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Various gyrokinetic simulations suggest that the kinetic ballooning mode (KBM) instability is

sensitive to the numerical implementation of equilibrium magnetic configuration in tokamaks. In

this work, the gyrokinetic code GTC is employed to investigate the KBM’s sensitivity to

equilibrium plasma profiles. An outward radial shift of the radial mode is found for the normal

magnetic shear case, but there is no shift if the shear is negative. The simulation results are

explained by a linear eigenmode theory. It is found that the observed phenomenon is an effect of

the parallel ion compressibility. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4997489]

I. INTRODUCTION

The ideal MHD ballooning mode (IBM) in tokamak

plasmas is one of the most thoroughly investigated MHD

instabilities. It imposes an upper limit for the maximum pres-

sure gradient in the first IBM stability regime and suggests

the existence of a second stability regime arising from the

Shafranov shift of the magnetic axis when the plasma pres-

sure gradient is sufficiently high. A closely related mode is

the kinetic ballooning mode (KBM), which includes impor-

tant kinetic modifications to the IBM, e.g., the diamagnetic

flow, finite Larmor radius effect, and wave particle reso-

nance. The KBM physics has been investigated for many

years1,2 and its physics is still not fully clear. Earlier efforts

have been focused on the low-beta, large-aspect-ratio s-a
equilibrium model,3 under the assumptions x� kjjvTi and

x� x�e, where x is the characteristic frequency of KBM,

kjj represents the parallel wave number, vTi is the ion thermal

speed, and x�e is the electron diamagnetic frequency.4

Subsequent works have included the effects of trapped elec-

trons, passing ions, parallel magnetic perturbation, and so

on. The stability of the KBM has been investigated in the

parameter regimes relevant to internal transport barriers

(ITB) with negative magnetic shear.5,6

Even after one decade of gyrokinetic simulation of

KBM,7–10 detailed understanding and verification between

different codes still remain challenging. Recently, the prop-

erties of the linear KBM predicted by different gyrokinetic

codes, such as GS2,11 GTC,7 GYRO,12 and GENE,13 have

been compared.14 It is realized that the linear KBM, in

contrast to the electrostatic modes such as ion temperature

gradient (ITG) mode and trapped electron mode (TEM), is

extremely sensitive to the equilibrium magnetic configura-

tions implemented in the different codes.14

In this work, we carry out the KBM simulations using

the GTC code. It is found that both linear growth rate and

real frequency depend on the width of the gradient profile,

i.e., effectively the simulation window implemented in the

code. In particular, the radial mode structure suffers an out-

ward shift in the normal magnetic shear (i.e., the shear

monotonically increases with r, or the poloidal flux wp) case,

but there is no shift in the reversed-shear case. We also pro-

pose an eigenmode theory that explains this shear-dependent

radial mode shift. The parallel ion compressibility is found

to be responsible for the radial mode shift observed in the

simulation.

In Sec. II, we carry out KBM simulations using the GTC

code and find the locality of the plasma profile which has a

strong effect on the linear KBM properties. In Sec. III, we

develop an eigenmode theory and numerically solve the eigen-

value problem to study the linear KBM physics. In Sec. IV, we

show that the parallel ion compressibility has a stabilizing

effect on the KBM for normal shear, which is responsible for

the radially outward shift of the KBM mode structure. In Sec.

V, we show that, depending on the magnetic shear, the parallel

ion compressibility can have quite different effects on the

KBM. In Sec. VI, the relationship between the magnetic shear

effect and the parallel ion compressibility effect is verified

by the GTC simulation. Section VII gives the conclusion and

discussion.

