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ABSTRACT

The equilibrium potential structure in the scrape-off layer (SOL) of the field-reversed configuration (FRC) can be affected by the penetration
of edge biasing applied at the divertor ends. The primary focus of the paper is to establish a formulation that accurately captures both parallel
and radial variations of the two-dimensional (2D) potential in SOL. The formulation mainly describes a quasi-neutral plasma with a logical
sheath boundary. A full-f gyrokinetic ion model and a massless electron model are implemented in the GTC-X code to solve for the self-
consistent equilibrium potential, given fixed radial potential profiles at the boundaries. The first essential point of this 2D model lies in its
ability to couple radial and parallel dynamics stemming from resistive currents and drag force on ions. The model successfully recovers the
fluid force balance and continuity equations. These collisional effects on 2D potential mainly appear through the density profile changes,
modifying the potential through electron pressure gradient. This means an accurate prescription of electron density and temperature profiles
is important in predicting the potential structure in the FRC SOL. The Debye sheath potential and the potential profiles applied at the bound-
aries can be additional factors contributing to the 2D variations in SOL. This comprehensive full-f scheme holds promise for future investiga-
tions into turbulent transport in the presence of the self-consistent 2D potential together with the non-Maxwellian distributions and open
boundary conditions in the FRC SOL.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0189761

I. INTRODUCTION

Field-reversed configuration (FRC) is an alternative approach
to realizing magnetic fusion, distinguishing itself from the more
prevalent designs such as tokamaks and stellarators. Characterized
as an elongated prolate compact toroid (CT) with a solely poloidal
magnetic field, the FRC is lauded for its engineering simplicity.1 Due
to its easy construction in engineering aspects, FRC continues to
draw research interest, especially in light of recent advancements at
the TAE Technologies, Inc. The C2-W experiments at TAE success-
fully extend steady FRC plasmas for more than 30ms by using a neu-
tral beam injection (NBI) system and mirror plugs.2–5 Notably, the
performance is reported to be mainly limited by the NBI duration.
Energetic ion population from the NBI helps to stabilize the FRC
plasmas because of large Larmor radius (FLR) effects6 and strong
radial electric field shear.

The C2-W experiments also use an edge-biasing system to pro-
duce a negative radial electric field, resulting in an E � B toroidal rota-
tion opposite to the ion diamagnetic flow. The induced rotation plays
a crucial role in mitigating macroscopic wobble and rotational instabil-
ities, enhancing the stability of the system.7 Additionally, the E � B
shearing effects have been demonstrated to be beneficial for reducing
the turbulent transport in FRC.8,9

Microscopic drift-wave turbulence on the scale of thermal ion
gyroradius is typically suppressed in the FRC core, but in the scrape-
off layer (SOL), ion-to-electron scale drift-wave turbulence has been
observed from the experiments and simulations.10–13 This observation
opens up the potential for utilizing the biasing system in the SOL as a
means to reduce turbulent transport and improve the FRC perfor-
mance. Indeed, reduction of turbulence correlation length was
reported in previous FRC measurements.12 In tokamaks, similar
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equilibrium E � B sheared flows have been conclusively demonstrated
to suppress the drift-wave turbulence by reducing linear growth rate,
nonlinear eddy size, fluctuation intensity, and turbulent transport.14–17

This motivates our research to investigate the effects of equilibrium
E � B sheared flow under edge-biasing conditions on turbulent trans-
port within the FRC SOL.

Using the gyrokinetic toroidal code (GTC),18 we have conducted
several studies on the turbulence behavior in the FRC. Lau et al.13 dem-
onstrated that both electron and ion-scale drift waves could become
unstable in the SOL, exhibiting critical pressure gradients in line with
experimentally observed thresholds. Subsequent nonlinear simulations
using a global particle code ANC19 find that linear drift-wave instabil-
ities first grow in the SOL, then nonlinearly spreads from the SOL to
core, which exhibits a toroidal wavenumber spectrum comparable to the
experimental measurements.20,21 A modified GTC version for the FRC
geometry, GTC-X, is developed for the global simulation of nonlinear
turbulent transport in the whole device.22 It is reported that the ion tem-
perature gradient (ITG) mode is globally connected and axially varying
across central FRC region, mirror throat area, and formation exit area.
The self-generated zonal flows can suppress such ITG instability in the
nonlinear simulation of the FRC SOL.23

In our preliminary effort to integrate an equilibrium potential
into FRC turbulence simulations using GTC-X, we discovered that
combining the additional E � B flow with the diamagnetic flow yields
a total shearing rate. This total E � B shearing rate can effectively sup-
press turbulent transport in the FRC SOL region.8 However, it is
important to note that the equilibrium potential introduced was an
unrealistic one-dimensional (1D) function of the flux surface by ignor-
ing the presheath potentials that vary along the magnetic field-line.

When the biasing system is applied in the FRC SOL, it is impor-
tant to understand how potential boundary profiles can modify the
potential structure in the SOL. This understanding is crucial as the
E � B shearing effects, introduced by the biased potential, have a direct
impact on the behavior of turbulence within the region. Considering
that current FRC experiments can well sustain for over 30ms, we can
reasonably anticipate the establishment of a steady-state equilibrium in
the presence of a biasing system. In this stable scenario, the potential
structure within the SOL can be treated as a time-invariant back-
ground, facilitating a more straightforward study of turbulence phe-
nomena. Previous research has indicated that both the linear growth
rate and the saturation timescale of turbulent transport in the FRC
SOL typically occur within a 1 ms timeframe.8,22 This result supports
the hypothesis that the background equilibrium and the turbulence
phenomena can be studied independently, with the former serving as
an equilibrium to the latter.

To study the effects of biasing potential on turbulence, a self-
consistent model to calculate the equilibrium potential is needed.
Given that particles go from the core region to the SOL, eventually
exiting the device via the divertors, our sought-after equilibrium model
inherently requires a two-dimensional (2D) approach, accompanied
by open boundary conditions in the parallel direction. A transport
model, a Quasi-1D (Q1D) code with fluid ions and electrons, together
with a kinetic neutral beam species,24 has simulated the C2 plasma
evolution with a self-consistent potential. Later, this model was
extended to a 2D version, incorporating parallel transport in the SOL
region. The simulation captured the density profile evolution which
can be compared to the experimental observations.25

To study the potential structure in SOL, a KSOL code with kinetic
electrons has been developed by the TAE team to study the 1D parallel
variation of presheath potential between the outer mirrors and the
divertors.26 The simple Boltzmann response of electrons is extended
by using the Vlasov–Fokker–Planck equation. This approach captures
the kinetic effects on potential structure in an expanding magnetic field
with anisotropic electron pressures. By comparing with the Q2D fluid
model and the Boltzmann relation, it was concluded that the 1D paral-
lel potential profile was insensitive to the different electron models,
while the inclusion of ion acceleration in the model could be more
important to the profile.25,26 This finding motivates us to consider a
fluid electron model and focus on the 2D effects of poloidal flow in
SOL.

In this paper, we take a different approach from the 1D KSOL
simulations at TAE and focus on the 2D potential structure in the cen-
tral SOL near the core region. By developing a fluid electron model in
GTC-X code, our model integrates a resistive current from electron–
ion collisions or other enhanced transport, as well as a drag force
accounting for ion interactions with impurities and neutrals. These ele-
ments are crucial for establishing a connection between radial and par-
allel transport and creating a 2D potential structure in the FRC SOL.
In addition, to provide the kinetic equilibrium for turbulence study,
gyrokinetic (GK) ions are incorporated to obtain the kinetic effects on
ions. The primary purpose is to obtain a steady-state equilibrium,
ensuring its applicability as a reliable equilibrium for the upcoming
turbulence simulations in the central vessel.

