dt
¼ 1� ed/

Te
�we

� ��
�vE �rlnf0ejvjj �v? �

@

@t

ed/
Te

� vd �r
ed/
Te
þ e

Te
vd �r/� b̂�rh/i

B
�red/

Te

�
(9)

where / ¼ h/i þ d/, where d/ denotes the non-zonal part

of the potential /, and h/i denotes the flux surface averaged

part (zonal part) of /.

The electrostatic potential is obtained through the (gyro-

kinetic) Poisson equation,16,33,36 which is essentially the

quasi-neutrality condition for plasmasX
a¼i;z

Z2
an0a

Ta
/� e/a

� �
þ e2n0e

Te
/¼ Zid�niþZzd�nz� edne;kineticð Þ;

(10)

where Ta is the equilibrium temperature, n0e is the equilib-

rium electron density, d�na is perturbed gyrocenter density,

and dne;kinetic is the non-adiabatic electron gyrocenter den-

sity. / is the electric potential, and e/ denotes the second

gyro-averaged potential16

e/a xð Þ ¼ 1

2p

ð
�/ðRÞFM;a l; vjjð Þ � dðR� xþ qÞdRdldvjjdu;

(11)

where FM;a is the lowest order Maxwellian distribution for

the particle species a, and u is the gyrophase. �/ is defined as

the first gyro-averaged potential
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�/ðRÞ ¼ 1

2p

ð
/ xð Þd x� R� qð Þdxdu: (12)

The equilibrium density and temperature of electrons and

impurity ions are given by analytical forms

n0a wð Þ ¼ n0a 1:0þ n1a tanh n2a � w=wwð Þ=n3a½ � � n1a
� 	

;

T0a wð Þ ¼ T0a 1:0þ T1a tanh T2a � w=wwð Þ=T3a½ � � T1a
� 	

:

(13)

Here, n0a and T0a are the two parameters to control the magni-

tude of density and temperature, and ww is the flux function

at plasma wall. The typical equilibrium for impurity profiles

is shown in Fig. 1. The scale lengths of density and tempera-

ture are peaked around r � a=2.

The equilibrium temperature of thermal ions is also

determined by (13), but the equilibrium ion density is

obtained by quasi-neutrality, n0i ¼ ðen0e � Zzn0zÞ=Z0i. n0z is

set to zeros when we want to exclude the impurity effects.

The perturbed quasi-neutrality is satisfied though (10).

III. NEW POISSON SOLVER FOR IMPURITY IONS

The particle pushing algorithm for the impurity ions is

identical to that for the thermal ions. The major complication

in simulating impurity ions by a gyrokinetic code is about

solving the gyrokinetic Poisson equation. In the GTC, the

electrostatic Poisson equation (10) is solved through 4-point

averaging method36,37 or the Padè approximation method.33

Both methods are used to find a discrete matrix to express e/
in terms of / to solve the differential-integral gyrokinetic

Poisson equation in the real space. The differential equation

is thus converted to a discrete difference equation and can be

expressed in a compact matrix form. In the case of 4-point

averaging method, the Poisson equation for the non-zonal

part of the electrostatic potential d/ is given by33

Mi þMz þ Dð Þd~/ ¼ d~q: (14)

The one-dimensional arrays d~/ and d~q represent the electric

potential and charge density on the simulation grid points.

The left hand side of the Poisson equation, the polarization

response on every grid point due to the perturbative potential

field d/, is expressed by the superposition of the d/ on the

adjacent grid points. This feature makes Mi and Mz sparse

matrices. The matrix D is diagonal and induced by the adia-

batic response of electrons. In the case of Padè approxima-

tion method, the discrete gyrokinetic Poisson equation takes

another form

Ui

Li
þ Uz

Lz
þ D

� �
d~/ ¼ d~q; (15)

where Us and Ls are sparse matrices.