II. PLASMA PROFILE EFFECT ON THE KBM

As mentioned, the KBM is extremely sensitive to the

numerical implementation of the equilibrium magnetic con-

figuration.14 Here, we use the GTC code15–19 to study the

KBM sensitivity to the numerical implementation of the

plasma density and temperature profiles. The GTC code is a

global particle-in-cell (PIC) gyrokinetic code which can

directly import experimental magnetic equilibrium and pro-

files as the simulation setup. In order to investigate the

numerical plasma profile effect on the KBM instability, ana-

lytical flat gradient profiles for the density and temperature

have been used in the simulation as a reference local model

for the plasma profile, as shown in Figs. 2(b)–2(d) by the

dashed lines. The q profile used in the GTC simulations isa)Author to whom correspondence should be addressed: yxiao@zju.edu.cn
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, where q is the safety fac-

tor, wp is the poloidal flux, ww is the poloidal flux on the

wall, q1 ¼ 0:81, q2 ¼ 1:1, and q3 ¼ 1:0. The local (flat gra-

dient) plasma density and temperature profiles are generally

used by the global simulations for verifying the correspond-

ing local theory or the simulation results from the local

codes. In the GTC simulation, the temperature and density

gradient profiles are assumed to be flat in the central region

of the radial domain, namely, L�1
n ; L�1

T / exp � r�0:5a
rw

� �6
� �

,

where a is the minor radius, rw represents the width of

the flat region for the gradients, and L�1
n ¼ �d ln n=dr, L�1

T

¼ �d ln T=dr are the scale lengths of density and tempera-

ture, respectively.

Figure 1 shows the simulation results for three typical

toroidal mode numbers, and the simulation parameters

evaluated at r ¼ a=2 are b ¼ 2:0%, e ¼ a=R ¼ 0:35, khqs ¼
0:2 and q ¼ 1:4, s ¼ 0:81, a ¼ 0:73, R=Ln ¼ 2:2,

R=LT ¼ 7:0, where s ¼ dlnq=dlnr is the magnetic shear, b ¼
8pnTe

B2 is the ratio of the plasma pressure of electron to the

magnetic pressure, a ¼ 2q2R
Ln

b 1þ gð Þ, where g ¼ Ln=LT is

the ratio of the temperature gradient to the density gradient.

One can clearly see that the KBM linear frequency and the

growth rate are sensitive to the width of the local profile rw.

In Fig. 1, the point rw ¼ 0 corresponds to a global analytic

profile for the temperature and density, as shown by the

dashed line in Fig. 2(a), where only the peak gradient at r ¼
a=2 is the same as the other three local profiles. Both linear

frequency and the growth rate in Fig. 1 are measured at

r ¼ 0:5a. The linear frequency depends weakly on the width

of the local profile rw. The linear growth rate depends much

more strongly on rw. It is also found that the dependence is

more pronounced for smaller toroidal mode numbers, as

shown in Fig. 1(b).

Figure 2 shows the GTC simulation results for the radial

mode structure for different widths of the temperature and

density gradient profiles. The toroidal mode number is

n ¼ 10, and the peak positions correspond to that of the

mode rational surfaces for different poloidal mode numbers.

The simulation range of the poloidal magnetic flux wp is

0:02ww; 0:88wwð Þ, where ww is the magnetic flux at the wall,

and the homogeneous Dirichlet boundary conditions is used

for perturbed quantities in the simulation. Since the radial

width of each individual mode is much narrower than the

radial range of the simulation, the boundary effect is negligi-

bly small. We can see that the radial mode structure moves

FIG. 2. Radial mode structure of KBM

with mode number n¼ 10 and different

mode numbers m (blue solid curves)

for different density/temperature gradi-

ent profiles: (a) global profile, (b)

rw ¼ 0:2a, (c) rw ¼ 0:3a, and (d)

rw ¼ 0:4a.

FIG. 1. The frequency and the growth rate of n ¼ 10; 15; 20 modes as a

function of the profile width rw=a (from the GTC simulation).
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outward as the gradient width rw increases. It is therefore of

interest to find out the cause of this outward shift.