In the FRC SOL, electrostatic potential varies on both micro-
scopic and macroscopic scales. On the microscopic scale, there exists a
parallel potential drop over a Debye length (Debye sheath) in front of
the divertors where the magnetic field-lines intercept the conducting
surfaces. There is also a perpendicular potential variation over a thin
layer within a width of several ion gyroradii (magnetic presheath)27 at
the outer radius in front of the cylindrical wall in the presence of an
oblique magnetic field-line. These microscopic regions are far away
from the FRC core and are not simulated when we investigate the
macroscopic transport of the FRC SOL in this paper. We discuss a
simplified Debye sheath model at the end of the paper and highlight
the need for a more accurate sheath model in our simulations. Future
upgrades to the simulation boundary conditions of our hybrid
gyrokinetic-fluid model could benefit from implementations found in
fluid transport codes like SOLPS-ITER for tokamak SOLs.28,29

The focus of the present work is on the parallel potential drop
over the macroscopic region of the SOL where ions are accelerated to
the ion sound speed before entering the Debye sheath. The equilibrium
electrostatic potential in this macroscopic presheath30 depends on the
magnetic structures, collisions, and atomic processes in the SOL, which
affects the penetration of the divertor biasing into the confinement ves-
sel to improve the FRC confinement.5,7 The gyrokinetic simulation
model is valid for the quasi-neutral plasma in this macroscopic SOL
region as documented in our previous turbulence simulation
papers.8,19,22,23

Please note that there are inherent limitations in our proposed
model described in this paper, which will necessitate further improve-
ments in future research. The model addresses only the quasi-neutral
plasma before the sheath layer, employing a logical sheath31 boundary
condition to connect our simulations with the wall potential at the
divertors. Appropriate sheath models are required for accurate
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comparisons with experiments. Additionally, the radial coupling in the
fluid equations is limited to resistive currents and a phenomenological
drag force on ions. Other physics which may cause the potential struc-
ture changes due to the modification of particle distributions, such as
the secondary electron emission, ionization of neutrals, and other fac-
tors, are not covered in this paper.

The rest of the paper is organized as follows. In Sec. II, we for-
mulate the 2D equilibrium potential model with gyrokinetic ions
and fluid electrons. The model describes a quasi-neutral plasma
with a logical sheath boundary in FRC SOL. Both the radial and par-
allel dynamics are considered by including the resistive currents and
drag force on ions. We verify this simulation model in the GTC-X
for a simplified 1D case by neglecting the resistive and drag force in
Sec. III. The ion force balance and the ion continuity equation are
verified for this model. In Sec. IV, the 2D model is discussed in
detail for the GTC-X simulation. Parameter scans for the resistivity
and the drag force are carried out to understand how the potential
structure in the FRC SOL region is established. The current density
distribution in the FRC SOL is also discussed with this new model.
Section V discussed the influence of the potential boundary profiles
on the 2D structure of equilibrium potential. Section VI discussed
the Debye sheath potential model that was required to connect our
simulations to the actual wall potential at the divertor ends. The
demand for a better sheath potential model was discussed in this
section. Section VII is a summary of the simulation results and
potential issues and future plan for this 2D FRC equilibrium model
with edge biasing.

II. FORMULATION OF 2D EQUILIBRIUM POTENTIAL
MODEL IN FRC SOL

The primary objective of this 2D equilibrium potential model
including the presheath region is to calculate a self-consistent potential,
given a preassigned boundary. This equilibrium can subsequently be
linked to the edge-biasing applied at the divertor walls by incorporat-
ing an appropriate Debye sheath model. The 2D model described here
lays the foundation for future transport studies by providing a self-
consistent gyrokinetic particle distribution function as an equilibrium.
As illustrated in Fig. 1, the gyrokinetic (GK) ion simulation enables us
to derive the ion guiding center distribution. From this, we can calcu-
late essential parameters such as particle density, ion parallel
flow velocities, and pressures. With these quantities, we employ the

Hall-MHD electron model and a quasi-neutral condition to solve for
the electrostatic potential, thereby advancing our understanding of the
system’s behavior and laying the groundwork for future explorations
of turbulence phenomena.

A. Gyrokinetic model for ion species in equilibrium
simulation

The gyrokinetic formulation is applicable when dealing with
physical phenomena characterized by a frequency much smaller than
the cyclotron frequency and a gyroradius much smaller than the sys-
tem size. In regions like the FRC core and near magnetic null points in
the FRC, where the gyroradius is relatively large, a fully kinetic
approach is more appropriate. However, in the SOL, the gyrokinetic
assumptions remain valid due to the stronger magnetic field and sig-
nificant temperature drop at the edge, which reduces the gyroradius.
While high b values (the ratio of kinetic pressure to magnetic pressure)
may be expected near the FRC core, our simulations typically yield a b
of around 0.01 in the SOL. As a result, we employ the electrostatic
gyrokinetic equation to calculate the ion distribution function, which
can be later utilized in turbulence studies.

By averaging over the fast gyromotion, the long-timescale
dynamics of the ion gyro-center distribution fi is described in a
reduced five-dimensional phase space R; vk; lð Þ,32

Lfi R; vk; l; tð Þ ¼ @

@t
þ _R � r þ _vk

@

@vk

 !
fi R; vk; l; tð Þ ¼ C fið Þ; (1)

where _R ¼ vkbþ vE þ vd , with vE ¼ cb�rh/i
B�k

and vd ¼ cmiv2k
ZiB�k

b

� b � rbð Þ þ cl
ZiB�k

b�rB. Here, b ¼ B
B is the unit vector of the equilib-

rium magnetic field B, and B� ¼ Bþ Bvk
Xi

r� b, B�
k ¼ b � B�. vk is the

parallel velocity along magnetic field-line. Its parallel acceleration is
calculated as _vk ¼ � B�

miB�k
� Zirh/i þ lrBð Þ. The guiding center posi-

tion, R, can be expressed in terms of the particle position, x, and its
gyroradius, q, as R ¼ x � q ¼ x � b�v?

Xi
, where Xi ¼ ZiB

mic
represents

the ion cyclotron frequency. Zi and mi are the ion charge and mass,
respectively. The perpendicular velocity is v? with a magnitude of

v? ¼
ffiffiffiffiffiffi
2lB
mi

q
, where l is the magnetic moment. The gyrophase a is

averaged out when deriving Eq. (1).33 C fið Þ represents a general collision
operator as discussed in Ref. 34, and the electrostatic potential, /, is
gyro-averaged through the operator h/i ¼ Ð da

2p

Ð
dx /ð Þd x � R� qð Þ.

In order to reduce the particle noise, the traditional gyrokinetic
simulation uses the perturbative df method as described in previous
studies.35–38 In this method, the distribution function fi is divided into
two components: an equilibrium part, denoted as fi0 R; vk; lð Þ, and a
time-varying perturbation part, dfi R; vk; l; tð Þ. The equilibrium com-
ponent satisfies the zeroth-order equation

L0fi0 ¼ C fi0ð Þ: (2)

Here, we also separate the Lagrangian operator, L, into equilibrium
and perturbation parts, L ¼ L0 þ dL, where L0 ¼ @

@t þ vkbþ vd
� � � r

� B�
miB�

k
� lrB @

@vk
and dL ¼ vE � r � B�

miB�
k
� Zirh/ið Þ @

@vk
. The collision

operator is also separated as C fið Þ ¼ C fi0ð Þ þ C dfið Þ. For the specific

FIG. 1. Numerical scheme of the 2D presheath equilibrium potential simulation. We
use a particle-in-cell method to simulate the gyrokinetic (GK) ion equation, which
gives us the density Ni, Ne, pressure Pi , and the parallel ion flow velocity Uik. Next,
we use these quantities to solve the fluid equations which gives us the self-
consistent electrostatic potential /, total current J and the perpendicular ion flow
velocity Ui?.
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case of FRC geometry, it can be demonstrated that,

fM ¼ ni0
mi

2pTi0

� �3=2exp � miv2kþ2lB

2Ti0

h i
serves as an exact solution for

Eq. (2) with ni0 and Ti0 being functions of magnetic flux w. In our pre-
vious studies, this local Maxwellian equilibrium has been used to inves-
tigate the microturbulence driven by ion temperature gradient (ITG)
instability. A weight equation, based on this analytic fi0 ¼ fM , is
derived to track the evolution of the perturbed dfi.

