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Abstract
Gyrokinetic simulations of long wavelength ion temperature gradient (ITG) turbulence in the
scrape-off layer (SOL) of a field-reversed configuration (FRC) find that zonal flows are
nonlinearly generated and are the dominant mechanism for the nonlinear saturation of the ITG
instability. After the ITG saturation, zonal flows remain undamped and gradually suppress the
turbulent transport to a very low level. In the simulations with collisions, collisional damping
gradually reduces zonal flow amplitude to a lower level, which allows finite ITG turbulence
intensity and ion heat transport in the SOL. The steady state turbulence intensity and ion heat
transport are found to be proportional to the collision frequency. This favorable scaling
suggests that minimizing collisions (e.g. increasing temperature, reducing impurity content,
etc) and preserving toroidal symmetry could improve plasma confinement in the FRC.

Keywords: zonal flow, field-reversed configuration, ITG mode, turbulent transport

(Some figures may appear in colour only in the online journal)

1. Introduction

A field-reversed configuration (FRC) is a prolate compact
toroidal with a purely poloidal magnetic field and consists
of two regions: a core region with closed field lines and a
scrape-off layer (SOL) region with open field lines [1]. As an
attractive fusion reactor concept [2], the FRC has been studied
extensively in experiment and theory. In particular, recent FRC
experiments at TAE Technologies Inc. have successfully sta-
bilized magnetohydrodynamic (MHD) instabilities by using
neutral beam injection, plasma gun, and edge biasing [3–6].
In these high-performance discharges, the plasma confinement
is in a steady state transport regime where external heating is

∗ Authors to whom any correspondence should be addressed.

balanced by anomalous transport driven by microscopic fluc-
tuations. Therefore, understanding the turbulent transport is
critical to improving the plasma confinement in the FRC.

Doppler backscattering (DBS) measurements show that ion
scale wavenumbers dominate the density fluctuation spectrum
in the SOL, and that electron-to-ion scale fluctuations dom-
inate in the core where the ion scale turbulence is strongly
suppressed [7]. Consistent with these experimental observa-
tions, local linear gyrokinetic simulations using the gyroki-
netic toroidal code (GTC) [8] find that ion temperature gra-
dient (ITG) mode can be unstable in the SOL with a critical
pressure gradient comparable to the experimentally measured
threshold, but the ion-scale ITG mode is mostly stable in the
core [9–11]. Subsequent global nonlinear simulations using
the ANC code [12] find that linear ITG instability first grows
in the SOL, and then the turbulence spreads from the SOL to
the core, resulting in a steady state spectrum characterized by
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lower amplitude core fluctuations and larger SOL fluctuations
consistent with experimental measurements [13]. Finally, non-
linear simulations using the GTC-X code [14] find that equilib-
rium E × B flow shear can reduce the ITG instability growth
rate, saturation amplitude, and ion heat transport in the SOL
by reducing both the turbulence intensity and eddy size [15].
The simulation results suggest that maximizing the radial shear
of the Doppler-shifted local mode frequency can effectively
suppress the ITG instability and associated transport in the
FRC SOL.

Besides the equilibrium E × B flows, zonal flows [16, 17]
generated by the microturbulence have been found to greatly
suppress the microturbulence and change the transport scal-
ing in the tokamak [8, 18–20]. Zonal flow dynamics in
the FRC and tokamak are expected to have similarities and
differences since there is no toroidal magnetic field in the FRC.
Regarding the similarities, zonal flows can be generated by
Reynolds stress of the microturbulence, suppress the micro-
turbulence, and subject to the damping by a tertiary instability
in both the FRC and tokamak. Zonal flow amplitude is usually
much higher than that of the long wavelength non-zonal modes
because the dielectric constant of the zonal modes is much
smaller since electrons do not respond to the zonal modes.
Regarding the differences, zonal flows are quickly damped to
a small residue by collisionless magnetic pumping effects in
the tokamak [21], a process that does not exist in the FRC.
Therefore, zonal flows can be expected to have a stronger effect
in suppressing the turbulence in the FRC. In particular, the
nonlinear upshift of the critical pressure gradient [18] could
be much more significant in the FRC, where zonal flows can
fully suppress the microturbulence near the linear instability
threshold. Furthermore, the collisional damping of zonal flows
is mainly due to the friction between trapped and passing par-
ticles in the tokamak (i.e. neoclassical effects) [22, 23], but
is only due to a weaker classical diffusion in the FRC where
the guiding center orbit width is zero. Nonetheless, collisional
damping due to classical diffusion is the only zonal flow damp-
ing mechanism near the linear instability threshold in the
FRC. Finally, the FRC has no magnetic shear and thus does
not have the linear toroidal coupling in the formation of the
driftwave eigenmode, which induces the coherent generation
of zonal flows by the modulational instability in the tokamak
[24].

In this work, we have extended the GTC-X simulations
[14, 15] to include the zonal flow effects on long wavelength
ITG turbulence in the FRC SOL. We have first implemented a
modified pitch-angle collision operator to model the classical
diffusion and verified the zonal flow damping in the gyroki-
netic simulation without the microturbulence. We have then
performed a series of nonlinear simulations of the ITG tur-
bulence in the SOL with various collision frequencies. In the
collisionless simulation, zonal flows are nonlinearly gener-
ated and are the dominant mechanism for the nonlinear sat-
uration of the ITG instability. After the ITG saturation, zonal
flows remain undamped because of the axisymmetric equilib-
rium and gradually suppress the turbulent transport to a very
low level. In the simulations with collisions, collisional damp-
ing gradually reduces zonal flow amplitude to a lower level,

which allows finite ITG turbulence intensity and ion heat trans-
port in the SOL. The steady state turbulence intensity and ion
heat transport are found to be proportional to the collision
frequency.