III. LINEAR BALLOONING THEORY WITH PARALLEL
ION COMPRESSIBILITY

In this section, we give the theoretical basis for parallel

ion compressibility, and the physics explanation of the effect

of parallel ion compressibility is provided in Sec. IV. Using

the ballooning representation and s-a model,3 we can write

the normalized eigenmode equation for the KBM4,6

@

@h
1þ sh� a sin hð Þ2
h i

@dW
@h
þ a

4en 1þ gð Þ

� X� 1ð Þ X� f hð Þ
� �

þ gef hð Þ � X� 1ð Þ2

1þ s� sI

"

þs
@

@h
H
@

@h

#
dW ¼ 0; (1)

where the parallel ion compressibility is retained in the last

term, related to the lowest order of the parallel ion current, h
is the ballooning angle with respect to the field line, q is the

safety factor, s ¼ Te=Ti is the electron/ion temperature ratio,

en ¼ Ln=R is the inverse of the normalized density gradient,

ge ¼ d ln Te=d ln ne and X ¼ x=x�e is the mode frequency

normalized by the electron diamagnetic frequency x�e
¼ khcTe

eBLn
, and dW is the perturbed field which is an even func-

tion of h. The functions f hð Þ, I, and H are defined by

f hð Þ ¼ 2en cos hþ sh� a sin hð Þ sin h½ �; (2)

I ¼ x� x̂�i
x� x̂di

FiJ
2
0 Kið Þ

� 	
v

; (3)

H ¼ 1

x2
�eq2R2

x� x̂�i
x� x̂di

v2
jjFiJ

2
0 Kið Þ

� 	
v

; (4)

where Ki, x̂�i, and x̂di can be expressed as

Ki ¼
ffiffiffi
2
p

khqi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sh� a sin hð Þ2

q
v?=vT ; (5)

x̂�i ¼ �
x�e
s

1þ gi

miv
2
jj þ miv

2
?

2Ti
� 3

2

 !" #
; (6)

x̂di ¼ �
x�e
s

f hð Þ
miv

2
jj

2Ti
þ miv

2
?

4Ti

 !
: (7)

Here, Fi is the Maxwellian distribution function for the ions,

vT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti=mi

p
is the ion thermal velocity, qi ¼ vT

xci
¼ vT mic

eB is

the Larmor radius of ion, J0 is the zeroth order Bessel func-

tion, and h� � �iv denotes the velocity space integral. For sim-

plicity, we assume s ¼ Te=Ti ¼ 1 and g ¼ ge ¼ gi. Note that

the parallel ion compressibility, essentially given by the term

containing H in Eq. (1), is inversely proportional to q2.

To solve Eq. (1), a numerical nonlinear eigenvalue code

is developed to find the eigenvalue, i.e., the normalized fre-

quency X. The perturbed field dW is then represented by a

discrete vector, and thus Eq. (1) could be transformed to a

matrix form. The resulting discrete nonlinear eigenmode

equation can be solved iteratively. The integral I hð Þ and

H hð Þ are related to the standard plasma dispersion relation

function

Z fð Þ ¼
ð

exp �z2ð Þ
z� f

dz; (8)

which can be expressed in terms of the complex error func-

tion, and the complex error function can be evaluated accu-

rately and rapidly by using the basis function method and the

Fast Fourier Transformation (FFT).20,21

IV. EFFECT OF PARALLEL ION COMPRESSIBILITY

In order to show the effect of the parallel ion compress-

ibility, we use the analytic theory to compare the KBM

results for with or without the parallel ion compressibility.

Figure 3 shows the resulting growth rates and real frequen-

cies, calculated by the analytic theory illustrated in Section

III, normalized by the electron diamagnetic frequency

x�e for: s ¼ 0:4, b0 ¼ khqið Þ2 ¼ 0:01, g ¼ 2, q ¼ 2, and en

¼ 0:175. Figure 3 also shows that the parallel ion compress-

ibility provides a stabilizing effect that reduces the growth

rate of the KBM in the IBM (ideal MHD ballooning mode)

unstable regime.