8,22,23,39

However, when computing a self-consistent equilibrium,
the local Maxwellian solution becomes inappropriate. This is
particularly evident in the SOL region, where particles can escape
the machine through open field-lines. To address this issue, we
must assume open boundaries at the divertor ends, which can
result in a non-Maxwellian distribution of particles with a mac-
roscopic flow velocity. Consequently, constructing an analytical
form of fi0 for Eq. (2) in this open boundary scenario becomes
challenging.

To construct the complicated equilibrium, we now pursue a full-f
simulation approach. In this method, we no longer separate the fi0
from dfi. Instead, we evolve the complete gyrokinetic equation with
the full-f weight, wf ¼ fi

g, where g is the marker distribution. The full-f
weight should satisfy Lwf ¼ C fið Þ, given the marker distribution g as
also a solution for the Lagrangian operator. In this case, the full-f
weight remains constant throughout the simulation if we ignore the
effects of collision on g.40

From the gyrokinetic formulation, we can compute the ion
particle distribution, Fi, from the guiding center distribution as

Fi ¼ fi þ Zi
B
@fi
@l /� h/ið Þ.33 To obtain the particle density, Ni

¼ Ð dx0dv Fidðx0 � xÞ, the first term gives us the guiding center density

ni ¼
ð
B
mi

dvkdl
ð
da
ð
dR fi R; vk; l; tð Þd Rþ q� xð Þ; (3)

while the second term corresponds to the polarization density ni;pol .
A simplified form can be derived for the second term by approxi-
mating the guiding center density as a Maxwellian distribution,

fi � fM . Notably,
@fM
@l ¼ � B

Ti0
fM , the polarization density becomes

ni;pol ¼ � Zi
Ti
ni0 /� ~/
� �

as a result. The double gyrophase-averaged

potential, ~/, is defined as41

~/ x; tð Þ ¼ 1
ni0

ð
B
mi

dvkdl
ð
da
ð
dR fi R; vk; l; tð Þh/id Rþ q� xð Þ:

(4)

Similarly, we can also calculate the parallel ion flow velocity Uik
and the anisotropic ion pressure Pik and Pi?, based on their guiding
center counterparts ui and pi

Uik ¼ uik ; (5)

where

uik ¼ 1
Ni

ð
B
mi

dvkdl
ð
da
ð
dR vkð Þfid Rþ q� xð Þ;

Pik ¼ pik þ pik;pol; Pi? ¼ pi? þ pi?;pol; (6)

where

pik ¼
ð
B
mi

dvkdl
ð
da
ð
dR mi vk � Ui0ð Þ2
h i

fid Rþ q� xð Þ;

pik;pol ¼
ð
B
mi

dvkdl
ð
da
ð
dR mi vk � Ui0ð Þ2
h i

� qi
B
@fi
@l

/� h/ið Þd Rþ q� xð Þ;

pi? ¼
ð
B
mi

dvkdl
ð
da
ð
dR

1
2
miv

2
?

� �
fid Rþ q� xð Þ;

pi?;pol ¼
ð
B
mi

dvkdl
ð
da
ð
dR

1
2
miv

2
?

� �
qi
B
@fi
@l

� /� h/ið Þd Rþ q� xð Þ:
When calculating the pressure, it is important to consider that

the pressure is defined by the averaged kinetic energy in the reference
frame moving with the average flow velocity of each species.
Particularly in the FRC SOL, a notable parallel flow is directed toward
the divertors. Therefore, when computing pressure in Eq. (6), it is
essential to subtract the fluid flow velocity Ui0. The contribution of
perpendicular flow velocity, being 1–2 orders of magnitude smaller
than the parallel flow, is omitted in the formulation. This observation
is confirmed through simulations discussed in subsequent sections.

To compute polarization quantities, obtaining the gyro-averaged
potential h/i is crucial. Presently, the GTC-X code performs gyro-
averaging for a specific toroidal mode number only,8 so we here use a
long-wavelength approximation for the gyro-average.41 Future devel-
opments may focus on implementing a more generalized gyro-
averaging algorithm within the GTC-X framework.

Another challenge in analytically integrating the polarization
quantities in Eqs. (3)–(6) is to get the guiding center density distribu-
tion fi. Since the actual density distribution can deviate from the local
Maxwellian, we adopt a shifted Maxwellian as a simplified model,

fi � fSM ¼ ni0
mi

2pTi0

� �3=2exp � mi vk�Ui0ð Þ2þ2lB

2Ti0

� �
. This heuristic model

offers valuable insights into the approximation of polarization terms in
Eqs. (3)–(6) in the long-wavelength limit. Evaluating integrals with the
shifted Maxwellian is straightforward, which yields the guiding center
contributions: ni ¼ ni0, uik � Ui0, and pi ¼ ni0Ti0.

To compute the polarization terms analytically, we first compute
the gyro-averaged potential as h/i Rð Þ ¼Pk / kð Þeik�RJ0 k2?q

2
i

� �
,

where qi ¼ 1
Xi

ffiffiffiffiffi
Ti0
mi

q
¼ c

ffiffiffiffiffiffiffiffi
miTi0

p
ZiB

and J0 is the Bessel function.41

Employing the long-wavelength approximation (k?qi � 1), we can
express ~/ using the Pad�e approximation, ~/ xð Þ ¼ 1

1�q2i r2
?
/ xð Þ.

Subsequently, the polarization density can be approximated as
ni;pol � Zini0

Ti0
q2ir2

?/. Intriguingly, in the long-wavelength limit, the
particle parallel flow velocity is the same as the guiding center flow
velocity, Uik ¼ Ui0, as long as we correctly account for the polarization
density. Following a similar approach, we can obtain pik;pol � ni;polTi0

and pi?;pol � 3
2 ni;polTi0. The particle density and pressure, incorporat-

ing polarization corrections, now become Ni ¼ ni0 1þ Zi
Ti0

q2ir2
?/

	 

,

Pik ¼ ni0Ti0 1þ Zi
Ti0

q2ir2
?/

	 

, and Pi? ¼ ni0Ti0 1þ 3

2
Zi
Ti0

q2ir2
?/

	 

.42

Although a heuristic shifted Maxwellian distribution is used in our
derivation, these expressions serve as a useful lowest-order approxima-
tion for polarization effects without loss of generality.
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B. Fluid model for electron species in equilibrium
simulation

Due to the faster timescale of electron motion compared to ions,
directly evolving electron particles can be time-consuming. To circum-
vent this difficulty, a reduced model for electrons is often preferred.
Our proposed fluid model incorporates momentum equations for
both electrons and ions. The resistive current allows for coupling
between radial and parallel physics, enabling the derivation of a 2D
structure. The electrostatic potential is computed using the resistive
Ohm’s law

gkJk þ g?J? ¼ �r/þ Ui � Bþ 1
Nee

rPe � J� B½ �; (7)

where / represents the self-consistent equilibrium potential. The J
denotes the resistive current with Jk ¼ J � bð Þb, J? ¼ J� Jk. The gk
and g? are, respectively, the resistivity in parallel and perpendicular
directions. Additionally, Ui represents the ion flow velocity, B stands
for the magnetic field, and Ne is the electron density. Notice that the
electron inertia term in this equation is dropped considering the small-
ness of electron mass.