Our simulations results have important implications on the
turbulent transport in the FRC SOL. Since collision frequency
decreases at higher plasma temperature, zonal flows could be
enhanced and turbulent transport reduced as plasma tempera-
ture increases, which results in a favorable scaling of energy
confinement time with the plasma temperature. A similarly
favorable transport scaling has been experimentally observed
in the FRC experiments [5] and the NSTX spherical tokamak
[25]. Therefore, to improve plasma confinement in the FRC,
collisions should be minimized (e.g. higher temperature, lower
impurity content, etc) and breaking of the toroidal symmetry
(e.g. ripple fields, macroscopic MHD activities, etc) should be
avoided.

The paper is organized as follows. In section 2, the phys-
ical model is described and a model collision operator is
constructed. We verify the collision operator for classical dif-
fusion and zonal flow damping in section 3. In section 4, we
study zonal flow generation by ITG turbulence, turbulence
regulation by zonal flows, and collisional damping of zonal
flows and its effects on turbulent transport. The conclusion and
summary are given in section 5.

2. Simulation model

2.1. Gyrokinetic simulation model

The electrostatic gyrokinetic Vlasov–Poisson model [30] is
used in the current simulation of the FRC SOL, where the
gyrokinetic ordering is valid because of the low ion tem-
perature and the strong magnetic field. The ion dynamics is
described by gyrokinetic Vlasov equation in the 5D phase
space (X, v‖, μ),

∂ f
∂t

+ Ẋ
∂ f
∂X

+ v̇‖
∂ f
∂v‖

− C ( f ) = 0,

Ẋ = v‖b + vE + vd,

v̇‖ = − 1
mi

B∗

B∗
‖
·
(
Zi∇φ+ μ∇B

)
, (1)

where f , Zi and mi are ion gyrocenter distribution function,
charge, and mass, respectively. X is gyrocenter position, μ
magnetic moment, and v‖ parallel velocity along the magnetic
field line. B is the equilibrium magnetic field, and b = B/B
is the unit vector. B∗ = B +

(
Bv‖/Ωc

)
∇× b, where Ωc is

ion cyclotron frequency, and B∗
‖ = B∗ · b. C( f ) is the colli-

sion operator to describe collisions between ions and impuri-
ties. φ is gyroaveraged electrostatic potential at the gyrocenter
position, φ(X) = 1/2π

∫
dα

∫
d3xφ (x) δ(x − ρ− X), where

x represents particle position,α gyrophase, and ρ = b × v/Ωc

gyroradius. The vE represents E × B drift velocity, and vd

magnetic drift velocity,
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vE = b ×∇φ/B∗
‖,

vd =
1

ZiB∗
‖

[
miv

2
‖b × (b · ∇b) + μb ×∇B

]
. (2)

The δ f method [26–29] is used to reduce particle noise.
The ion distribution function is separated into an equilibrium
part f0 and a perturbed part δ f . The equilibrium distribution
function satisfies the zeroth-order equation:

L0 f 0 = 0, (3)

where L0 is the zeroth-order propagator L0 = ∂/∂t +(
v‖b + vd

)
· ∇ − μ/miB∗ · ∇B/B∗

‖∂v‖ − C. Due to the
absence of a toroidal magnetic field in the FRC geometry, the
local Maxwellian distribution function is an exact solution to
equation (3),

f 0 =
n0(

2πTi/mi
)3/2 exp

[
−

miv2
‖/2 + μB

Ti

]
,

where n0 and T i are equilibrium density and temperature,
respectively, which are functions of flux coordinate ψ only.

The perturbed part of the distribution function δ f = f − f 0
can be solved from the perturbed equation

Lδ f = −δL f 0, (4)

where δL = vE · ∇ − Zi/miB∗ ·
(
∇φ

)
/B∗

‖∂v‖ and L = δL +

L0. By defining a particle weight w = δ f / f , we can obtain
the nonlinear weight equation,

dw
dt

= − 1
f
δL f 0 = (1 − w)

[
−vE · ∇ f

f 0

∣∣∣∣
v⊥

− Ziv‖b · ∇φ

Ti

B
B∗
‖

− 1
Ti

1
B∗
‖

(
miv

2
‖∇ × b + μb ×∇B

)]
, (5)

where we replace ∇ f 0|μ by ∇ f 0|v⊥ = ∇ f 0|μ + μ∇B
Ti

f 0.
The perturbed electrostatic potential can be

separated into zonal and non-zonal parts. Define
φ00 =

∮
φJ dl‖ dζ/2π

∮
J dl‖ as the flux-surface-averaged

or zonal potential, where J is the Jacobian. The non-zonal
potential is then δφ = φ− φ00. The perturbed ion gyrocenter
density

ni (x) =
∫

d3v
∫

dα/(2π)
∫

δ f (X) δ (X + ρ− x) dX (6)

can also be separated into zonal part n00 and non-zonal part δni.
We assume that electron response to the non-zonal potential
of the ITG turbulence is adiabatic, δne = n0eδφ/Te. Then, we
can use the following gyrokinetic Poisson’s equation [30, 31]
to solve the non-zonal potential