In the long wave length limit, k2
?q

2
th;a 	 1, we can expandfd/ to the first order of k2

?q
2
th;a, fd/ðk2

?q
2
th;aÞ ¼ ð1� k2

?q
2
th;a

þ� � �Þ/, and then the polarization response term becomes

Z2
an0a

Ta
d/� fd/a

� �

 Z2

s n0a

mav2
a;th

k2
?

m2
av2

a;th

e2Z2
aB2

0

d/ / man0a; (16)

where B0 is the magnetic field strength at magnetic axis, and

vth;a is the thermal velocity for particle species a

vth;a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ta=ma

p
; qth;a ¼

mavth;a

ZaB0

: (17)

The polarization response term is proportional to the mass

and equilibrium density for a ¼ i, z. In this long wavelength

limit, we can find

Mz ¼Mi
mzn0z

min0i
;
Uz

Lz
¼ Ui

Li

mzn0z

min0i
: (18)

Therefore, we can obtain the perturbative potential field by

solving

d~/ ¼ min0iMi

mzn0z þ min0i
þ D

� ��1

d~q; (19)

in using the 4-point averaging method,36,37 and solving

d~/ ¼ min0i

mzn0z þ min0i
Ui þ LiD

� ��1

Lid~q; (20)

in the Padè approximation method.33 Although the size of

these matrices is large, their sparse features make it easy to

inverse the matrices. When the impurity part is removed, or

the density of impurity n0z is set to 0, we recover the gyroki-

netic Poisson equation for the single ion species case.

However, the above approximation is inaccurate when

k2
?q

2
th;i � 1, k2

?q
2
th;z � 1, which can be the most unstable

region for the drift wave instabilities. It is necessary to work

out a scheme that can handle these short wavelength modes.

We note that the calculation of Mi retains accurate when

k2
?q

2
th;i � 1. So, we can use this method to calculate Mz simi-

larly, which shares the same interface in the code as that for

calculating Mi. Knowing the particle mass, charge, and equi-

librium plasma profiles, we can obtain the gyrokinetic matrix

for any kind of particle. Thus, the gyrokinetic Poisson equa-

tion with a second ion species can be solved directly by

inversing the total gyrokinetic Poisson matrix

FIG. 1. Equilibrium density and temperature profiles and associated gra-

dients for impurity ions. The density and temperature are normalized to n0e

and T0e on magnetic axis, respectively.
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d~/ ¼ Mi þMz þ Dð Þ�1d~q: (21)

Note that we do not need to use the Padè approximation

method33 is that the quotient U=L is not necessarily a sparse

matrix, unless a proper truncation method is introduced so

that the quotient U=L is similar to M. For the current pur-

pose, it is sufficient to focus on the 4-point averaging

method.

IV. VERIFICATION OF NEW POISSON SCHEME
WITH IMPURITY

The traditional gyrokinetic Poisson solver in the GTC

uses an approximate impurity response

Z2
i n0i

Ti

k2
?q

2
th;i

1þ k2
?q

2
th;i

mzn0z

min0i
d/ ¼ Zzn0z

Tz

k2
?q

2
th;z

1þ k2
?q

2
th;i

d/; (22)

to replace the actual impurity response Zzn0z

Tz

k2
?q2

th;z

1þk2
?q2

th;z

d/. The

error of this approximation for short wavelengths, e.g.,

k2
?q

2
th;i � k2

?q
2
th;z � 1, can be significant, as is demonstrated

by Fig. 2, where Tz ¼ Ti is assumed for simplicity and the

Carbon ion C6þ is used as the impurity since it would be the

major contaminant in the ITER plasmas.38 Thus, qth;z ¼
ffiffiffi
3
p

=

3qth;i < qth;i. The above analysis shows that the approximate

impurity response traditionally employed in the GTC is

smaller than its true value, and thus it will lead to a larger

estimation for the non-zonal potential d/. The simulation

result in Fig. 2 indeed shows that the traditional gyrokinetic

Poisson solver in GTC gives a larger growth rate than the

newly modified gyrokinetic Poisson solver, which is fully

consistent with our analysis.

