
1 © 2017 IAEA, Vienna Printed in the UK

1. Introduction

Instabilities driven by energetic particle (EP) components are 
of interest for magnetic fusion concepts since they can lead 

to decreased heating efficiency, high heat fluxes on plasma-
facing components, and decreased ignition margins for 
reactor systems. Since 3D magnetic field perturbations will 
be present to some extent in all toroidal configurations, the 
analysis of EP instabilities in 3D systems is an important goal 
for fusion simulations. To address this, the GTC global gyro-
kinetic particle-in-cell (PIC) model [1] has been adapted to 
the VMEC 3D equilibrium model [2], and 3D effects included 
in the field solvers and particle push. Initial applications of 
this model have been made [3] to EP instabilities in several 
stellarators (LHD, W7-X) and pedestal turbulence in toka-
maks with 3D fields [4]. Other gyrokinetic models that have 
been developed for both stellarators and tokamaks include the 
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EUTERPE [5] and GENE [6] models. EUTERPE is a par-
ticle-based approach, while GENE is a continuum model that 
solves the 5D kinetic equations of all species. Additionally, 
the MEGA model [7] is a hybrid MHD-kinetic approach that 
couples a particle description for the fast ions with a full MHD 
model for the thermal plasma component. MEGA is appli-
cable to EP instabilities in both tokamaks and stellarators. 
Another hybrid model is FAR3D [8], which couples reduced 
MHD equations  for the thermal plasma with a Landau clo-
sure model for the fast ions and is designed for 3D systems. 
These models are all based to varying degrees on the gyrokin-
etic approach [9–12], which incorporates both the guiding 
center dynamics of particle trajectories and the effects arising 
from the finite helical Larmor orbits that center upon the 
guiding center trajectory. GTC solves the gyrokinetic equa-
tion using particle-based methods; the feasibility of the PIC 
method for gyrokinetics was initially demonstrated by W. E. 
Lee [13]. The specific gyrokinetic approach with adiabatic 
electrons, as described below, was formulated [14] to avoid 
high frequency modes and the time step limitation related to 
the electron Courant condition. The gyrokinetic orderings 
( ≪ω δ∼ Ω ∼⊥k k B B 1c 0/ / /∥ ) are applicable to most plasma 
components and regimes of interest for magnetic confinement 
systems. Gyrokinetics constitutes the most advanced first 
principles model that is also feasible to apply to global ener-
getic particle instabilities in magnetically confined plasmas. 
The gyrokinetic PIC method used by GTC couples particle 
stepping in fluctuating fields with self-consistent electro-
magnetic field solutions based on Poisson’s and Ampere’s 
laws (based on retaining the potential, φ, and parallel vector 
potential, A∥). For particle based gyrokinetic models, the small 
electron mass presents a numerical difficulty for simultane-
ously treating the dynamics of ions and electrons in simula-
tions. A fluid-kinetic electron model currently implemented 
in GTC overcomes this difficulty by expanding the electron 
drift kinetic equation  using the electron–ion mass ratio as 
a small parameter. The model accurately recovers low fre-
quency plasma dielectric responses and faithfully preserves 
linear and nonlinear wave-particle resonances. Maximum 
numerical efficiency is achieved by overcoming the electron 
Courant condition and suppressing tearing modes and high 
frequency modes, thus effectively suppressing electron noise. 
In GTC the parallel vector potential is separated into adiabatic 
and nonadiabatic components, similar to the mixed variables 
(symplectic/Hamiltonian) pullback transformation [15] used 
in EUTERPE to avoid the so-called ‘cancellation’ problem. 
GTC can address kinetic issues specific to 3D configurations, 
such as multiple trapping regions, particles that transition 
back and forth between trapped and passing, and orbit trajec-
tories that are more non-local than in similar axisymmetric 
tokamak systems.