Z2
i n0

Ti

(
δφ− δφ̃

)
+

e2n0

Te
δφ = Ziδni, (7)

where the left-hand side stands for ion polarization density, and
δφ̃ comes from the double gyroaveraging of the potential,

δφ̃(x) =
1
n0

∫
d3v

∫
dX f 0 (X) δφ (X) δ (X + ρ− x) . (8)

Since the adiabatic response to the non-zonal potential does
not drive a radial particle flux, the electron has no response to
the zonal potential. Then the equation for the zonal potential
φ00 becomes,

Z2
i n0

Ti

(
φ00 − φ̃00

)
= Zin00, (9)

where φ̃00 = 1
n0

∫
d3v

∫
dX f 0 (X)φ00 (X) δ (X + ρ− x).

Equations (1), (5), (7), and (9) make up a closed system for
the electrostatic simulation with the zonal flow.

2.2. Collision operator

In this subsection, we describe a simplified collision opera-
tor to recover classical transport in the gyrokinetic simulation,
which could damp the zonal flow. A pitch angle scattering
operator is used here to model the collisions between ther-
mal ions and impurity particles that can drive a perpendicu-
lar particle flux. The pitch-angle collision operator has been
implemented in GTC [32]

C ( f 0) = ν
1
2
∂

∂ξ

[(
1 − ξ2

) ∂

∂ξ
f 0

]
, (10)

where ξ = v‖/v = cos θ is the cosine function of the pitch
angle, and ν is the collision frequency. This operator can be
implemented using the interpretation in Shanny et al’s work
[33], where the pitch angle after the collision is computed in
the Monte Carlo form,

ξ = ξ0 cos σ +
(
1 − ξ2

0

)
sin σ cos η, (11)

where ξ0 is the pitch angle before collision, η and σ are two
angles describing the change of the velocity direction shown in
figure 1. Here, w and u are two local basis vectors defined as
w = v0 × b/ |v0|, and u = b × w. σ is the angle between v0

and v, i.e. the change of velocity directions before and after
the collision. η is the angle between v–v0 plane and v0–b
plane. For a small pitch angle scattering, η is randomly cho-
sen between 0 and 2π, i.e. P (η) = 1/2π. The σ is chosen to
satisfy the Gaussian distribution,

P (σ) =
σ

νΔt
exp

(
− σ2

2νΔt

)
, (12)

where Δt is the time step of each collision.
The classical transport arises from guiding center position

change due to the change of particle velocity direction by colli-
sions. Since particle position is unchanged during the collision,
the change of guiding center position due to the collision can
be calculated,

ΔX =
Δv × b
Ωci

, Δv = v − v0, (13)

where Δv is the change of the velocity vector, and ΔX is the
change of the guiding center position.
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Figure 1. Change of particle velocity due to collision. b is the unit
vector in the direction of the magnetic field. v0 and v are velocity
vectors before and after the collision, respectively. vp0 and vp are the
projections of velocities on w–u plane.

After we generate the σ and η angles, we can express the
velocity change in the local (b, w, u) coordinates,

Δvb = (v0 cos σ − v0) cos θ + v0 sin σ cos η sin θ,

Δvu = (v0 cos σ − v0) sin θ − v0 sin σ cos η cos θ,

Δvw = v0 sin σ sin η. (14)

Then we can consider the velocity change in the global
coordinates (b,ψ, ζ), where ζ is the basis vector in the toroidal
direction andψ = ζ × b is the unit vector perpendicular to the
flux surface. In the gyrokinetic simulation, we do not have the
information of particle gyrophase angle. Without loss of gen-
erality, the gyrophase α can be defined as the angle between u
and ζ, and we assign a random value between 0 to 2π for each
particle at each time step. The velocity change in the global
coordinate system is given by

Δvb = (v0 cos σ − v0) cos θ + v0 sin σ cos η sin θ,

Δvψ = Δvu sin α+Δvw cos α,

Δvζ = Δvu cos α−Δvw sin α. (15)

The subsequent calculations of the velocity components
in the R and Z directions are straightforward. Thanks to the
toroidal symmetry, we only need to calculate the guiding
center position change on the R–Z plane, ΔR = ΔX · êR,
Δz = ΔX · êz. Correspondingly, the guiding center flux
induced by the collisions can be obtained by integrating the
effective drift velocity vcol = ΔX/Δt. This procedure intro-
duces a guiding center random walk on the order of ρi in real
space.

Note that this collision operator conserves particle number
and kinetic energy, but not momentum. We assume that the
loss of thermal ion momentum is compensated by impurities or
neutral particles, which are presumed not interacting with the

ITG turbulence. The guiding center flux induced by the colli-
sion and the associated damping of the zonal flow are verified
in section 3. However, the guiding center flux can be removed
when calculating the ITG turbulent transport in section 4.

