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The first linear global electromagnetic gyrokinetic particle simulation on the excitation of toroidicity
induced Alfvén eigenmode �TAE� by energetic particles is reported. It is shown that the long
wavelength magnetohydrodynamic instabilities can be studied by the gyrokinetic particle
simulation. With an increase in the energetic particle pressure, the TAE frequency moves down into
the lower continuum together with an increase in the linear growth rate. © 2009 American Institute
of Physics. �DOI: 10.1063/1.3088028�

Toroidicity induced Alfvén eigenmode1–3 �TAE� can play
important roles in burning plasmas. The TAE modes can be
excited when energetic particles, for example, fusion born
alpha particles, resonate with the phase velocity of the shear
Alfvén wave which resides within the frequency gap of the
Alfvén continuum.

Shear Alfvén wave oscillations, continuum damping, and
the appearance of the frequency gap in toroidal geometries
by gyrokinetic particle simulation have been recently
reported.4 The simulation of Ref. 4 is demonstrated in the
long wavelength magnetohydrodynamic �MHD� like limit in
the absence of kinetic ions. In this letter, taking exactly the
same parameters3,4 but adding the energetic ion particles, the
first linear particle simulation on the excitation of the TAE
modes is reported. The simulation is done without employing
MHD equation. The simulation is not the conventional
gyrokinetic-MHD hybrid ones,5–10 where the kinetic ions en-
ter the system through the stress tensor. The setting of the
simulation is kept as faithful as possible to Refs. 3 and 4 to
see an explicit connection with our previous studies.4

A simplified linearized set of equations is employed11 for
the numerical simulation which is reduced from the electron-
fluid ion-kinetic hybrid gyrokinetic model.12–15 The equa-
tions of Ref. 4 are normalized by the ion Larmor radius �at
the electron temperature� for the length, the ion cyclotron
frequency for time, and the electron temperature for the elec-
trostatic potential, and the magnetic field strength at the mag-
netic axis, B0. The set of the equations are the electron con-
tinuity equation

��ne

�t
= − ���u�e �1�

��ne is the fluid electron density and �u�e is parallel electron
velocity�, the inverse of Faraday’s law

�A�

�t
= ����eff − �� �2�

�A� is the vector potential, � is the electrostatic potential, and
�eff is the effective potential representing the total parallel

electric field�, the gyrokinetic Poisson equation16

� − �̃ = �n̄� − �ne �3�

��n̄� is the gyroaveraged energetic particle density, �̃ is the
second gyrophase averaged electrostatic potential16�, the
lowest order adiabatic relation

�eff = �ne, �4�

and the inverse of Ampere’s law

�u�e = �e
−1��

2 A� + �u��. �5�

The parallel velocity of the energetic particles is given by
�u��. Here �e= �cs /vA�2 where cs is the sound velocity and vA

is the Alfvén velocity. As we can see in Eq. �2�, we impose
�tA� to be in a potential form ����eff−��. In other words, the
k� =0 component of the inductive parallel electric field is re-
moved �here, k� is the wave vector parallel to the equilibrium
magnetic field� and thus the dynamics related to the colli-
sionless magnetic reconnection are discarded in the current
model. All the variables in Eqs. �1�–�5� are the normalized
ones. The gradient operators �� and �� are those in the
direction perpendicular and parallel to the equilibrium mag-
netic field.

By coupling Eqs. �1�–�5�, the shear Alfvén wave disper-
sion relation in the toroidal geometry, Eq. �2� of Ref. 3 can
be obtained. Figure 1 shows the shear Alfvén wave fre-
quency as a function of the radial coordinate r �a is the minor
radius�, which is equivalent to Fig. 1 of Ref. 3. Due to the
1 /R variation of the toroidal magnetic field �R is the major
radius�, the cylindrical Alfvén continuum �dashed lines�
breaks up and the frequency gap �or the frequency forbidden
band� appears within the range of 0.299�� /�A�0.389.
Here, �A=vA /q0R0 is the Alfvén frequency at the magnetic
axis �q0 is the safety factor and R0 is the major radius at the
magnetic axis, respectively�.