The validity of traditional model without impurity when

k2
?q

2
th;i � 1 is verified by previous works.39 Next, we demon-

strate the validity of this new numerical model developed in

Sec. III, where thermal ions and impurity ions are treated

equally in the gyrokinetic Poisson equation. This numerical

symmetry between thermal ions and impurity ions ensures

that the simulation result is accurate till k2
?q

2
th;z � 1. The ver-

ification is carried out by exchanging physical parameters

and equilibrium profiles of thermal ions and impurity ions.

We carry out an ITG simulation with impurities for two

cases, with case 1: 80% thermal ions, 20% impurities,

mi ¼ mHþ , Zi ¼ e, mz ¼ mC6þ , Zz ¼ 6e, e ¼ 0:2, q ¼ 2,

ŝ ¼ 1:5, Lnz ¼ Lne, ge � d ln Te=dlnne � Lne=LTe ¼ 2:0, Tz

¼ Ti ¼ Te, and gi ¼ 3:0; and case 2: 20% thermal ions, 80%

impurities, and all other parameters exchanged between ions

and impurity, mz ¼ mHþ , Zz ¼ e, mi ¼ mC6þ , Zi ¼ 6e, Lni

¼ Lne, and gz ¼ 3:0. The simulation results are shown in Fig.

3, where the linear growth rate and frequency are identical

for these two cases. This confirms the numerical symmetry

between the thermal ions and the impurities in the new

numerical gyrokinetic Poisson model including impurity

ions, which is correctly implemented in the current GTC.

Next, we further verify this new capability of GTC in

simulating impurity physics by comparing the linear ITG

dispersion with impurities from the GTC to that from another

gyrokinetic eigenvalue code HD7.10 The simulation parame-

ters are set as the same as case 1 in the preceding example.

The simulation results are shown in Fig. 4, where both linear

frequency and growth rate from the GTC simulation are

FIG. 2. Linear growth rate in ITG instability with impurities vs. perpendicu-

lar wave length for traditional gyrokinetic Poisson solver and new gyroki-

netic Poisson solver, where qs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti=mi

p
.

FIG. 3. Code consistency check for linear ITG dispersion with different

impurity portions. Case 1: 80% ions, 20% impurities; Case 2: 20% ions,

80% impurities.
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consistent with those from the HD7 simulation10 in both

value and tendency. Therefore, we can conclude that the new

gyrokinetic Poisson solver implemented in GTC can accu-

rately address the impurity effect, even for the short wave-

length modes with k2
?q

2
th;i � k2

?q
2
th;z � 1.

V. NEW ZONAL SOLVER

In order to carry out high fidelity turbulence simulation,

it is important to confirm the accuracy of the zonal flow

response. The formal derivation of zonal potential is through

the flux surface average of the potential field

h/i ¼
Þ

J/dhdfÞ
Jdhdf

; (23)

where / ¼ d/þ h/i is solved by the gyrokinetic Poisson

equation. The electrons are mainly adiabatic in response to

the perturbative d/. However, they are non-adiabatic in

response to the zonal potential. Thus, the gyrokinetic

Poisson equation can be split into two equations, the non-

zonal gyrokinetic Poisson equation (10) and zonal gyroki-

netic Poisson equation that is given by�
�
X
a¼i;z

n0aZ2
a

Ta

q2
th;ar2

?
1� q2

th;ar2
?

/

�
¼ hqci: (24)

Noting that k2
?q

2
e 	 1 and hqci ¼ hZi�ni þ Zz�nz � ene;kinetici

is the flux surface averaged perturbed charge density. In the

limit of large aspect ratio to the lowest order, the equation

can be reduced to the following equation:33

@

@w
JðwÞhgwwi @h/i

@w

� �
¼
�
� Ti

niZ2
i

J wð Þ
�

1

q2
th;i

�
þ Ti

niZ2
i

@

@w
JðwÞhgwwi @h/i

@w

�
hqci:

(25)

The zonal potential can be obtained by integrating the pre-

ceding equation numerically twice.