For classical transport induced by electron–ion collisions, the dis-
tortion of the electron distribution function results in different parallel
and perpendicular resistivity with gk ¼ 0:51g? for an ion charge
Zi ¼ e.43 However, this ratio might differ when considering anoma-
lous transport, such as turbulence-induced transport and other resis-
tive effects. When scanning a wide range of resistivity values in the
later sections of this paper, we use the same parallel and perpendicular
resistivity (g ¼ gk ¼ g?) for simplicity.

In the current work, only isotropic pressure, Pe ¼ Pek � Pe?, is
used in the fluid equations. When accounting for temperature varia-
tions in different direction, it becomes necessary to substitute the pres-
sure gradient term rPe with the divergence r � Pe, where
Pe ¼ Pek � Pe?ð Þbbþ Pe?I is the pressure tensor with distinct paral-
lel and perpendicular pressure components. This modification will
introduce an additional mirror force term related to the magnetic field
changes, which will be discussed in Sec. IV. For derivations in this sec-
tion and Appendix A, we will assume an isotropic pressure in all the
equations.

To calculate the potential and address the other unknown varia-
bles in Eq. (7), we introduce simplifications in our model. We treat the
magnetic field as static throughout the simulation, assuming that the
magnetic field’s evolution and dissipation occur over a longer time-
scale. We also neglect the change of the magnetic field due to change
of the plasmas current, i.e., we assume that the divertor biasing does
not significantly change the magnetic field. In this way, ions and elec-
trons reach equilibrium with the electrostatic potential before any sig-
nificant magnetic field alterations take place. Thus, our simulation
results can be interpreted as an equilibrium state given a specific mag-
netic field structure.

In the parallel direction, the electric field is balanced by the elec-
tron pressure gradient and the resistive force arising from the parallel
current. To compute the current term, additional equations are
required, we use the steady-state quasi-neutral condition

r � J ¼ 0: (8)

Because we are interested in the steady-state equilibrium, all the time
derivatives can be dropped in our fluid model and the system evolves

toward the equilibrium through the nonlinear ion gyrokinetic equa-
tion, Eq. (1). The electron density is also obtained by quasi-neutral
condition, eNe ¼ ZiNi. Since we focused on the presheath region, any
charge separation is omitted in the fluid equation. The ion density
comes from the guiding center density, Eq. (3), and the polarization
density in the gyrokinetic ion formulation, i.e., Ni ¼ ni þ ni;pol .

To calculate the electron pressure, we consider the electron tem-
perature Te, with the equation of state Pe ¼ NeTe. Because electron
parallel transit time is much shorter than the collisional time, we
assume that electron is isothermal, i.e., electron temperature is a func-
tion of the flux surface only, Te ¼ Te wð Þ. In the current simulations,
we use a predefined radial profile for electron temperature to avoid the
need for the electron energy equation. Neglecting the parallel electron
temperature variation in our model results in the exclusion of the ther-
mal force in Eq. (7) from the electron–ion collision, which potentially
alter the electrostatic potential.

Next, we need to determine the ion flow velocity in Eq. (7). We
have already obtained the parallel component using the ion gyrokinetic
formulation with the pushforward transformation, i.e., Eq. (5).
However, calculating the perpendicular ion flow velocity is more com-
plicated due to the expression of velocity in guiding center coordinates,
involving magnetic moment l and the gyrophase a. A direct integral
approach is not suitable, necessitating the inclusion of additional fluid
equations for ion species to determine these quantities

mi

Zi

D
Dt

Ui ¼ �r/þ Ui � B� 1
NiZi

rPi þ rUi � �r2Ui

� �
� gkJk þ g?J?
� �

: (9)

Here, we introduce the total time derivative, D
Dt ¼ @

@t þ Ui � r. Once
again, we can safely neglect the partial derivative with respect to time
for equilibrium simulation. The friction force, Fin ¼ 1

NiZi
�rUi½

þ�r2Ui�, accounts for the damping effects arising from sources other
than ion or electron collisions, such as turbulence fluctuations or colli-
sions with neutrals or impurities. The r is the effective coefficient for
the resulted drag force, and � stands for the effective diffusion coeffi-
cient. The resistive current term is the counterpart of the transport
that also appeared in Eq. (7). By adding Eqs. (7) and (9), we arrive at
the total force balance

J� B�rPtot �miNi
D
Dt

Ui þ Fin ¼ 0; (10)

where the total pressure Ptot ¼ Pi þ Pe.
To maintain consistency with the fluid electron model, we also

need to modify the gyrokinetic equation for ions. This includes incorpo-
rating the collisions with electrons and the friction force from Eq. (9) into
the guiding center motion, Eq. (1). As a straightforward solution, we can
treat the drag force as an external force acting on the ion particles directly,
similar to the electromagnetic forces. In this way, the friction force in the
fluid picture will be equivalent to a drift velocity, vF ¼ chFi�b

ZiB
, and a paral-

lel acceleration, _vk;F ¼ B�
miB�k

� hFi, where F encompasses all collisional
effects from other species, such as F ¼ Fin � gJ. Thismodification trans-
forms the guiding center motion as follows:

_R ¼ vkbþ vE þ vd þ vF ;

_vk ¼ � B�

miB�
k
� Zirh/i þ lrB� hFið Þ: (11)
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C. Implementation of the fluid equations in field-line
coordinates for GTC-X code

In GTC-X, we use a field-aligned mesh for the field solver.22 The
coordinate system w; f; Sð Þ includes the poloidal magnetic flux w, the
angular coordinate f, which is consistent with the cylindrical coordi-
nates, and the normalized field-line distance coordinate S, which
relates to the distance along each magnetic field-line. S 2 0; 1ð Þ can be
treated as a substitute for the parallel coordinate Z 2 �Z0;þZ0ð Þ
when we constructed the GTC-X code.

To solve the electrostatic potential, we require six component equa-
tions from the vector equation set, Eqs. (7)–(10). These equations corre-
spond to six unknown variables: the potential /, three components of
the current J and two components of the perpendicular ion flow velocity
Ui;?. We express these equations in the magnetic coordinates

JwBS ffiffiffi
g

p ¼ �miNi Ui � rUi½ � � ef � rUif þ �r2Ui � ef
total toroidal force balanceð Þ; (12)

@

@S
ffiffiffi
g

p
JS

� � ¼ � @

@w
ffiffiffi
g

p
Jw

	 

quasi-neutralityð Þ; (13)

@

@S
/ ¼ �gkJS þ

1
Nee

@

@S
Pe electron parallel force balanceð Þ; (14)

Jf
BS ffiffiffi

g
p

Nee
¼ 1

Nee
@

@w
Pe � @

@w
/� gk � g?ð Þ

gwS
gSS

JS þ g?Jw
� �

þ Uf
i B

S ffiffiffi
g

p
electron radial force balanceð Þ; (15)

Uw
i B

S ffiffiffi
g

p ¼ �g?Jf þ Jw
BS ffiffiffi

g
p

Nee

electron toroidal force balance; classical transportð Þ;
(16)

Uf
i B

S ffiffiffi
g

p ¼ gk � g?ð Þ
gwS
gSS

JS þ g?Jw
� �

þ @

@w
/þ 1

NiZi

� @

@w
Pi þmiNi Ui � rUi½ � � ew þ rUiw � �r2Ui � ew

� �
ion radial force balanceð Þ; (17)

where Ja ¼ J � ea and Ja ¼ J � ea are the contravariant and covariant
components based on the corresponding basis vectors of the field-line
coordinates. gab ¼ ea � eb are components of geometric tensor. Theffiffiffi
g

p
is the Jacobian, and its inverse can be calculated as

1ffiffi
g

p ¼ rw�rf � rS.22 Here, we have already simplified the equations

by assuming symmetry in the toroidal direction, i.e., @
@f ¼ 0.