2.3. Simulation settings

Previous studies show that the ion-scale turbulence is mainly
driven by the ITG instability in the FRC SOL, which nonlin-
early spreads to the core region [12, 13]. For simplicity, the
current simulations of the effects of zonal flows on the long
wavelength ITG instability are carried out only in the SOL.
If not specially mentioned, the simulation region is chosen as
Z ∈ [−9.37R0, 9.37R0] of the confinement vessel with a
periodic boundary in the axial direction, and the poloidal
flux function ψ ranges from ψ (R = 1.7R0, Z = 0) to
ψ(R = 2.4R0, Z = 0), which is restricted in the SOL
region where the most unstable ITG mode locates. Here
R0 = 0.269 m is the major radius of the magnetic axis.
The simulation domain on the R–Z plane is shown in
figure 2. This equilibrium field is constructed using a 2D
axisymmetric LR_eqMI equilibrium code [34]. The ion
equilibrium profiles used in the simulation is given indepen-
dently from analytic formulations, with the density profile

n(ψ) = n0

[
1 + Cn1

(
tanh Cn2−ψ

Cn3
− 1

)]
, and the tempera-

ture profile T(ψ) = T0

[
1 + CT1

(
tanh CT2−ψ

CT3
− 1

)]
. The

corresponding coefficients are n0 = 0.75, Cn1 = 0.409,
Cn2 = 0.65, Cn3 = 0.899, T0 = 1, CT1 = 0.177, CT2 = 0.95,
and CT3 = 0.718. Here, the flux function ψ is normalized
by ψunit = B0R2

0, where B0 = 531 G and R0 = 0.269 m. The
equilibrium profiles are shown in figure 3. Previous study
[14] with the same equilibrium magnetic field and similar ion
profile shows ρi/R0 � 1 and ω/Ωc � 1, which verifies the
validity of gyrokinetic model for the FRC SOL. The coeffi-
cients are chosen such that the gradients ∇ni and ∇T i have
a maximum around R = 1.9R0. The density and temperature
are normalized by ne0 = 2.44 × 1013 cm−3, and Te0 = 80 eV.
The electron has the same density profile as the ion, and
electron temperature is uniform Te = Te0. The corresponding
ion beta at the outer mid-plane is also shown in figure 3. The
experimental data shows that βi ≈ 0.027 on the reference
surface (R = 1.9R0, Z = 0). While this finite beta value can
have stabilizing effects on the ITG instability, density fluctu-
ations on the ion gyroradius scale has been observed by the
DBS measurements in the SOL of the C-2 FRC experiments
[7]. We also note that this beta value of 2.7% in the FRC SOL
is in the range of the beta value in high performance tokamak
plasmas, where the ITG instability is commonly observed
and simulated. Besides the stabilizing effects on the ITG
instability, the finite beta effects can reduce the effectiveness
for the generation of the zonal flows by the microturbulence
through partial cancellation between Reynolds stress and
Maxwell stress, especially for the Alfvénic fluctuations [19].
However, this finite beta effects on the zonal flow generation
is less important for the acoustic fluctuations driven by the
ITG instability. Nonetheless, it is important to incorporate the
finite beta effects in the future study of the ITG instability and
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Figure 2. Simulation domain in FRC SOL. Black dash lines are
magnetic field lines. Colors represent magnetic field magnitude B.

Figure 3. Radial profiles of ion density and temperature (panel (a))
and their gradients κn,T (panel (b)). The ion beta β = 2μ0Pi/B2 at
mid-plane is shown in (panel (c)). Density and temperature are
normalized by their values at R = 1.90R0 and Z = 0.

zonal flow generation in the FRC SOL. In the current work,
we only focus on electrostatic turbulence in the SOL. In the
simulations we use the uniform loading method, where we
keep the physical gradients, but force the marker particle n0

and T i to equal to the value at a certain flux surface [35]. In
that way, we can exclude the collisional equilibrium radial
flux and only focus on the turbulent transport.

In all simulations, only one toroidal mode with
n = 20 is kept. All parallel harmonics are kept. An effi-
cient gyroaveraging method has been implemented for the
single-n mode simulation. The new gyroaveraging method
uses the Bessel function for the toroidal gyroaveraging. In the
R–Z plane, two points are selected in the direction perpendic-
ular to the magnetic field for the radial gyroaveraging. In the
end, we have φ (X) = 1

2 J0

(
kζρ

)
[φ (X +Δx) + φ (X −Δx)],

where kζ = n/R is the toroidal wave number, and Δx is

the effective gyroradius vector on the R–Z plane and per-
pendicular to the field line, with the length |Δx| = ρ/

√
2.

We have demonstrated that this method achieves the same
accuracy as the conventional four-point averaging method
while avoiding inefficient toroidal MPI communication for
the FRC simulations [15].

3. Verification of collisional damping of zonal flow

Zonal flows in the FRC can be damped by ion guiding center
flux induced by the Coulomb collisions (i.e. classical trans-
port) with impurities or neutrals. In this section, we verify
this collisional damping of the zonal flows using the model
pitch-angle collision operator formulated in section 2.2. The
radial particle flux resulting from the guiding center random
walk due to the pitch-angle scattering is expected to obey the
Fick’s Law, Γ = −D · ∇n, where D = 〈ΔXΔX〉/ (2Δt). A
full- f simulation without turbulence is carried out for this ver-
ification. We initiate a non-uniform guiding center profile. The
guiding center motion is calculated from equation (1), where φ
is set to be 0. The radial guiding center flux can be calculated
by integrating the effective radial drift velocity vcol = ΔX/Δt
due to the collisions from equation (13). We can also calculate
the diffusivity D theoretically and obtain a ‘theoretical’ guid-
ing center flux using density gradient ∇n measured from the
simulation.