If the impurity ions are included in the equation, the pre-

ceding zonal equation (25) will end up with a fourth order

differential equation, which is much more complicated to be

solved. Moreover, the fourth order derivative on the zonal

charge density introduces much larger numerical noise.

Here, we provide a better way to solve the zonal gyrokinetic

Poisson equation.

In fact, we can solve the flux surface averaged gyroki-

netic Poisson equation by the matrix method that we just

used for the perturbed gyrokinetic Poisson equation. The

matrix form of (24) is*
Ui

Li
þ Uz

Lz

� �
~/

+
¼ h~qci; (26)

where U is the matrix form of the operator ðn0Z2=TÞq2
th;ar2

?,

and L is the matrix form of the operator 1� q2
th;ar2

?. Rather

than multiply L on both sides of the preceding equation, we

can directly combine the operator matrices acting on ~/ into

one single matrix. Define the total matrix Mt as

Mt � Mi þMz ¼ L�1
i Ui þ L�1

z Uz, the gyrokinetic Poisson

equation can be further reduced to a linear matrix problem

hMtih~/i ¼ h~qci, which assumes that the variation scales for

the matrix Mt and the potential / are different and have

been shown to be accurate to the requisite order.33 Although

the matrix Mt is not necessarily a sparse matrix, the size of

hMti is only related to the number of grid points in radial

direction, which is usually several hundreds. The size of this

linear problem is within the tolerance range of modern com-

puters. Many numerical libraries can be used to solve this

problem, such as PetSc.40–42

The matrix method introduced here has several advan-

tages. First of all, this method expands the validity range of

zonal solver from small gyro-radius limit to k2
?q

2
th;i � k2

?q
2
th;z

� 1. Second, this method avoids the higher order derivatives

of the array ~qc and thus suppresses the associated numerical

noises. Furthermore, it is symmetric in form for the ion spe-

cies and thus easier to code additional ion species through

the interface that constructs L�1
s Us, and the total matrix Mt

is calculated by a simple summation.

VI. VERIFICATION OF ZONAL SOLVER

Without the impurity ions, the traditional integration

method is accurate enough to obtain the correct zonal field

response, even for the short wavelength modes k2
?q

2
i � 1.

Thus for the case of one single ion species, the simulation

result from the matrix method and traditional integration

method should be identical, which is confirmed by the

FIG. 4. Linear dispersion of ITG from GTC simulation and HD7.
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following test. At any time step of the simulation, we can

record the zonal density hqci and the zonal field h/iint

solved by the integration method according to Eq. (14).

We also denote h/iM to the zonal field solved by the afore-

mentioned matrix method. Then for this single species

case, h~/iM ¼ hMii�1h~qci. The matrix Mi does not change

with time. The left panel of Fig. 5 shows the plots of radial

zonal density h~qci and Mih~/iint at a certain time step. The

consistency of two curves illustrates that Mi indeed corre-

sponds to the differential operator that acts on h~/i, as

shown in Eq. (14). On the other hand, the radial structure

of h~/iM calculated by the matrix method matches that of

h~/iint, as is plotted in the right panel in Fig. 5. It is further

observed that this consistency holds for any time step in

the simulation.

To investigate the impurity effect on zonal flow and to

verify the new zonal field solver, we studied the classical

Rosenbluth-Hinton zonal flow residual problem43 and have

simulated the residual zonal flow response with impurities

in the collisionless limit. Initially, we load an external

radial potential field to excite radial density fluctuation.

After a certain time step which is set as t¼ 0, the external

field is removed and the time history of zonal flow is mea-

sured. Under the collisionless condition, the zonal flow

damps away because of the shielding of the neoclassical

polarization. After several bounce times, the zonal flow

reaches a steady state. The time evolution of the radial

structure of the zonal flow is shown in the left panel of Fig.