To numerically solve Eqs. (12)–(17), we convert the covariant
components to the contravariant components, using the geometric
tensor gab ¼ ea � eb, such as Ja ¼ gabJb. This ensures that all the equa-
tions involve only six unknown contravariant variables. For simplicity,
we have not included the detailed forms of the convection term,
Ui � rUi, and the diffusion term, �r2Ui, in the field-line coordinates.
The detailed computation of the geometric tensor and the convection/
diffusion terms will be presented in Appendix A. Throughout the sim-
ulation in this paper, we have not included the diffusion term �r2Ui

due to its complex form in the field-line coordinates, which may be
implemented in the future work. Nevertheless, the effects of the con-
vection termUi � rUi are discussed in detail in Sec. IV.

To improve clarity, we have organized our equations in such a
way that a specific variable is listed on the left-hand side of each equa-
tion. This indicates which variable that each equation addresses.
Equation (12) reveals that the radial current in our model arises from
flow convection, drag force, and diffusion. Due to the presence of
radial current, the quasi-neutral condition, Eq. (13), necessitates a par-
allel current. The parallel Ohm’s law then determines the 2D potential
structure based on the resistive parallel current and pressure gradient.
Eqs. (15)–(17) give the value of Jf, Uw

i , and Uf
i that these flow veloci-

ties again serve as important sources to generate the radial current.
These six equations form a closed equation set that can be simulta-
neously solved using the HYPRE solver implemented in the GTC-X
code.44

III. VERIFICATION OF EQUILIBRIUM POTENTIAL MODEL
WITH NO RESISTIVITY AND DRAG FORCE

To verify the model in GTC-X simulations, we initiate our analy-
sis from a simplified model by setting the resistivity g ¼ 0 (both gk
and g?) and the drag force coefficient r ¼ 0. In this scenario, the par-
allel electron force balance, Eq. (14), implies that the electrostatic
potential is solely determined by the electron pressure gradient.
Consequently, this simplification decouples Eq. (14) from other equa-
tions, and a simple solution of / on each flux surface can be obtained:

/ ¼ Te

e
ln

Ni

Ni0

� �
: (18)

Here, we used the quasi-neutral condition, Ni ¼ Ne, and the equation
of state, Pe ¼ NeTe. Assuming a constant electron temperature along
the flux surface, the potential can be calculated by the ion density. The
Ni0, which corresponds to a zero potential, can be arbitrarily selected
along a given field-line.

This simplified model effectively behaves as a 1D model, with the
potential on each flux surface being independent from each other. In
this case, the radial force balance with the electrostatic potential is
inherently satisfied due to the lack of interaction between the parallel
and radial directions. To implement this 1D model in the 2D simula-
tion, a boundary potential profile /0 wð Þ can be manually set on each
flux surface,

/ w; Sð Þ ¼ Te wð Þ
e

ln
Ni w; Sð Þ
Ni w; 1ð Þ
� �

þ /0 wð Þ; (19)

where S ¼ 0; 1 correspond to the parallel boundary locations,
Z ¼ 6Z0, and / w; 0ð Þ ¼ / w; 1ð Þ ¼ /0 wð Þ. This implies that /0

directly corresponds to the potential profiles at the edge of the quasi-
neutral plasma. When a biasing profile is applied in the FRC SOL, a

passive toroidal ion flow is induced, represented by Uf
i ¼ 1

BS ffiffigp @/0
@w . The

solution discussed here, similar to Steinhauer, can be used to explain
the plasma rotation with end-shorting condition.45

The potential boundary /0ðwÞ here is right at the edge of the
quasi-neutral plasmas, implying that we need to add the additional
potential drop across the Debye sheath layer when considering the
external potential set by the biasing system on the divertor walls. The
true potential on the wall /w should be the sum of both the boundary
potential /0 in this paper and the Debye sheath potential drop /D,
/w wð Þ ¼ /0 wð Þ þ /D wð Þ. Incorporating this Debye sheath potential
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with a proper sheath boundary model is needed for calculating the
structures of the parallel current and flow near the divertor.

In our simulation, the potential drop across the sheath, /D, can
be either calculated using the logical sheath boundary31 or estimated
through simple Debye sheath models. For example, /D can be mod-

eled as a function of electron temperature, /D wð Þ ¼ � Te wð Þ
e ln

ffiffiffiffiffiffiffiffi
mi

4pme

q
.

This formulation assumes zero current through the Debye sheath, cold

ions moving at a speed of
ffiffiffiffiffi
2Te
mi

q
, and electrons with a half-Maxwellian

distribution flowing out of the region.46 In our present model, with
both /w and Te as preassigned values, /D wð Þ will be a fixed offset to
the wall potential /w on each flux surface. Consequently, we can

obtain a fixed boundary condition, /0 ¼ /w þ Te
e ln

ffiffiffiffiffiffiffiffi
mi

4pme

q
for the

quasi-neutral plasma.
In future simulations, if the electron temperature is modeled self-

consistently or a more comprehensive Debye sheath model is
employed, /D may depends on variables such as the current density J.
In such cases, the boundary condition for the quasi-neutral plasma /0
must align with these simulated quantities rather than being a fixed
value as currently used. In Sec. VI, we will discuss the selection of
appropriate Debye sheath models for our simulations and will examine
the implications of assuming zero current through the Debye sheath.
Before that, /0 will remain a fixed boundary condition, based on the
simplified Debye sheath model, to facilitate discussions on the effects
of other parameters.

To establish an equilibrium, it is necessary to include a particle
source in the simulation, compensating for particles leaving the FRC
SOL region in the parallel direction. A straightforward approach is
to refill the central region with the same number of particles lost at
the boundaries, which conserves the total number of particles in
simulations. A practical implementation of this concept could
involve a local Maxwellian velocity distribution fM , with similar pro-
files as the initial density ni0 wð Þ and temperature Ti0 wð Þ. Such
model maintains similar thermal properties as the initial state,
which can be regarded as an external particle injection with zero
flow velocity and fixed density and temperature. In this paper, we
use such a simple source model for verifying the 2D equilibrium
model in the FRC SOL. In the future study, we will use more realistic
particle and energy sources from experimental measurements or
modeling that include the particle transport from the core to the
SOL and external injections such as the neutral beam injection and
the particle fueling.

Following these considerations, the density source rate is chosen
as _nsrc w; Sð ÞDt ¼ Asrc Sð Þni0 wð Þ. Asrc Sð Þ is a normalization factor that
ensures the total refilled particle number Nsrc equals to the lost particle
number Nloss within a time interval Dt, i.e., Nsrc ¼

Ð
dRAsrc Sð Þni0 wð Þ

¼ Nloss. In the simulation, Asrc Sð Þ is held constant within the region
Z=R0 2 �4:0; 4:0ð Þ and set to zero outside the region. This will
result in a uniform density source rate within the region, as the pla-
teau shown in Fig. 3(b). It is worth noting that this is a simplified
model, and more realistic source density profiles may be explored in
future studies, particularly as more experimental data becomes
available.