The parallel simulation domain is chosen as
Z ∈ [−0.1R0, 0.1R0] to minimize variations of equilib-
rium geometry in the z-direction, and the radial domain is the
same as figure 2. For simplicity, we use a constant collision
frequency in equation (13). The initial guiding center profile is
loaded as ninit = ne0

{
1 + 0.25 × tanh

[
(1.7 − ψ) /0.5

]
− 1

}
,

and a uniform temperature profile T init = Te0 is used with a
Maxwellian distribution function. The collision frequency is
set as ν = 30Cs/R0. Figure 4 shows the radial profiles of the
guiding center density and fluxes. In figure 4(a), the initial
profile of the density profile is relaxed due to the radial diffu-
sion after about three collision times. For this verification, we
initiate particle velocity perpendicular to b and only consider
the gyro-phase change due to the pitch-angle scattering.
Note that in simulation the effective radial velocity of the
guiding center flux due to collisions vcol,R = vcol · ∇R must
be evaluated in the position after collision, while the basis
vectors in equation (15) are evaluated in the position before
each collision. The radial diffusion can be calculated from
equations (12) and (14), which gives rise to a mean square
of guiding center excursion 〈ΔR2〉 = 3ρ2

i νΔt and the asso-
ciated classical transport with a diffusivity of DR = 3ρ2

i ν/2,
where ρi is the gyroradius of ions with thermal speed. Using
this diffusivity, the guiding center flux calculated from the
Fick’s law is compared to that measured from simulations in
figure 4(b), and the two methods show good agreement.
This verifies that the collision operator is implemented cor-
rectly. The calculated radial heat flux is 0 because the initial
temperature is uniform.

Now we can verify the collisional zonal flow damping
due to the classical transport induced by the model pitch-
angle scattering. In order to verify the simulation results by
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Figure 4. Radial profiles of density ni (panel (a)) and guiding center
flux Γi (panel (b)) at t = 0 and at νt = 3. Theoretical guiding center
fluxes are compared with simulation results in (panel (b)). Density is
normalized by ne0 and guiding center flux is normalized by n (R) vth.

the analytic theory, we first simulate the collisional damp-
ing of the zonal flow with a single radial wavelength and
in the absence of the ITG turbulence. We select a particu-
lar zonal flow radial wavelength by limiting the simulation
domain in the radial direction and keeping the same nar-
row domain in the z-direction, i.e. Z ∈ [−0.1R0, 0.1R0] and ψ
ranges from ψ(R = 1.97R0, Z = 0) to ψ(R = 2.04R0, Z = 0).
Using the δf simulation method, we initiate a zonal flow per-
turbation δ f = 0.1 sin

[
4π (R − Rin) / (Rout − Rin)

]
f 0, where

Rin and Rout are the major radius at inner and outer bound-
aries. The diffusion equation describing the evolution of δ f is
given by

∂δ f
∂t

=
1
2
∂2δ f
∂R2

ΔR2
v

Δt
, (16)

where ΔR2
v is defined as the radial excursion for particles with

a certain velocity and can be evaluated from equations (12) and
(13)

ΔR2
v =

∫ (
Δv × b

Ωc
· ∇R

)2 dη
2π

P (σ) dσ
dα
2π

= ρ2νΔt, (17)

where ρ = v/Ωc. The initial perturbed guiding center density

is given as δ f init = δn0
(
2πv2

th

)−3/2
exp

(
−v2/

(
2v2

th

))
. The

solution of equation (16) is δ f (t) = δ f init exp
(
−k2

r ρ
2νt/2

)
.

The guiding center radial excursion 〈ΔR2〉 averaged over
particle velocity is given by

〈ΔR2 (t)〉 =
∫
δ f ΔR2

v dv∫
δ f dv

= νΔt
3ρ2

i

1 + k2
r ρ

2
i νt

. (18)

The radial excursion is proportional to the square of parti-
cle velocity. As a result, the population of particles at a certain
radial location with different velocities will evolve with time,
which means the velocity distribution will deviate from the ini-
tial function. This effect is reflected in the v dependence in the
exponential decay factor of δ f , and in the time-dependence

Figure 5. Time history from simulation for density (panel (a)) and
zonal potential (panel (b)) at R = 1.995. Both quantities are
normalized by their initial values.

factor in the denominator in equation (18). The radial guid-
ing center flux driven by the perturbed zonal density gradient
can be estimated by ΓR = − (∂Rδn) 〈ΔR2〉/(2Δt). Figure 5
shows the evolution of perturbed density and zonal poten-
tial at a certain radial position R = 1.995R0. The damping
is nearly exponential with a deviation arising from the extra
time-dependence of 〈ΔR2〉. Figure 5(a) shows an excellent
agreement between simulation and theory for the damping of
zonal density perturbation. In figure 5(b), the zonal potential
is solved by equation (9) in real space using the Padé approxi-
mation [31]. Figure 5(b) shows that the evolution of the zonal
potential from simulation and our model agrees well.