In this paper the application of GTC for the linear anal-
ysis of energetic particle instabilities that have been observed 
in the LHD stellarator is demonstrated. A parameter survey 
indicates that Alfvén modes similar to those observed in LHD 
resonate with injected beam ions and are predicted to be 
unstable. Predicting the onset and effects of these instabilities 

is of significant importance due to their impact on heating 
efficiency, plasma-facing component heat loads, and pos-
sible diagnostic use. The importance of non-axisymmetric 
effects in all toroidal devices motivates the development of 
comprehensive new gyrokinetic simulation methods that can 
apply across the full range of symmetry-breaking perturba-
tion levels. The paper is organized as follows. In section 2, we 
describe the gyrokinetic model, the LHD profiles and equi-
libria that are used, and discuss the resonance conditions that 
allow the neutral beam ions to destabilize the shear Alfvén 
eigenmodes. Next in section 3, the gyrokinetic results are pre-
sented for both normal and non-monotonic shear discharges 
in LHD; these include variations of growth rates and real fre-
quencies with beam parameters, the relation of the frequen-
cies obtained with the shear Alfvén continuum gap structure, 
and the Alfvén mode structures. Finally, in section 4 the con-
clusions are presented.

2. Gyrokinetic model, LHD equilibria/profiles, and 
Alfvén resonance conditions

2.1. Description of the GTC gyrokinetic model

GTC is a global gyrokinetic, full torus, electromagnetic par-
ticle-in-cell model [16] based on Boozer magnetic coordinates 
[17]. Computational efficiency is gained by modifying these 
coordinates to approximately follow field lines. The applica-
bility of GTC to fast ion destabilized global Alfvénic instabili-
ties in tokamaks has been extensively demonstrated [18–20]. 
The implementation of GTC primarily used in this paper can 
be classified as a gyrokinetic model with adiabatic electrons. 
As will be described below, the energetic particle and thermal 
ion species are treated using gyrokinetics, while an adiabatic 
fluid description is used for the electrons. This includes most 
of the physics expected to be of importance for Alfvén insta-
bilities. Several tests have been made including the non-adia-
batic gyrokinetic electron terms for cases given in this paper 
and this leads to about a 10% reduction of growth rate due to 
electron Landau damping effects, but no significant change 
in real frequency or mode structure; however, including such 
effects increases the computational requirements and will 
be left for future research. The gyrokinetic equation  for the 
thermal and energetic ions (σ is the species index) is given 
below:
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where mσ, Zσ, Ωσ are the mass, charge number, and cyclo-
tron frequency of species σ, µ is the magnetic moment, b0 is 
the unit vector b0  =  B0/|B0|, and the E  ×  B and magnetic drift 
velocities are given as:

φ
=

×∇bc
B

vE
0

0
 (4)

= +v v v .d c g (5)

With the curvature and grad-B drifts given by

µ
=
Ω
∇× =

Ω
×∇

σ σ σ
b b

v

m
Bv v, .c d0 0

2

0
∥ (6)

In our model we exclude the compressional component of the 
magnetic field perturbation by assuming δB∥   =  0 and repre-
senting the perturbed magnetic field as:

/∥δ δ λ λ= = ∇× =⊥B B B A Bwith .0 0 (7)

In equations  (1)–(7) the perturbed electrostatic φ potential, 
magnetic fields (δB), and vector potentials A  ∥ are gyroaver-
aged quantities, evaluated at the gyrocenter’s position.

Equation (1) is solved by evolving δ=w f f0/  weights syn-
chronized with the particle trajectories using the following 
weight evolution equation.
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In our electromagnetic simulations we use the fluid-kinetic 
adiabatic electron model [16] based on the separation 
between adiabatic and non-adiabatic electron response. In 
this model the non-zonal component of parallel electric field 
in written as

δ δφ
δ

δφ= − ⋅ ∇ −
∂
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= − ⋅ ∇b bE

c
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t
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∥

 (9)

The effective potential δφeff in the lowest adiabatic order
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Here we have used the Clebsch representation of the magnetic 
field δ ψ δψ α δα= + = ∇ + ×∇ +⊥B B B0 ( ) ( ), where ψ is 
the poloidal flux function, α  =  q(ψ)θ  −  ζ is a field line label, 
and θ, and ζ are the poloidal and toroidal angles of Boozer 
magnetic coordinates [17]. In equation (10) δne is obtained by 
solving the electron continuity equation
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Here the diamagnetic velocity and adiabatic perturbed pres-
sures are given by:
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The electron current is calculated from the Amperé’s law