By including the source term in the ion equation, we derived the
continuity equation and the parallel force balance with drift-kinetic
ions by neglecting the finite Larmor effects in Eq. (1)

rk ni uikð Þ � ni uik
rkB
B

¼ _nsrc; (20)

rk pik þnimiuik 2
	 


þ pi? � pik �nimiuik 2
	 
rkB

B
þZinirk/¼ 0:

(21)

Here, we use the symmetry in toroidal direction, so vE þ vdð Þ � r ¼ 0.
The parallel gradient is defined as rk ¼ b � r ¼ 1

B
ffiffi
g

p @
@S. Notice that

Eqs. (20) and (21) are the fluid equations for the guiding center quanti-
ties, which can be directly calculated from ion guiding center distribu-
tion fi.

When refilling the lost particles back to the center with a local
Maxwellian, part of them will be trapped by the mirror throat of FRC.
When the system reaches equilibrium, the particle source rate is bal-
anced with the collisional loss rate toward the divertors. To simulate
the portion of ions constantly escaping the magnetic potential well, we
use an ion–ion pitch-angle scattering operator to randomize the ion
velocities, corresponding to C fið Þ in Eq. (1). In this way, some of ion
particles can be scattered into the loss cone and escape the region in
the parallel direction. This scattering operator is crucial in this 1D sim-
ulation to establish such dynamic balance with the source _nsrc.

Finally, the ion flow boundary we used was consistent with the
so-called logical sheath boundary31 to satisfy the quasi-neutral condi-
tion. A simplified estimation of the Debye sheath potential drop is to
assume a certain form of the electron distribution function and com-
pute the flux as Ce vceð Þ ¼

Ð1
vce

dvk
Ð1
�1 dv? Fe vð Þ, where vce is the cut-

off velocity for the slowest electron. Since the electron flux is the same
as the ion flux, Ce ¼ Ci, we can obtain the critical velocity of reflected
electron vce from the ion flux and then estimate the sheath potential
drop as /D ¼ � m

2e v
2
ce.

31 This sheath potential should be added to the
potential boundary /0 in our model to calculate the potential drop
between the divertor wall and the plasma. Future research will focus
on simulating the actual electron distribution to refine the sheath
potential drop calculation in order to compare with experiments.

To verify Eqs. (20) and (21), the GTC-X simulation uses the 2D
axisymmetric FRC magnetic geometry provided by the MHD equilib-
rium code LR_eqMI,47 with the FRCmagnetic field structure described
in the original GTC-X formulation paper.22 The poloidal flux surfaces
and magnetic field geometry within the simulation domain in this
paper is plotted in Fig. 2. The radial simulation domain spans from

FIG. 2. Equilibrium magnetic field from the LR_eqMI equilibrium. The contour lines
show the flux surface based on the poloidal flux function of FRC geometry. The
radial simulation domain spans from w R ¼ 1:43; Z ¼ 0ð Þ to w R ¼ 2:40; Z ¼ 0ð Þ
and the parallel domain spans from Z ¼ �20 to Z ¼ þ20.
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w R ¼ 1:43;Z ¼ 0ð Þ to w R ¼ 2:40;Z ¼ 0ð Þ, with R, Z value normal-
ized to the radius of the equilibrium magnetic axis R0 ¼ 26:8 cm.

The parallel domain encompasses Z ¼ 620:0. Notably, the
inner boundary approaches the separatrix wsep R ¼ 1:423;Z ¼ 0ð Þ,
and the parallel boundary includes the inner mirror throat location
around Z ¼ 69:37. For the C2-W device, a second mirror throat is
located near Z ¼ 630:0. The 1D KSOL simulations by TAE team
focus specifically on the second mirror location, where the magnetic
field-line expands rapidly after the mirror throat, and a kinetic elec-
tron model is used to explore the deviation from the simple
Boltzmann electron response.26 Due to the drastic density drop after
the second mirror throat, including this region in GTC-X simula-
tions up to the divertor would require substantially more computa-
tional resources. For this reason, the area near the second magnetic
mirror location was not included in our current simulations.
However, the formulation presented in this paper remains applicable
for possible extensions into the magnetic expansion region toward
the divertors.

The ion temperature is a function of w, exhibiting a sharp
decrease from 861 to 8 eV toward the outer radius, and the electron
temperature is a constant Te ¼ 80 eV in this equilibrium. Although Ti

near the separatrix is approximately ten times that of Te, Ti quickly
drops to a comparatively low value, resulting in a mean ion tempera-
ture of 206 eV. The density profile also undergoes a significant drop
from 0:857n0 to 0.081n0, where n0 ¼ 2:44� 1013 cm�3 represents
the peak density at the magnetic axis.

In our simulations, we use an explicit time integration with a
2nd-order Runge–Kutta method to evolve the dynamical system
including the gyrokinetic and fluid equations. The time step,
4:3� 10�5 ms, is chosen based on the convergence study in our pre-
vious paper8 to accurately resolve ion guiding center motion, which
sets the shortest timescale of the simulated system. The simulation
time for the system to evolve toward an equilibrium solution is on
the order of 1 ms, which is much longer than that ion pitch-angle
scattering time.

Figures 3(b) and 3(c) present the parallel variation of each term
in Eqs. (20) and (21), evaluated at a mid-radius flux surface where the
initial Ti is comparable to Te. The amplitude of magnetic field, in
Fig. 3(a), is normalized to B0 ¼ 530:65G at the magnetic axis. A pro-
nounced peak in magnetic field strength is observable at the mirror
throat locations Z ¼ 69:37. The large gradient leads to significant var-
iation of therkB terms in these equations.

As we can see in Fig. 3, the correct calculation of these mirror
force effects can be important when achieving the force balance and
the particle conservation. The source term _nsrc manifests in Fig. 3(b) as
a plateau within Z ¼ 64, marking the region where particles lost in
the parallel direction are uniformly replenished.

Figure 4(a) shows the 2D potential structure, and Fig. 5(a) shows
the density distribution in the simulation. Due to the particle loss at
Z ¼ 620, a low-density region can be observed outside the mirror
throat. Despite a density peak near the inner boundary around Z ¼ 0,
the highest potential values are found near the outer boundary. This is
because we choose a boundary condition of /W ¼ /D (/0 ¼ 0) at
Z ¼ 620. In this case, the potential change only depends on the rela-

tive density drop Ni w;Sð Þ
Ni w;1ð Þ along each field-line, instead of the absolute

value Ni w; Sð Þ. Larger potential value at the outer boundary only indi-
cates a larger relative ratio of density on those flux surfaces.

By verifying Eqs. (20) and (21) through our simulation, GTC-X’s
ability to accurately represent the parallel physics of ion species is con-
firmed. The next step is to extend the electron model, specifically Eq.
(18), to couple the radial and parallel physics for a more comprehen-
sive understanding of electrostatic potential structure in SOL. This will
be addressed through an exploration of Eqs. (12)–(17) in Secs. IV–VI.