So far we verify the collisional damping of the zonal flows
by comparing simulation results with the analytic theory in a
small simulation domain to avoid the complication of equilib-
rium geometry. We now perform more realistic simulations in
a larger domain to incorporate variations of the equilibrium
geometry and a physical collision frequency in the FRC SOL.
In this simulation, the parallel simulation domain is in the
range of (−9.37R0, 9.37R0), so that the passing and trapped
particles co-exist due to the non-uniformity of the B field.
We limit the radial domain from ψ(R = 1.97R0, Z = 0) to
ψ(R = 2.04R0, Z = 0) such that we can select a radial
wavevector kr of the zonal potential. The collision frequency
in the simulation region is almost constant ν ≈ 0.061Cs/R0.
The zonal flow damping in figure 6 shows nearly exponen-
tial damping of the zonal flows during a short simulation
time when the extra time-dependent term in the 〈ΔR2〉 can
be ignored. The damping rate is proportional to the k2

r , as
expected. In the longer time simulation, the damping rate
slowly decreases and no longer scales with the k2

r because the
distribution function changes with the time and the 〈ΔR2〉 is no
longer proportional to ρ2

i . The dependence of the initial damp-
ing rate on the k2

r verifies that the collisional zonal flow damp-
ing is through classical viscosity, rather than friction between
trapped and passing particles as in the tokamak.
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Figure 6. Time history of zonal flows with different radial wavelength (panel (a)) and damping rate dependence on k2
r (panel (b)). Potential

is normalized by its initial value. The damping rate is normalized by Cs/R0.

4. Zonal flow effects on ITG turbulence in FRC SOL

4.1. Zonal flows driven by ITG instability in FRC SOL

In this subsection, we study the zonal flow driven by long
wavelength ITG instability in the FRC SOL in the collisionless
limit. To focus on the basic physics of zonal flow generation
and its effects on the ITG turbulence, we simulate the single
toroidal mode n = 20 of the ITG instability and the zonal mode
of n = 0. The motivation for simulating a single-n ITG is based
on the insights from previous tokamak study, which shows that
the nonlinear coupling between a single toroidal mode with the
zonal mode dominates the ITG nonlinear dynamics, while the
couplings between multiple toroidal modes are subdominant
[24]. Nonetheless, multiple unstable toroidal modes can simul-
taneously drive zonal flows and modify the radial structure
of the zonal flows, which is important for the suppression of
turbulence [19]. We choose the n= 20 mode since it is the non-
linearly dominant mode due to the inverse cascade in the sim-
ulation without zonal flows [13]. In the multi-mode simulation
[13], the n = 20 mode first grows exponentially with its own
linear growth rate in the early linear phase, but is mostly gener-
ated by the linearly most unstable modes closer to the nonlin-
ear saturation phase. Nonetheless, the basic physics of zonal
flow generation in this simulation of the n = 20 mode is appli-
cable to the linearly most unstable modes in the multi-mode
simulation. The nonlinear stage of the single-n ITG is still

turbulence because of the nonlinear interactions between all
poloidal and radial harmonics and the parallel wave–particle
decorrelation that drives the turbulent transport [15]. A model
heat bath is applied in the simulation to fix the temperature
profile in order to avoid the quasi-linear relaxation due to the
turbulent transport [15, 36]. In the future study, we will sim-
ulate nonlinear couplings of multiple n-modes [13] together
with zonal flows for a more realistic assessment of the turbu-
lent transport in the SOL.

The radial domain ranges from ψ (R = 1.7R0, Z = 0) to
ψ(R = 2.4R0, Z = 0) for all ITG simulations reported in
this section. The mode amplitude peaks at the surface of
ψ (R = 1.9R0, Z = 0), where ρi/R0 ≈ 0.050, and kζρi ≈ 0.53
at the outer mid-plane. The time evolution of the root-mean-
square of the non-zonal potential and zonal potential is plot-
ted in figure 7. For comparison, another simulation is carried
out in which only passively generated zonal flow is measured.
The term ‘passively generated’ means that the zonal flow
is generated through nonlinear couplings of the ITG modes,
but the zonal flow has no feedback to the ITG modes, i.e.
the guiding center motion does not include the E × B drift
of the zonal electric field. Figure 7(a) shows that the turbu-
lence amplitude after saturation (t > 70 R0/Cs) is significantly
suppressed by the zonal flow. In the stage before saturation
(t < 70 R0/Cs), the zonal flow is mainly driven by nonlin-
ear mode coupling rather than modulational instability, since
the zonal flow growth rate γZF ≈ 2γITG is not sensitive to the

7
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Figure 7. Time history of non-zonal (panel (a)) and zonal (panel (b))
mode amplitudes, and the volume averaged ion radial heat
conductivity (panel (c)). Both quantities are averaged over the whole
simulation volume.

non-zonal mode intensity. The passively generated zonal flow
no longer grows exponentially after the ITG instability satu-
rates at t ∼ 85 R0/Cs. The ITG turbulence and the zonal flow
then reach a quasi-steady state with a high transport level in
the SOL. The zonal flow saturation amplitude between passive
generated and self-consistent cases are similar, which indicates
the nonlinear damping of the zonal flow is weak in this col-
lisionless simulation, where the non-zonal mode intensity is
low in the nonlinear stage. The zonal flow amplitude slightly
decreases after the nonlinear saturation in the self-consistent
case. However, the rate of this decrease is much smaller than
the zonal flow growth rate in the linear phase and diminishes
as the ITG amplitude decreases. Note that the zonal flow in
the FRC has no collisionless damping through the magnetic
pumping as in the tokamak [21]. The radial structure of the
zonal flows does not evolve in time, so the time history of the
zonal flow amplitude shows in figure 7 is very similar to that of
the zonal flow E × B drift velocity and the associated shearing
rate.