Equations �1�–�5� are employed �with the �n̄� and �u��

terms turned off� in the simulation of Fig. 5 of Ref. 4. On top
of Eqs. �1�–�5� we add kinetic ions. The guiding center equa-
tion and the �f gyrokinetic equation �the weight equation�
�Ref. 17� are solved for the kinetic energetic particle ions
�we neglect thermal kinetic ions, however�. Taking the per-
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turbed distribution function �f�, the energetic particle den-
sity in Eq. �3� is given by

�n̄� = r�� �f�d3v �6�

and the parallel velocity of the energetic particles in Eq. �5�
is given by

�u�� = r�� v��f�d3v , �7�

where �d3v is an average over the velocity space. Note that
in the simulation, we control the perturbed density of the
energetic particles by multiplying a factor r� �r��1� which
is proportional to the equilibrium energetic particle density.
As we discuss below, r� is proportional to the pressure �the
beta value� of the energetic particles. The energetic ion par-
ticles are provided with the Maxwellian distribution function
f0��exp �−v�

2 /2v�
2� in the velocity space �thus �f0� /�v� is

always negative�.18 The thermal velocity of the Maxwellian
distribution function is of the order of Alfvén speed, and thus
there exist finite numbers of resonating energetic particles
within the frequency gap.

The particles that resonate with the shear Alfvén wave
with the phase velocity � /k� can destabilize the TAE mode,
when the mode frequency � is within the frequency gap �we
choose � /�A=0.344 in the middle of the gap in Fig. 1�,
and when the parallel wave vector k� = �m−nq� /qR satisfies
k� =−k�m=k�m+1 at q= �2m+1� /2n. Here, m �n� stands for the
poloidal �toroidal� mode number. We take m=1, m+1=2,

and n=1 which is equivalent to m=−2, m+1=−1, and
n=−1 of Ref. 3. The geometrical parameters used for the
simulation are the same as in Refs. 3 and 4 �for example, the
inverse aspect ratio of 0.375 and a parabolic safety factor q�.
The major radius is given by R=46.6 cm as well �after con-
vincing the TAE excitation in the originally published
setting,4 we move on to a parameter survey in a larger size
plasma�. From the � and the k� values chosen above, we
provide the Maxwellian distribution with v�=� /k� =10.32cs.
The mass and the charge of the energetic particles are that of
the hydrogen ion. In the specific simulation below, we set
�e=0.01, and the constant density gradient �n=−R�1 /n��
	�dn� /dr�=8.0. Here, n� represents the equilibrium density
of the energetic particles. The temperature gradient
parameters4 are set to be zero. In Eqs. �6� and �7�, r�=0.15 is
taken for Figs. 2 and 3.

The simulation is conducted by an electromagnetic
extension4 of the GTC code19–21 with a noniterative field
solver.22,23 With the additional energetic particle drive, the
TAE mode is excited. A linear eigenmode �contour plot� of
the TAE instability is shown in Fig. 2. Note that the contour
plots are not up-down symmetric.24

The frequency spectrum of the TAE instability is shown
in Fig. 3. The global mode frequency �� /�A=−0.36� found
within the gap �and not on the gap boundaries as in Ref. 4�25

is a clear evidence of the TAE excitation. The linear growth
rate of the TAE instability is given by 
 /�A=0.0215 �and
thus �
 /��=6.0%� for both the m=1 and m=2 mode.