IV. EFFECTS OF RESISTIVITY AND DRAG FORCE IN THE
2D FRC SOL MODEL

In this section, we will focus on the 2D model of Eqs. (12)–(17)
and start our investigation by estimating the physical parameters in
these equations. As we mentioned in Sec. II B, our discussion does not
differentiate between parallel and perpendicular resistivity in this
paper. Instead, we approach the resistivity as a general representation
of frictional effects arising from anomalous transport. For the resistiv-
ity g, we use the classical resistivity from electron–ion collisions as a
reference value

FIG. 3. Verification of Eqs. (20) and (21) along the field-line in the middle of the
radial simulation domain. Panel (a) shows the amplitude of magnetic field. Near the
mirror throat around Z=R0 ¼ 69:37, we can see a maximum of B field. Most of
variations in Eqs. (20) and (21) are within the mirror throat. Panel (b) contribution of
each term in continuity equation, where @S niuið Þ is the first term and @S lnBð Þ is the
second term in the equation. The _nsrc is a direct subtraction between the other two
terms, indicating the density source rate along the field-line. Since we assumed a
uniform source term within Z=R0 2 �4:0; 4:0ð Þ, _nsrc is approximately a flat line in
this region. Panel (c) shows the three terms in Eq. (21), which should sum up to be
zero. The @S pi þ miniu2i

� �
is the first term, @S lnBð Þ is the second term, and

Zini@S/ is the third term. The total sum of the three terms is shown to be close to
zero.
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gclassical ¼
me�ei
Nee2

; with �ei ¼ 4:206� 10�6 Ni cm�3½ �Z2
i lnK

Te eV½ �ð Þ3=2
: (22)

With typical parameters of Zi ¼ 1, Ne ¼ 2:444� 1013 cm�3, and
Te ¼ 80 eV, we calculate the electron–ion collision frequency as
�ei ¼ 1:86� 106 s�1. The corresponding resistivity, denote value as
g0, is termed the classical resistivity in all our simulations. In subse-
quent analyses, we assess the impact of the resistive current by scaling
the resistivity g up by 1–2 orders of magnitude. This amplification
accounts for enhanced transport phenomena, possibly stemming from
a range of turbulent and collisional interactions. This approach aligns

with experimental observations, which often indicate resistivity levels
surpassing the classical predictions.

The drag force can originate from various collisional processes or
turbulent fluctuations. We use the ion–ion collisional frequency,
�ii ¼ 4:8� 10�8 ni lnK

T3=2
i

ffiffiffiffiffiffiffiffiffiffi
mi=mp

p , as a reference for this drag force in our

paper. With a typical ion temperature of Ti ¼ 200 eV andmi=mp ¼ 2,
we have �ii ¼ 4:45� 103 s�1. The corresponding value for the drag
force coefficient is r0 ¼ miNi�ii.

As we mentioned in Sec. II B, the fluid model Eqs. (12)–(17) were
derived based on the assumption of isotropic pressure. However, when
taking into account the anisotropy in pressure, a mirror force term will
appear in the fluid equation. This term is important when we explain
the force balance shown in Fig. 3(c). Following the algebra shown in
Appendix B, the divergence of pressure tensor will give us an addi-
tional term associated withr � bb. When the parallel (Pk) and perpen-
dicular (P?) pressures are different, we need to modify the pressure

gradients, @P
@S by

@Pk
@S þ P? � Pkð Þ 1

B
@B
@S

h i
, and @P

@w by @P?
@w þ Pkð
h

�P?Þ r�bð Þf
RB

i
for both electrons and ions. In this paper, as Te is

assumed to be a constant, the electron pressure is always isotropic,
Pek ¼ Pe?. The only modification under this assumption is in Eq. (17),
the ion radial force balance. Furthermore, modifications would be nec-
essary to accommodate anisotropic electron pressure in future studies.

In the 1D simulation, the parallel equation is decoupled from
other equations and only the potential /0 at the plasma edges on each
flux surface is needed to solve the electrostatic potential. However,
more boundary conditions are needed in the 2D simulation with resis-
tivity and drag forces. In the parallel direction, we still provide a fixed
/0 wð Þ at the plasma edges. The parallel current at the midpoint is
assumed to be zero, i.e., Jk ¼ J � b ¼ 0 at Z ¼ 0 due to the symmetry
between positive and negative Z regions. In the radial direction, we
apply additional radial boundary conditions for potential and current
by assuming, @

@w2 ¼ 0, i.e., / and Jw changes linearly at the radial
boundaries when calculating the radial derivatives in Eqs. (13), (15),
and (17).

After determining all the necessary parameters in the fluid elec-
tron model, we conduct a simulation with g ¼ g0 and r ¼ r0. Similar
to the 1D case, several ion collisional times are simulated to obtain the
steady-state equilibrium. Figures 4(b) and 5(b) display the resulting
electrostatic potential and the density structure. Comparatively, the
density profile from this simulation appears less peaked in the center
region than what was observed in the 1D parallel simulation, which
can be attributed to the influences of resistive and collisional effects.
Especially, the drift velocity vF due to the drag force diffuse ion par-
ticles away from the core region. This phenomenon is more distinctly
visible in the potential plot of Fig. 4(b), where more contour lines
extend toward the outer radial boundary and the parallel divertor
boundary, beyond Zj j > 9:37. These results underscore the signifi-
cance of incorporating 2D effects into the simulation to capture the
complex behavior of the plasma, especially in the presence of resistive
and collisional interactions.

Figure 6(a) illustrates the current density flow within the FRC
SOL, revealing a pronounced current density near the axis. This
enhancement at smaller radii is partly attributed to the FRC’s cylindri-
cal geometry, where the volume increases with radius, leading to a
lower current density at a larger radius. The current density is

FIG. 4. (a) 2D electrostatic potential e/Te0 with g ¼ 0; r ¼ 0, and (b) is the 2D poten-
tial with classical resistivity g ¼ g0 from electron–ion collisions and drag force coef-
ficient r ¼ r0 corresponding to ion–ion collision frequency. The potential at
Z=R0 ¼ 620 boundaries is set to zero.

FIG. 5. (a) 2D density distribution Ni
N0

with g ¼ 0; r ¼ 0, and (b) is the 2D
density with classical resistivity g ¼ g0 from electron–ion collisions and drag force
coefficient r ¼ r0 corresponding to ion–ion collision frequency. The potential at
Z=R0 ¼ 620 boundaries is set to zero.
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presented in GTC units, JGTC ¼ en0R0Xcp ¼ 5:33� 106 A=m2, where
Xcp ¼ 5:08� 106 s�1 is the gyrofrequency of a proton at the magnetic
axis B0. Maximum amplitude for poloidal current is 2:4� 10�3, while
the toroidal current ranges from�3:1� 10�2 to 1:3� 10�2.

The inclusion of the convection term, represented by Ui � rUi½ � �
ef in Eq. (12), can play a crucial role in predicting the current distribu-
tion in the SOL. This term can be a main source for radial current Jw,
when ion flow velocity is significant. Including this term ensures the
model accounts for the influence of ion flow inertia, particularly in
regions beyond the mirror throat where the parallel flow can reach val-
ues comparable to the sound speed. Similar level of parallel ion flow
was also reported in previous Q2D simulations.25

When the convection term is omitted in the simulation, the
results show a significant change in the current density distribution,
even though the potential and ion density remain similar to the previ-
ous case with the convection term included. In Fig. 6(b) (without the
convection term for g ¼ g0 and r ¼ r0), the current direction is
reversed near the axis when the convection term is not included.
Maximum amplitude for poloidal current in this case is 1:3� 10�4,
while the toroidal current ranges from�3:0� 10�2 to 8:9� 10�3.

The convection term contributes an additional radial current
Jw ¼ miNi

BS xw
i U

S
i , as derived in Appendix A. Due to a relatively large ion

toroidal flow (shown by the contours in Fig. 6) and parallel flow, a stron-
ger radial current is generated and modifies the current structure in FRC
SOL. Comparing Figs. 6(a) and 6(b), the poloidal current structure can
be correlated with the toroidal flow when the convective effects are con-
sidered in the simulation. Therefore, it can be essential to include the
convection term when predicting the current distribution.

In GTC-X, the convection term is approximated by using the
flow velocity from previous time step. Although such treatment can be

used to achieve a steady-state solution, a more rigorous nonlinear
solver for these terms should be developed in the future works. The
inertial forces effects associated with strong perpendicular flows are
neglected in the current gyrokinetic model in the GTC-X. Systematic
derivation of such effects exists for tokamaks with strong toroidal rota-
tion.48–50 These effects will be incorporated in our future work for a
more consistent simulation of the convection effects in the FRC.