Figure 4 shows the eigenfunction along the parallel

direction calculated by analytic theory for the cases with or

without the parallel ion compressibility, where only half the

eigenfunction is shown since the mode structures are even in

h. The value of the perturbed field at h ¼ 0 is set to unity for

simplicity, and the simulation parameters are the same as in

Fig. 3. In the MHD unstable region, the eigenfunction is con-

fined around the outside middle plane with h ¼ 0. We also

note that the most unstable region is around that with the bad

curvature, or h ¼ 0; 2p; 4p;…, and the least unstable region

is around that with the good curvature, or h ¼ p; 3p;…,

which is consistent with the ballooning assumption of the

theory. The parallel ion compressibility can broaden the

mode structure, i.e., more perturbed field energy moves

away from the most unstable ballooning angles, which

means the perturbed energy moves away from the bad curva-

ture region, thereby leading to stabilization by the parallel

ion compressibility.

FIG. 3. The frequency and growth rate vs. a for cases with or without the

parallel ion compressibility (red dashed and the black solid curves, respec-

tively) and of the ideal MHD ballooning mode (blue dotted curve).
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As mentioned, the parallel ion compressibility term is

inversely proportional to the square of the safety factor and it

can stabilize the KBM. The safety factor profile used here

has normal shear. At larger radial position, the safety factor

q is larger, and the stabilization effect from the parallel ion

compressibility becomes weaker. Thus, the growth rate of

the linear eigenmode increases in the radially outward direc-

tion, which induces the outward shift of the radial mode

structure in Fig. 2.

In the GTC linear simulation, one particular toroidal

mode number n is selected for the stability analysis with

multiple poloidal modes coexisting. Therefore, the growth

rate at r ¼ 0:5a is enhanced by the coupling with the outside

poloidal mode which grows faster due to the less stabilizing

effect from the parallel ion compressibility. The smaller n

mode has a stronger poloidal mode coupling with the neigh-

boring mode. Thus, the dependence is more pronounced for

smaller toroidal mode numbers in Fig. 1(b).

V. MAGNETIC SHEAR EFFECT ON THE KBM

In Sec. IV, we have studied the effect of the parallel ion

compressibility under the normal shear. It has also been

found that the KBM will be unstable due to the interchange

drive when magnetic shear is small and pressure gradient is

sufficiently small.5 In this section, we examine the KBM

mode structure with reversed magnetic shear. The q profile

in our GTC simulation22 is a parabolic function of r, or

q rð Þ ¼ qmid þ c r=a� 0:5ð Þ2. So, the magnetic shear

increases monotonically with r and poloidal flux wp near

r ¼ a=2, where s ¼ 0 and q ¼ qmid at r ¼ a=2. The density

and temperature gradient profile are still the flat profile with

rw ¼ 0:3. The GTC simulation result is shown in Fig. 5, for

b ¼ 2:0%, a ¼ 0:73, khqs ¼ 0:2, n ¼ 10, and q ¼ 1:4,

R=Ln ¼ 2:2, R=LT ¼ 7:0 at r ¼ a=2, with the q profile given

by qmid ¼ 1:4 and c ¼ 4:0. Consistent with previous studies,6

the linear mode from the GTC simulation is mostly unstable

around r ¼ 0:5a, where the magnetic shear s is very small

and the growth rate is much larger than that in other radial

positions, as can be seen in Fig. 5.