Figure 4 shows the linear TAE growth rates �divided by
the real frequency� versus the multiplication factor r�. Com-
pared to the calculations in Figs. 2 and 3, a twice larger
plasma size is taken for Fig. 4 �the Larmor radius of the
energetic particles in Figs. 2 and 3 is 15% of the minor
radius while 7.5% in Fig. 4�. We see a monotonic increase in
the growth rate as the energetic particle population increase
�and thus the effective beta value of the energetic particles,
�� increases; at �e=0.01, a simple estimate will give ��

=4�n�T� /B0
2	r�. Here T� is the energetic particle tempera-

ture�. On the other hand, the real frequency of the mode
decreases �approximately 15% of a reduction in the real fre-
quency� as r� �or ��� increases and crosses the lower gap
boundary26 �but not the upper gap boundary� which is sug-
gested by the analysis in Ref. 27. �Resonant TAE, which
emphasizes the resonance between the mode frequency and
the magnetic drift frequency of the energetic particles.�27 As
a reference, the energetic particle mode �EPM�28 refers to the
heating of the continuum based on the notion that the ener-
getic particle drive exceeds the continuum damping and pre-
dicts the appearance of the mode frequency both in the upper
and the lower continuum. The square plots in Fig. 4 represent
the analysis of the TAE growth rate in a large aspect ratio
tokamak from Ref. 3 �the simulation results and the analysis
compare favorably at higher ��. It will be interesting to fur-
ther investigate the regime where the magnitudes of the lin-
ear growth rate and the real frequency become comparable9�.

We note that instability growth was already minimal at
r�=0.025 �with the specific simulation parameters we em-
ployed in Fig. 4�, and we did not survey below r��0.025 in
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FIG. 1. Shear Alfvén frequency as a function of the radial location. The
dashed curves are the continuum frequencies for the cylindrical limit, for
m=1 and m=2 modes. The solid lines are for the continuum frequency with
the toroidal geometry effect. The lower �upper� boundary of the upper
�lower� curve is at � /�A=0.389 �� /�A=0.299�. Correspondingly the fre-
quency gap �the forbidden frequency range� appears within the range of
0.299�� /�A�0.389. The figure is produced by employing Eq. �8� of Ref.
3, which corresponds to Fig. 1 of Ref. 3.
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this work. The TAE mode in its nature should not have an
instability threshold. The latter onset feature needs to be in-
vestigated in detail to see the limitation of the initial value
approach �if any�. In Fig. 4, eight energetic particles per cell
are taken in the simulation. We plan to pursue the simulation
with much larger numbers of particles. We also would like to
remind that a simplified model Eqs. �1�–�5� is employed in
this letter �so as to primary focus on the excitation of TAE by
the additional energetic particles�.4 The radial extension of
the simulation domain is limited to 0.1�r /a�0.9 �see Fig.
2�. An inclusion of the magnetic axis can be crucial to de-
scribe the long wavelength global modes precisely.
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FIG. 4. Dependence of the real frequency �, and the linear growth rate 
 on
r� �and thus ���. For each data, eigenmode structures similar to Fig. 2 are
obtained. The squares represent the analytical TAE growth rate–real fre-
quency ratio in a large aspect ratio tokamak from Ref. 3. The frequency gap
boundaries are signified by the long dashed lines.

FIG. 2. �Color online� Linear eigenmodes �contour plots on a poloidal
plane� of TAE instability. �a� The electrostatic potential � at a toroidal angle
�=0. �b� The vector potential A� at a toroidal angle �=0.
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FIG. 3. �Color online� �a� The Fourier components of the electrostatic po-
tential � as a function of time. �b� The frequency spectrum obtained from
the time series of Fig. 3�a�.
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In summary, the first linear excitation of the low-n TAE
modes by the energetic particles in a global gyrokinetic par-
ticle simulation is reported.29 The work did not employ
MHD model �through closure relations�. With a completion
of the current global gyrokinetic simulation method, one can
investigate the onset and the saturation mechanism of the
TAE modes simultaneously without any restrictions on the
wavelength of the modes. Apparently, the advantage of initial
value approach is its application for nonlinear simulation. We
plan to report the analysis of energetic particles driven
high-n Alfvénic modes separately. Whether which mode
numbers are most unstable is a great interest to large toka-
mak burning plasma experiments.
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