δ
π

δ δ= ∇ +⊥n e u
c

A n Z u
4

.0 e
2

0 i i∥ ∥ ∥ (15)

The perturbed electrostatic potential is calculated from the 
gyrokinetic Poisson’s equation [21]

Figure 1. (a) 3D magnetic field variation on outer LHD flux surface, (b) normal and non-monotonic rotational transform profiles used for 
the simulations of this paper.
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Where δn is the perturbed gyrocenter’s density and δφ∼ is the 
second-gyroaveraged potential defined as

( ) ( )∫δφ δ ρ δφ= + −∼
σ
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X x Xd .3 0
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The perturbed magnetic field potential functions are obtained 
from Faraday’s law

δ
δφ

∂
∂
= ⋅ ∇b

A

t
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∥
 (18)

δψ δφ
α

∂
∂
= −

∂
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c .ind (19)

Where δφ δφ δφ= −ind eff . These equations  (1)–(19) form a 
closed nonlinear system to lowest order in the electron–ion 
mass expansion. The electron non-adiabatic terms and kinetic 
equation have been presented in [16] and will not be given 
here since, as mentioned above, the calculations of this paper 
are based on the adiabatic fluid model for the electrons.

In order to test the use of this model for stellarators, param-
eters are chosen to approximately match an LHD regime 
where Alfvénic activity was observed [22], although some 

simplifications have been made in the profiles. Specifically, the 
thermal ion density, ion temperature, and electron temper ature 
profiles are taken as constant in order to null out the drives 
for other instabilities caused by core density and temper ature 
gradients. The electron density profile is determined from the 
quasi-neutrality condition ne  =  nion  +  nfast-ion for the three 
species (electrons, ions, fast ions) included in the calculation. 
The fast ions and thermal ions are treated using gyrokinetics, 

Figure 2. Magnetic flux surface shapes for the normal shear LHD equilibrium as the toroidal angle is varied within a field period. The 
figures are made at toroidal angles (in degrees) of: (a) 0, (b) 9, (c) 18, and (d) 27.

Figure 3. Centrally flattened and peaked fast ion profiles used for 
the stability calculations.

Nucl. Fusion 57 (2017) 086018
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while the electrons are incorporated using an adiabatic fluid 
model [16]. The LHD major radius is 3.7 m; the magnetic 
field on axis is 0.62 T; ion and electron temperatures are 
1 keV; the central electron density is 0.884  ×  1013 cm−3; the 
plasma and beam species were hydrogen. The fast ion comp-
onent is model led as a Maxwellian distribution with a constant 
temper ature versus flux surface. GTC also includes options 
for slowing-down models of beam distributions; these will be 
considered in future research on EP instabilities in stellarators. 
The computational parameters for these calculations were: 60 

radial grid points, 128 toroidal grid points, 200 poloidal grid 
points, 40 particles per cell for ions and fast ions, 20 parti-
cles per cell for electrons, uniform marker temperatures, and 
4-point gyro-orbit stencils for ions and fast ions. The time 
step for LHD is limited to about 1/10 of that for a similar 
axisymmetric system. These resolution and time step limits 
for 3D systems lead to significant computational requirements 
and currently limit the extent of parameter/profile surveys. 
Another modelling issue is that stellarators generally tend to 
have higher fast ion losses through the last closed flux surface 

Figure 4. LHD fast ion phase space resonance locations for n  =  1, m  =  1, 60 kHz Alfvén wave, with slices taken at fixed radial flux 
location r / a   =  0.77 (left) and fixed fast ion energy E  =  100 keV (right).

Figure 5. Typical time evolution of (a) real part of the potential and (b) absolute value of potential for an unstable n  =  1 TAE  
instability in LHD.

Figure 6. Evolution of rms averaged potential versus radial location and time for a TAE instability in LHD for toroidal mode numbers 
(a) n  =1 and (b) n  =  2.