4.2. Zonal flow regulation on ITG turbulence in FRC SOL

In the previous study, we have shown that the long wavelength
ITG instability in the SOL can saturate due to fluid eddy rota-
tion in the radial-toroidal plane, even in the absence of zonal
flow. [15] In figure 7 the ITG instability in self-consistent sim-
ulation saturates when the zonal and non-zonal component is
comparable (t ∼ 70R0/Cs). Comparing with the case without
zonal flow, the ITG instability in self-consistent simulation
shows earlier saturation time and lower saturation amplitude,
which suggests that zonal flow is the dominant saturation

Table 1. Characteristic frequencies. All quantities are evaluated at
(R = 1.9R0, Z = 0). The frequency unit is Cs/R0.

|ωITG| 0.6
|ω∗| 0.5
k‖Cs 0.3
|ωc| 0.16

mechanism for the long wavelength ITG instability in the FRC
SOL. After saturation, the non-zonal component drops quickly
to a low level. Because zonal flow is undamped in the nonlinear
stage the non-zonal fluctuation and heat diffusivity continue to
decrease, which indicates that there is no steady state ion heat
transport in the absence of the zonal flow damping. This indi-
cates that the ITG turbulence intensity and ion heat transport
can be non-zero only with a pressure gradient much higher
than the linear threshold, which is similar to the so-called
Dimtis’ shift in the tokamak [18].

In table 1, we list the linear frequency of ITG instabil-
ity ωITG, the drift wave frequency ω∗ = kζTe/ (eBLn), the ion
acoustic wave frequency k‖Cs, and the averaged curvature drift
frequencyωc = kζv2

i ∇× b0/Ωci. The ωITG is closer to ω∗ than
the ωc, which suggests that the ITG mode found in the FRC
SOL is a mixture of the slab branch and the toroidal branch.
Comparing figure 7(c) with previous zonal flow simulations in
the tokamak (e.g. figure 1 in [8]), we can see that the zonal flow
effect on initial ITG saturation in the FRC SOL is not as strong
as that in the tokamak. This is consistent with earlier studies
showing that the effect of zonal flow at the ITG saturation is
generally stronger for the toroidal ITG [37] than the slab-like
ITG [20, 38]. However, the effects of zonal flows can depend
on various plasma parameters and the nature of primary insta-
bility. More importantly, the zonal flow dynamics after the
nonlinear saturation (e.g. collisionless damping) can depend
sensitively on the magnetic geometry. Nonetheless, the zonal
flow effect in the FRC SOL is still important because there is
no efficient zonal flow damping mechanism. The undamped
zonal flow has a large amplitude and continuously suppresses
the ITG turbulence.

In figure 8 we show the non-zonal potential in the radial-
toroidal plane. The three columns of figure 8 correspond to the
linear stage(t = 60R0/Cs), the saturation stage(t = 80R0/Cs),
and the nonlinear stage(t = 110R0/Cs). In the linear stage,
the mode locates at the strongest temperature gradient region.
In the nonlinear stage without the zonal flow (first row of
figure 8), the shape of the mode in structure persists with
the eddies moving slightly outward. When the zonal flow is
included (second row of figure 8), the mode structure is dis-
torted by the zonal flow shear after the saturation. The mode
structure breaks into even smaller eddies in the late nonlinear
stage. A broader kr spectrum is observed after the saturation,
as shown in figure 9. This diffusion in the kr space is due to
the zonal flow random shearing, which leads to the reduction
of the turbulence and transport level [39]. Zonal flow also has
effects on the turbulence spreading, as can be seen from the
eddy location and size in figure 8.

8



Nucl. Fusion 61 (2021) 126039 X.S. Wei et al

Figure 8. Non-zonal mode structure on R–ζ plane from simulations with various collision frequencies. Three columns correspond to linear,
saturation, and nonlinear stages. 1/20 of the torus (0 < ζ < π/10) is shown.

4.3. Collisional effects on zonal flow and turbulence

As discussed in section 3, zonal flow can be damped by colli-
sions, which can maintain a steady state turbulent transport.
We carry out simulations with different collision frequen-
cies, with ν ranging from 0 to 0.057 Cs/R0 (about γITG/3

)
,

where the ν = 0 case is identical to the collisionless simulation
described in sections 4.1 and 4.2. Since ion–ion like-species
collisions do not induce a radial particle flux, the zonal flow
damping comes from the collision of the ions with impurities
and neutrals. There is no experimental data to calculate the fre-
quency of the ion collisions with impurities and neutrals. As a
reference, the ion–ion collision frequency is ν ∼ 0.0114Cs/R0

using ion density and temperature at the reference surface of
R = 1.9R0 as shown in figure 3. Figure 10 shows the compari-
son between turbulent transport and collision-induced particle
mobility when ν = 0.057Cs/R0. The mobility measuring the
amplitude of the radial random motion induced by the colli-
sion is found to be much smaller than the ion heat conductivity
which measures the amplitude of the radial random motion due
to the turbulence E × B drifts. In the nonlinear stage, a quasi-
steady state turbulence is maintained by a balance between the

linear ITG drive and the turbulence suppression by the zonal
flows. The zonal flows are in a quasi-steady state due to the
balance between zonal flow generation by the turbulence and
the collisional damping of zonal flows. Figure 10 illustrates
that the turbulent transport is still the dominant heat transport
mechanism after the inclusion of collisions.