6. We choose the initial radial zonal flow at t¼ 0 and steady

zonal flow structure to calculate the residual zonal flow

level RZF.

Analytical and numerical solutions in terms of the criti-

cal parameters, such as the safety factor q, radial wave vector

kr, and inverse aspect-ratio e, are presented in large aspect-

ratio limit to calculate the residual zonal flow level

RZF.14,44,45 The residual zonal flow level is given by the fol-

lowing formula:

RZF ¼

X
a

gava;clX
a

ga va;cl þ va;ncð Þ
; a ¼ i; e; z; (27)

where ge ¼ 1, gi ¼ Ti=Teð1� fzÞ, gz ¼ Tz=TeZzfz, fz is the

fraction of impurity ions, fz ¼ 1� ni

ne
, and va;cl and va;nc are

the classical and neo-classical polarization of the particle

va;cl ¼ 1�
D
C0 k2

?q
2
th;a

� �E
; (28)

va;nc ¼
(

1

1:83e3=2k2
r q

2
h;a

þ 1þ
ffiffiffiffiffi
8e
p

p
C0tr þ 1�

ffiffiffiffiffi
8e
p

p

� �
C0p

� �

� 1

1þ k2
r q

2
th;a

þ
ffiffiffiffiffi
p3

2

r
krqth;a �

�
1þ

ffiffiffiffiffi
8e
p

p
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)�1

; (29)

where
FIG. 5. Comparison between zonal field solved by traditional integration

method in GTC and new zonal solver.

(a)

(b)

FIG. 6. (a) Time evolution of zonal flow. (b) Time evolution of zonal flow

on reference surface, r ¼ 0:2R0.
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qh;a ¼ qth;aq=e; Ctr 

0:916ffiffiffiffiffi
pe
p

krqh;a
;

Cp ¼
1

2
ffiffiffiffiffiffi
2p
p

ekrqh;a

; (30)

and C0tr ¼ 2Ctr=p; C0p ¼ 2Cp=p.

Given e ¼ 0:2, q ¼ 1:4, and Ti ¼ Tz ¼ Te, the k?qth;i

dependency of RZF is shown in Fig. 7. The k?qth;i parameter

ranges from 0.2 to 2.0, where is within the effective range of

the Padè approximation employed in the zonal flow solver.

In the small gyro-radius limit, the residual zonal flow

approaches to the Rosenbluth-Hinton constant. In the finite

gyro-radius limit, k?qth � 1, the zonal flow is not shielded at

all and RZF approaches to 1. The particle simulation by GTC

can produce accurately these two analytic limits, with

various ratios qth;z=qth;i. So, the new zonal field solver with

impurities by the matrix method can produce the correct

zonal flow response in a wide range from k?qth;i � k?qth;z

	 1 to k?qth;i � k?qth;z � 1.

VII. NONLINEAR ITG SIMULATION WITH IMPURITIES

To investigate the effect of impurity ions on the turbu-

lent ion heat diffusivity, we carry out two nonlinear GTC

simulations after the improved gyrokinetic Poisson and zonal

flow solver is implemented and verified. The simulations use

the Cyclone base case parameters,46 on the reference surface

e ¼ r=R0 ¼ 0:18, and the local parameters are ni ¼ ne,

Ti ¼ Te, ge ¼ 3:1, q ¼ 1:4, ŝ ¼ 0:78, and R=LT ¼ 6:9, with

one containing only ions and electrons, and the other con-

taining an additional impurity ions C6þ. In order to see a sig-

nificant role for the impurities, we set the impurity fraction

fz ¼ 0:2. We also assume that the impurities are completely

thermalized by the ions through collisions, i.e., Tz ¼ Ti. In

Fig. 8, we show the time history of the heat diffusivity for

these two simulations. In the nonlinear phase, the presence

of the impurity ions significantly decreases the saturation

level of the heat diffusivity for both ions and electrons.