Nucl. Fusion 57 (2017) 086018
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than tokamaks; several methods have been tested in the simu-
lations for taking these escaping fast ions into account. For 
the results given in this paper, as ions escape through the last 
surface, their δf weights are set to zero. For the LHD cases 
given in this paper, about 40% of the initial fast ion markers 
and 7% of the thermal ion markers are lost through either the 
outer or inner radial boundaries. These leave the simulation 
domain at early times and do not present an obvious limitation 
to the simulation time. They do, however, reduce the marker 
resolution near the boundary regions, and reduce numerical 
efficiency by the retention of markers that do not contribute. 
Resolution has been tested in a few cases by increasing the 
initial particles per cell up to 100 without significant changes 
in the results, indicating particle counts are adequate for the 
linear analysis presented in this paper. Techniques that reinsert 
escaping ions back at another location at the same magnetic 
field value and such that they drift back into the simulation 
domain are under development. The calculations reported 
here are based on version 0706 of GTC. The primary changes 
from versions used in the earlier applications of this model 
to stellarators are the use of a Gaussian drop-off in the fields 
for the edge and magnetic axis boundary conditions instead 
of a linear extrapolation, and the zero weight/no-reinsertion 
method described above for treating escaping fast ions.

In order to reduce noise levels and target specific insta-
bilities, a Fourier mode filter is used. The filter takes effect 
between the field solve and particle steps and involves a fast 
Fourier transform of the field data, followed by a nulling out 
of components not included in the filter, and then an inverse 
fast Fourier transform of the fields before they are passed to 
the particle trajectory step. For simplicity, the calculations 
given in this paper are based on one toroidal mode with 8 
poloidal modes for the filter. Specifically, for n  =  1, m  =  1–8 
are used; for n  =  2, m  =  1–8 are used, etc. Previous calcul-
ations [3] have also included the toroidal field period coupled 
modes, e.g. n  =  1, n  =  −9, n  =  11, but have not indicated 
for LHD that significant changes in stability properties result 
from including the higher order modes, due to its relatively 
high aspect ratio ( R0 / a  ~ 6) and number of field periods 
(Nfp  =  10).

2.2. LHD test case

Two LHD cases are considered here. The first case is moti-
vated by an LHD discharge [22] where Alfvén activity was 
observed with toroidal modes numbers n  =  1 and 2. This case 
had β ~ 3%    , magnetic axis at R0  =  3.7 m, and an iota pro-
file with normal shear (increasing with radius). The shape of 
the LHD outer flux surface is shown in figure 1(a) with the 
colors indicating the magnetic field strength (red  =  higher, 
blue  =  lower). The second case has a non-monotonic 
(reversed) shear region in the iota profile near the center; such 
profiles have been produced in LHD [23] by using neutral 
beam current drive and appropriate plasma start-up program-
ming. The iota profiles for these cases are given in figure 1(b), 
with the reversed shear region indicated for the second profile. 

In figure 1(a) and in subsequent figures, the variable denoted 
as r a/  is the flux surface label equal to (ψ/ψedge)1/2, where 
ψ is the toroidal magnetic flux. The variation in flux surface 
shape as the toroidal angle is incremented within a field period 
is shown in figure 2. Here the direction of increasing toroidal 
angle is counter-clockwise (VMEC convention).

As there are no direct measurements of the fast ion den-
sity profile, a set of model profiles (normalized to the central 
electron density) as given in figure 3 are used. For the normal 
shear case, the fast ion profile model consists of a centrally 
flattened region with an exponentially decaying region on 
the outside (solid lines). This profile shape has been chosen 
specifically to select out the toroidal Alfvén eigenmodes that 
reside in the outer gaps, which are expected to be the ones 
that were observed [22]. For the non-monotonic shear case, a 
centrally peaked sequence of profiles have been used (dotted 
lines) that match onto the profiles used in the normal shear 
case on the outside. These are used to provide instability drive 
in the central reversed shear region of the plasma.