The scaling of linear and nonlinear properties with differ-
ent collision frequencies can be found in figure 11. The col-
lisional effect on the ITG linear growth rate is negligible as
shown in figure 11(a). The non-zonal mode intensity in the
nonlinear stage increases with collision frequency as shown in
figure 11(b). When ν ≈ γITG/3, the non-zonal mode ampli-
tude increases by a factor of 2. The zonal flow amplitude
decreases with collisions and therefore the turbulent transport
is enhanced. Figure 11(c) shows the volume and time-averaged
ion heat conductivity χi, which increases by a factor of 10
when ν ≈ γITG/3. Figure 11(d) shows the volume averaged
zonal flow shearing rate in the nonlinear stage, where the local
shearing rate is defined as ωs = R2B∂2〈φ〉/∂2ψ by assum-
ing isotropic eddies. In the collisionless simulation, ωs > γITG

when the mode saturates at t ∼ 70R0/Cs. In the nonlinear
stage, ωs ∼ 3γITG, which again indicates that the zonal flow
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Figure 9. Radial fluctuation spectrum at the mid-plane from
collisionless simulation with the zonal flow. These three lines
correspond to the three plots in the second row of figure 8. The
amplitude of each line is normalized by the total spectrum intensity.

Figure 10. Time history of ion heat conductivity χi (dark blue)
driven by ITG turbulence and ion mobility (light blue) induced by
collision. The two quantities are normalized to Bohm unit
DB = Te0/eB0. The associated volume averaged ZF amplitude
(orange) is also shown.

shearing is the dominant saturation mechanism for the long
wavelength ITG instability in the FRC SOL. For simulations
with collisions, the zonal flow shearing rate is lower, which
leads to higher turbulence intensity and transport level. Note
that there is no geodesic acoustic mode oscillation in the FRC
and the nonlinear effects on the zonal flow evolution are weak.
So the zonal flow amplitude reaches a steady state after sat-
uration and the shearing rate is almost time static. Although
the collisions introduce slow oscillations on zonal flow after
saturation, the oscillation frequency is much smaller than the
shearing rate itself. Therefore, there is no reduction in the

Figure 11. Dependence on collision frequencies for ITG linear
growth rate (panel (a)), non-zonal mode amplitude in nonlinear
(NL) stage (panel (b)), heat conductivity (panel (c)), and zonal flow
shearing rate (panel (d)). In (b)–(d) the quantities are RMS values
averaged between t = 100R0/Cs and t = 120R0/Cs. In (d)
horizontal black line is the linear ITG growth rate.

effective zonal flow shearing due to the finite zonal flow fre-
quency [39]. Apart from the enhancement of radial transport,
collisional damping of the zonal flow can also enhance the tur-
bulence spreading in the radial direction as shown in figure 8.
The turbulence spreading shown in figure 8 is mainly toward
the larger R region since the linear instability peaks at the inner
boundary of the simulation domain because of the pressure
profile used in the current simulations. In general the turbu-
lence spreads in both radial direction and can reach the stable
core region [13]. The lower three rows of figure 8 show that
the more coherent mode structure after saturation is restored
by including collisions. In the nonlinear stage, the eddies are
again expanding in the radial direction due to the turbulence
spreading. The finding that zonal flow amplitude and turbu-
lence intensity depend on the collision frequency is consis-
tent with the notion that dissipation plays an important role
in the self-organization of the turbulence [24] and zonal flow
generation [40].
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5. Conclusion and future work

In this work, we have studied the zonal flow effects on ITG
turbulent transport in the FRC SOL using the particle simu-
lation code GTC-X. A model collision operator incorporating
changes of guiding center positions due to pitch-angle scat-
tering has been implemented and verified to recover classical
transport and zonal flow damping. The dominant mechanism
of zonal flow damping in the FRC is classical diffusion (or vis-
cosity) resulting in a damping rate proportional to the square
of the zonal flow radial wavenumber k2

r .
A series of nonlinear simulations have been performed for

the long wavelength ITG turbulence in the FRC SOL. Zonal
flows are shown to be generated mainly by nonlinear mode
coupling rather than modulational instability, with a growth
rate γZF ≈ 2γITG and not sensitive to the ITG mode ampli-
tude. Zonal flows are the main saturation mechanism for the
long wavelength ITG instability. The zonal flow shearing rate
exceeds the ITG linear growth rate when the ITG instability
saturates, and the radial correlation length and eddy size of the
ITG turbulence is reduced by the zonal flows. In the collision-
less limit, the zonal flows remain undamped in the nonlinear
stage and eventually suppress the ITG turbulence to a very low
level. As a result, the radial ion heat conductivity and turbu-
lence spreading are strongly suppressed. The collisions can
damp the zonal flows and enhance the turbulent transport in
the FRC SOL. With collisional damping, the zonal flow shear-
ing rate can be comparable to or smaller than γITG after the
saturation of the ITG instability, which leads to a much larger
ion heat conductivity, radial eddy size, and radial turbulence
spreading.

In the future FRC studies, we will incorporate more physics
in the simulations including drift kinetic electrons and fully
kinetic ions. We will scan the parameter space to find the possi-
ble tertiary instability of the zonal flows, which extracts energy
from zonal flows and results in finite turbulence co-existing
with the zonal flows. We will also study couplings between
parallel and perpendicular transport in the SOL and between
the core and SOL regions.
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