Our eigenvalue solver can also be used to investigate the

magnetic shear effect on the KBM for cases with and without

the parallel ion compressibility. Figure 6 shows the result for

a ¼ 0:35, k2
hq

2
s ¼ 0:01, ge ¼ gi ¼ 2, Ln=R ¼ 0:175, and

q ¼ 2. Because the s-a model does not include average good

curvature effect, strictly it is not valid for zero shear; thus,

there is no result at s ¼ 0. It is found that the linear fre-

quency and the growth rate are strongly affected by the mag-

netic shear. When the parallel ion compressibility is ignored,

the growth rate increases rapidly with s when s < 0, and

decreases relatively slowly for s > 0. This result is consistent

with that from our GTC simulation in Fig. 5, where the radial

mode structure is restrained around the zero-shear point. The

growth rate of the unstable poloidal mode increases sharply

for s < 0, and decreases slowly for s > 0. We also note that

the stabilizing effect of the negative shear is consistent with

the results from the MHD energy principle.23,24

VI. EFFECT OF PARALLEL ION COMPRESSIBILITY
FOR DIFFERENT MAGNETIC SHEARS

In this section, we discuss the effect of parallel ion

compressibility for different magnetic shears. Figure 6 also

shows that in the positive shear region, the parallel ion com-

pressibility can provide stability for the KBM, but it does not

affect the linear frequency and the growth rate in the nega-

tive shear region. To verify this phenomenon, we consider

two different q profiles for our GTC simulation, which have

constant positive and negative shears in the central region of

the simulation domain. Setting q a
2

� �
¼ 1:4 and using the rela-

tionship s ¼ r
q

dq
dr, we can obtain the q profile from the mag-

netic shear profile s rð Þ:

FIG. 5. (a) Mode structure with n ¼ 10 in the poloidal plane and (b) the

radial mode structure for different mode numbers m obtained by the GTC

simulation for a reversed shear configuration.

FIG. 6. Dependence of the frequency and growth rate on the magnetic shear

s for with or without parallel ion compressibility.

FIG. 4. Comparison of eigenmode structure with or without parallel ion

compressibility in the ballooning space, with a ¼ 0:8.
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s rð Þ ¼

� smid

r2
l

r � rlð Þ2 þ smid 0 < r < rl

smid rl < r < rr
smax � smid

a� rrð Þ2
r � rrð Þ2 þ smid rr < r < a;

8>>>><
>>>>:

(9)

where smid is the constant magnetic shear in the central

region for simulating the local limit, rl < r < rr, with

rl þ rr ¼ a, and rr � rl ¼ rw indicates the width of local pro-

file, smax is the magnetic shear at r ¼ a position. The density

and temperature gradient profiles are still the local profile

used earlier. To show the parallel ion compressibility effects

with positive and negative shears, the GTC simulation is car-

ried out for smid ¼ 0:81 and smid ¼ �0:2, respectively, with

the other parameters in Sec. V unchanged.

As shown in the Figs. 7(c) and 7(d), the radial mode

structure stays centered at r ¼ a=2 for the negative shear

case, but it moves outward for the positive shear case. The

different behaviors of the KBM mode structure for different

magnetic shears are fully consistent with that predicted by

the theory given in the last section, namely, the parallel ion

compressibility provides stability for the KBM mode for

s > 0, and it does not affect the KBM stability when s < 0.

VII. CONCLUSION AND DISCUSSION

In this work, we have investigated the KBM instability

using the gyrokinetic simulation code GTC. We found that

the linear growth rate and frequency are affected by the width

of the local profile. The poloidal mode structure moves out-

ward in the radial direction for the normal magnetic shear,

whereas it does not move for the negative magnetic shear. A

linear eigen mode theory is proposed to explain this radial

shift of the KBM. It is found that the parallel ion compress-

ibility, ignored in the existing theories,4 affects the growth

rate differently for positive and negative shears. For positive

magnetic shear, it provides stability to the KBM and

decreases its growth rate. However, for negative magnetic

shear, it does not affect the growth rate at all. These theoreti-

cal results can be explained qualitatively by the GTC simula-

tion results. We also note that the theory used here to analyze

the KBM is a local one. To interpret the simulation results

more quantitatively, the next-order radial envelope analysis

should be invoked, which we leave for the future work.
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