2.3. Alfvén resonance conditions

The resonance conditions for wave-particle interactions in 
stellarators depend on the frequency, mode number and rota-
tional transform profiles of the device through the relation 
[24]: ω µ ω ν ω− + + + =θ φm j n j N 0fp( ) ( ) , where m, n are 
the mode numbers of the instability, µ ν,   =  equilibrium mode 
numbers, Nfp  =  number of field periods (=10 for LHD), and 
j  =  0, ±1 is a coupling parameter. ωθ and ωφ are the poloidal/
toroidal drift frequencies, which may be calculated by fol-
lowing orbit trajectories in the 3D equilibrium fields.

This has been evaluated for the normal shear LHD equilib-
rium and parameters of the observed [22] Alfvén instabilities, 
leading to the results shown in figure 4. The resonance lines 
cross over most of the regions of phase space encountered by 
passing particles, confirming that tangentially injected beams 
should excite such instabilities.

Figure 7. Dependence of growth rate and real frequency on central 
fast ion density to electron density ratio for n  =  1 TAE instability in 
LHD for Tfast  =  100 keV.

Nucl. Fusion 57 (2017) 086018
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3. Gyrokinetic results for Alfvén instabilities in LHD

3.1. Normal shear discharge

The GTC gyrokinetic model starts with an initial field per-
turbation and integrates particle trajectories and electro-
magnetic fields (φ and A ) in time to follow the growth of EP 
driven Alfvén instabilities. The characteristic behaviour of an 
unstable Alfvén frequency mode is shown in figure 5, where 
perturbations oscillating in the Alfvén range frequency grow 
exponentially with all modes growing at close to the same 
rate. This example is for the normal shear case with n  =  1, 
Tfast  =  120 keV, nfast(0)/ne(0)  =  0.0185. The growth rate can 
be inferred from the slope of the curves in figure 5(b) and the 
frequency from a Fourier transform of the data in figure 5(a).

In some cases, especially for stellarators, several eigen-
modes can be present, each with unique frequencies and 
growth rates. This leads initially to a modulational waveform; 
however, if followed long enough, one mode dominates. For 
simplicity, this paper will restrict its analysis to the time inter-
vals where a single mode dominates.

Another useful diagnostic for displaying the instability 
growth and radial extent is shown in figure 6; here the RMS aver-
aged evolution of the potential is shown as a function of radius 
and time for the normal shear case with nfast(0)/ne(0)  =  0.0185. 

Figure 6(a) is for n  =  1, Tfast  =  120 keV while figure 6(b) is 
for n  =  2, Tfast  =  60 keV. As can be seen, the n  =  2 has a 
 narrower radial extent than the n  =  1 case.

As the fast ion density is increased, the Alfvén instability 
drive increases, leading to larger growth rates. An example of 
the variation of the growth rate and frequency with fast ion 
density for an n  =  1 TAE instability with Tfast  =  100 keV is 

Figure 9. Radial potential mode structures for different poloidal mode numbers for (a) n  =  1 and (b) n  =  2.

Figure 8. Dependence of n  =  1 (blue) and n  =  2 (red) (a) frequencies and (b) growth rates on fast ion energy.

Figure 10. Two-dimensional mode structures for the potential for 
(a) n  =  1 and (b) n  =  2.

Nucl. Fusion 57 (2017) 086018
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given in figure 7. Due to the increased simulation time needed 
to resolve smaller growth rates, it has not been feasible to 
determine the marginal stability threshold (growth rate  =  0) 
with this model.

In figure 8 the effects of varying the fast ion temperature 
are given for n  =  1 and n  =  2 at nfast(0)/ne(0)  =  0.022. In the 
LHD experiment, beams are injected at 180 keV. The energy 
moment of a slowing-down distribution with 180 keV birth 
energy is equal to that of the Maxwellian distribution used 
here at about 100 keV. While fast ion destabilized Alfvén 
modes involve wave-particle resonances, the gyrokinetic 
results show very broad peaks in the variation with beam 

energy. This is due to the fact that sideband couplings induce 
secondary resonances at other velocities, which can encom-
pass a wider range of energies. 3D stellarator equilibria offer 
significantly more mode coupling combinations (i.e. sideband 
couplings) than tokamaks. Also, since the gyrokinetic model 
includes all of the various trapped particle populations that are 
present in 3D systems, there are many other resonant frequen-
cies beyond the usual passing particle transit resonance that 
can be involved. The n  =  2 results show more structure than 
the n  =  1, with several maxima present, possibly due to inter-
actions with different particle resonances. Calculations were 
also carried out for n  =  3 and 4, but these mode families did 

Figure 11. Three-dimensional mode structures for the potential on inner surfaces for (a) n  =  1 at r a/   =  0.6 and (b) n  =  2 at 
r a/   =  0.72.