According to Eq. (27) and the parameters we have used, the

residual zonal flow level is slightly lower when the impurity

ions are included, as shown in Fig. 7. Thus, the change in the

regulation effect on thermal transport by the zonal flow is

weakened with impurities. Note that the linear growth rate is

lower in the simulation with impurity ions. From Fig. 8, one

can estimate cz ¼ 0:57Cs=R0 and cw=o z ¼ 0:83Cs=R0. So, we

can conclude that the difference of the turbulent thermal

diffusivity for these two cases mainly results from the

change in linear growth rate, i.e., the linear driving force for

the turbulence. The impurity ions play a damping role for the

FIG. 7. Residual zonal flow dependency on radial wave length. The analytic

results are drawn as lines, and the simulation results from GTC are shown as

circles and squares.

(a) (b)

(c)

FIG. 8. Volume-averaged heat diffu-

sivity time evolution for (a) ions, (b)

electrons, and (c) impurity ions. The

red(blue) line is from the simulation

without(with) impurity ions.
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turbulence, which can help to improve the confinement of

tokamaks. This can be used to explain the current experi-

mental observations, where external impurity injection can

lead to long wavelength turbulence suppression, confinement

improvement, and ion thermal diffusivity reduction.1–5

Note that the heat diffusivity of impurity ions is larger

than the main ions, vz � 3vi. In the simulation, the impurity

has the same temperature as the main ions, and the mass of

the impurity ion is 6 times as large as that of the main ion.

Thus, most impurity ions have a smaller velocity than the

thermal ions. According to a previous research by Zhang

et al.,47,48 the heat diffusivity would decay very fast with

increasing the particle speed due to the orbit averaging effect

in addition to the parallel wave-particle resonance.

Therefore, the impurity is expected to have a larger thermal

diffusivity comparing to the thermal ions.

VIII. SUMMARY

We have implemented a new numerical scheme in the

GTC code to solve multiple-species gyrokinetic Poisson equa-

tion and have extended the validity range of the gyrokinetic

Poisson solver and the zonal field solver in the GTC with impu-

rity ions from the long wavelength k?qth;i � k?qth;z 	 1 to the

short wavelength k?qth;i � k?qth;z � 1. For the Poisson solver,

we have implemented an interface to calculate the 4-point aver-

aging matrix for arbitrary particle species. The total matrix for

the linear Poisson equation is the summation of each individual

species matrix. The benchmark of the ITG with impurity ions

between GTC and HD7 shows the validity of this scheme. As

for the zonal flow solver, we replace the conventional integra-

tion method with a new matrix method based on the Padè

approximation so that we can incorporate the impurity effect

conveniently and accurately. In the case where only thermal

ions are included, we have demonstrated the equivalence of the

matrix method and the integration method. The new zonal field

solver is further verified by calculating correctly the residual

zonal flow level predicted by the asymptotic theory when the

impurity ions are included. The comparison of nonlinear simu-

lations with and without impurity shows that the impurity ions

can decrease the thermal ion heat diffusivity, which is consis-

tent with the current experimental observation1–5 and shows

that the impurities can help improve the heat confinement of

tokamaks. The change in heat diffusivity is a consequence of

the impurity effect on the linear instability and zonal flow

response. For the cyclone parameters, the residual zonal flow

becomes lower when impurity ions such as 20% C6þ are

included, which leads to less regulation on the turbulence and a

higher radial transport. Meanwhile, when the carbon impurities

are included, the decrease in the linear growth rate results in a

decrease in nonlinear saturation level for the ITG turbulence.

Given the final decreasing in the heat diffusivity, we can con-

clude that the impurity effect on the linear instability rather

than the zonal flow response is the dominant factor to affect the

ITG turbulent transport. In addition, our simulation also pro-

vides a solid proof that the updated GTC is able to simulate the

impurity turbulent transport with verifications on the linear ITG

instability and zonal flow response, respectively.
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