Figure 12. Alfvén gap structure for (a) n  =  1 and (b) n  =  2 with range of frequencies found in the stability calculations indicated by black 
dashed horizontal lines.

Figure 13. (a) Amplitude evolution for dominant two modes compared between normal and non-monotonic shear cases,  
(b) evolution of rms averaged potential for non-monotonic shear peaked nfast profile case.
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not show any secular growth for the time intervals that were 
simulated.

Figures 9–11 show the typical mode structures for the n  =  1 
and n  =  2 toroidal mode numbers. Here results are shown at 
Tfast  =  120 keV for n  =  1 and Tfast  =  60 keV for n  =  2. The 
n  =  1 is dominated by m  =  1, 2, while the n  =  2 is dominated 
by m  =  2, 3, 4. This characteristic is also present in the 2D 
(figure 8) and 3D (figure 9) plots. The flux surfaces used for 
the plots of figure  9 have been chosen near to the location 
where the dominant mode has its maximum.

The frequency ranges shown in figure 8(b) can be related 
to shear Alfvén continua obtained from the STELLGAP code 
[25] with acoustic coupling effects [26] included. Continuum 
plots for n  =  1 and n  =  2 are shown in figure  12. Here the 
slow-sound approximation [27] has been used to simplify the 
plots. The dashed black lines indicate the frequency ranges 

of the data in figure 8(b) and indicate that the unstable modes 
reside in the upper part of the m  =  1,2 gap for n  =  1 and the 
upper part of the m  =  2,3 gap for n  =  2. The frequencies 
obtained from these gyrokinetic calculations (f ~ 75–82 kHz 
for n  =  1) are somewhat higher than seen experimentally  
(f ~ 60–70 kHz for n  =  1). This is likely due to the use of a 
flat ion density profile in the gyrokinetic model calculations. 
Recently reported [7] reconstructions of the experimental pro-
files have indicated a hollow ion density profile with higher 
ion densities near the edge (leading to a lower Alfvén velocity) 
than assumed here.

3.3. Non-monotonic shear discharge

Non-monotonic (reversed) shear rotational transform profiles 
have been of significant interest in tokamaks. Such profiles 
lead to new branches of Alfvén modes (the RSAE or Reversed 
Shear Alfvén Eigenmode) that are typically dominated by a 
single poloidal mode number. The frequencies of the RSAE 
modes are more sensitive to the rotational transform profile 
and show more dynamic behaviour (upward/downward fre-
quency sweeps) in experiments than the TAE modes [28]. 
RSAEs have also been associated with higher levels of fast 
ion transport. Non-monotonic shear profiles were formed 
in LHD [23] using strong neutral beam current drive at low 
plasma densities. In this case the non-monotonic region refers 
to a region with negative shear in rotational transform, since 
the typical stellarator transform profile increases toward the 
plasma edge (positive shear). The tokamak non-monotonic 
shear profile has the opposite direction of shear; i.e. a positive 
shear region superimposed on a dominantly negative shear 
iota profile. When LHD was operated in this mode, n  =  1 and 
n  =  0 GAM (geodesic acoustic mode) activity was observed. 
The n  =  1 signal was characterized by frequency sweeping 
both upward and downward in frequency, followed by more 
steady-state frequency lines covering a range from 50 kHz 
up to 150 kHz. These modes have been analysed using the 
STELLGAP and AE3D models [29], resulting in stable eigen-
frequencies in the ranges seen experimentally.

Figure 14. (a) Radial eigenmode structrure, and (b) 2D eigenmode structure structure for non-monotonic shear peaked nfast profile case.

Figure 15. Shear Alfvén continuum gap structure for  
non-monotonic case with eigenmode frequency and radial 
extent indicated by dashed line.
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The GTC model has been applied to an LHD reversed 
shear profile case similar to those realized experimentally. In 
order to compare with the earlier normal shear results, the 
plasma profiles and parameters have been kept the same, 
except for the fast ion density profile. Both a peaked profile 
case (shown in figure 3) and an equivalent flat profile case 
have been used. The peaked profile was tested to determine 
if placing instability drive in the reversed shear region would 
produce an RSAE mode; the flat profile was used to allow 
direct  comparison with the normal shear result. For the equiv-
alent flattened profile, the n  =  1 growth rate is reduced from 
that of the normal shear case by about 28% (from 24.9 to 
17.9  ×  103 s−1) and the frequency is increased from 79.7 kHz 
to 115 kHz. The difference in the mode amplitude growth 
between the normal and reversed shear cases is shown in 
figure  13(a). In the case of the peaked fast ion profile, the 
dominant mode remains radially located outside the reversed 
shear region, as shown in the rms amplitude growth versus 
time and radius in figure 13(b).

A clearly defined RSAE localized around the minimum in 
the iota profile did not emerge in the simulation. However, 
there is a secondary component present around r a/  ~ 0.5, 
that can be seen in figures 13(b) and 14(a) and (b) and may be 
related to the reversed shear region. In the reversed shear case 
the primary mode is dominated by m  =  2, 3, 4 components for 
both the peaked and flattened profile cases.

The Alfvén continuum gap for this case is displayed in 
figure  15 with the frequency and approximate radial extent 
of the mode indicated by the dashed black line. The mode is 
predominantly related to the m  =  2, 3 gap near r a/   =  0.7. 
There should also be reversed shear Alfvén modes present 
near r a/  ~ 0.4 above the m  =  3 and under the m  =  4 con-
tinuum lines. Finding appropriate fast ion profiles and condi-
tions to excite these modes will be the topic of future research.

4. Summary

The gyrokinetic GTC model has been adapted to general 3D 
configurations that can include stellarators, tokamaks with 3D 
effects, and reversed field pinch helical states. To demonstrate 
this capability, it is applied here to the LHD stellarator, looking 
specifically at a low-field, low density regime where Alfvénic 
activity was observed [22]. Unstable modes that reside near 
the upper frequencies of the Alfvén gaps are found for n  =  1 
and 2, but not for n  =  3 or 4. Phase space resonance analysis 
also indicates that tangentially injected beam ions should 
readily couple to Alfvén modes in the observed frequency 
ranges. The n  =  1 and 2 mode structures have a global char-
acteristic and may be expected to impact fast ion confinement 
and heating efficiency. The evolution of these modes in some 
cases shows modulational effects related to multiple com-
peting Alfvén instabilities at separate frequencies. A second 
LHD application described here is to regimes with non-mono-
tonic shear rotational transform profiles. When compared for 
similar parameters and plasma profiles, the non-monotonic 
profile results in about a 28% reduction in the n  =  1 growth 
rate. The dominant mode remains a TAE, but a subdominant 

coupling to the reversed shear region is apparent in the eigen-
functions. The GTC model is a comprehensive first principles 
electromagnetic gyrokinetic PIC method, and can include 
most of the relevant growth and damping effects expected to 
be of importance for these instabilities. This model can also 
provide a calibration reference for reduced models of these 
instabilities. The calculations presented here demonstrate its 
increasing usefulness for the analysis of Alfvénic instabilities 
in 3D systems. Future work with this model will add more 
realism and investigate the nonlinear consequences of these 
instabilities. For example, experimentally measured profiles 
for the thermal ion/electron temperature and density will be 
included; slowing-down beam ions distributions can be used 
instead of Maxwellian; fast ion density profiles derived from 
beam deposition models can be factored in; the next order 
(non-adiabatic) electron kinetic terms will be included; larger 
mode filter sets can be used (must be accompanied with 
a higher poloidal grid resolution); and particle reinsertion 
methods will be developed for 3D systems.
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