Next, to investigate how the resistivity and drag force can modify
the 2D potential structure, we vary the resistivity g and the drag force
r by applying a multiplicative factor. In Fig. 7, the radial profile of the
potential / at Z ¼ 0 is presented for changing drag force coefficient r
from 1r0 to 50r0, while fixing the resistivity at g0. The dashed line
serves as a reference line from the 1D simulation in Sec. III.

With an increase in r, ions are subjected to stronger drag force,
leading to their redistribution toward the outer radius and the parallel
boundaries. This redistribution moderates the density gradient
observed in the 1D simulation, resulting in a less pronounced potential
drop in the parallel direction. When we fix the potential as zero (end-
shorting boundary) at Z ¼ 620, lower potential is observed at the
center of the simulation domain, as shown in Fig. 7(a).

Since the E� B shearing rate is more relevant in the turbulence
suppression, we also plot the shearing rate, xs ¼ R2B d2/

dw2, in Fig. 7(b).
When the resistivity and drag force coefficient are set to their baseline
values, g ¼ g0 and r ¼ r0, the inclusion of the drag force and the
resistivity smooth out the potential profile which slightly reduces the
shearing rate. However, as r continues to increase, the impact of these
collisional factors on the shearing rate becomes more and more obvi-
ous, due to particle density redistribution. This means, under strong
collisional effects, an accurate estimation of particle density in SOL can
be important for predicting the E� B shearing rate.

In Fig. 8, we carry out a similar parameter scan for the resistivity
g from 1g0 to 50g0, while fixing the drag force coefficient at r0. The
overall potential drop between the 1D simulation and the g ¼ g0,
r ¼ r0 case is mainly due to the inclusion of a drag force r ¼ r0 as

FIG. 7. (a) Radial profile of electrostatic potential e/Te at Z=R0 ¼ 0 with different drag
force coefficient r, when fixing the resistivity g ¼ g0. (b) Corresponding E � B
shearing rates xs in the units of Cs=R0 with different r.

FIG. 6. Panel (a) is streamlines of the 2D current density field with classical resistiv-
ity g ¼ g0 from electron–ion collisions and drag force coefficient r ¼ r0 corre-
sponding to ion–ion collision frequency. In cylindrical coordinates, the streamlines
only indicate the direction of local current. The background contour shows the
amplitude of the toroidal current density. The black arrows are scaled according to
projected current density in poloidal R; Zð Þ plane. The current density is normalized
to GTC-X unit, JGTC ¼ en0R0Xcp. Panel (b) is streamlines of the 2D current field
when we do not include the convection term and the poloidal current is drastically
different.
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we have discussed in Fig. 7. For the case “�g ¼ 50g0; r ¼ r0,” we do
not include the convection term in Eqs. (12) and (17) due to the numeri-
cal stability when including convection term with such a large resistivity.

The inclusion of g near the classical resistivity value has relatively
minor effects on the E� B shearing rate, as compared to the inclusion
of r. As we will see in the following discussion, this is attributed to the
fact that the resistive current term gJ plays a minimal role in balancing
the parallel forces. The predominant factor influencing the potential
change is the alternation of the density profile, which is mainly affected
by the drag force in the current parameter range.

Based on the parameter scan results, we choose a resistivity value
that is five times the classical value, g ¼ 5g0, for subsequent discus-
sions. Past research has indicated that such a resistivity value is more
pertinent for accurately forecasting the C2 FRC plasma’s experimental
evolution.25 The drag force coefficient is equivalent to the ion–ion col-
lisional timescale, r ¼ r0, allowing us to observe the impact of this
added drag force within reasonable simulation timeframe. In future
studies, we anticipate adopting more realistic resistivity and drag force
coefficients once we obtain additional experimental measurements.

To better understand the electron fluid model, we plot out the
electron force balance in Fig. 9 with g ¼ 5g0, r ¼ r0. Along the paral-
lel direction at the middle flux surface R ¼ 1:89 in Fig. 9(c), the elec-
trostatic potential, labeled as “�@S/,” is mainly balanced by the
electron pressure, labeled as “@SPe.” This observation is similar to the
1D case, where the Boltzmann-like response, Eq. (19), can be effec-
tively employed to estimate / based on the ion density. The resistive
current effects “�gJS,” on the other hand, can be negligible when g is
around classical value.

The electron radial force balance at Z ¼ 0 in Fig. 9(a) reveals sig-
nificant contributions from Ui � B and J� B, which together give the
electron flow Ue � B. This toroidal electron flow is then comparable
to therPe and ther/ term in Eq. (7). In the toroidal force balance at
R ¼ 1:89 in Fig. 9(b), the absence of toroidal variations due to the
symmetry condition @

@f ¼ 0 results in a balance between the radial cur-
rent Jw, the ion radial flow Uw and the resistive current Jf. There is an

interesting separation of two regions for the toroidal force balance:
within the mirror throat (Z ¼ 9:37), the radial ion flow and the toroi-
dal resistivity are the main contributions; outside the mirror throat, the
radial ion flow and the radial resistive current dominates the toroidal
force balance. This could be attributed to the increase in ion flow
toward the divertors, which in turn generates a higher plasma current
as the particles exit the SOL.

The force balance can be different when a much higher resistivity
is considered. With g ¼ 100g0, r ¼ 10r0, the force balance is shown in
Fig. 10. All the ion flow velocities are reduced due to the higher collision
frequency. Instead of a dominant toroidal flow and current in Fig. 10(a),
the radial force is now in a complex balance with all terms except for the
resistivity at Z ¼ 0. In the toroidal force balance [Fig. 10(b)], though the
radial current is still mainly carried by the ion flow outside the mirror
throat, the radial transport within the mirror throat are now in a com-
plex balance between, Jw, Uw, and Jf. Based on these considerations, a
simplified electron model from Eqs. (14)–(16) can be proposed:

@

@S
/ ¼ 1

Nee
@

@S
Pe; (23)

Jf
BS ffiffiffi

g
p

Nee
¼ 1

Nee
@

@w
Pe � @

@w
/þ Uf

i B
S ffiffiffi

g
p

; (24)

FIG. 9. Electron force balance of Eqs. (14)–(16), with g ¼ 5g0, r ¼ r0, and with-
out convection term. Panel (a) Electron radial force balance at Z ¼ 0, with contribu-
tions from each term in Eq. (15). Panel (b) Electron toroidal force balance at
R ¼ 1:89, with contributions from each term in Eq. (16). Panel (c) Electron parallel
force balance at R ¼ 1:89, with contributions from each term in Eq. (14). The total
sum (black line) should be zero in all panels.

FIG. 8. (a) Radial profile of electrostatic potential e/
Te

at Z=R0 ¼ 0 with different
resistivity g, when fixing the drag force coefficient r ¼ r0. (b) Corresponding E
�B shearing rates xs in the units of Cs=R0 with different g.
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Uw
i B

S ffiffiffi
g

p ¼ �g?Jf þ Jw
BS ffiffiffi

g
p

Nee
; (25)

where the resistive current effect is mainly considered in the toroidal elec-
tron force balance. The drag force, on the other hand, plays a vital role in
shaping the overall plasma dynamics and enters the electron dynamics
through the radial current Jw and the density distribution in Pe.

V. PENETRATION OF PREASSIGNED BOUNDARY
POTENTIAL PROFILE ALONGMAGNETIC FIELD-LINES

After the detailed analysis of the 2D potential model, the focus
now shifts to understanding how the edge biasing voltage impacts the
potential structure in the confining vessel of the FRC SOL. In experi-
ments, the divertor biasing is achieved by an array of concentric annu-
lar electrodes to achieve discrete voltages at different radial locations,
and these electrodes are insulated from each other.4,5,7 To achieve
smooth potential structures in simulations, we manually select a con-
tinuous radial profile /w instead of discrete potential steps to qualita-
tively resemble the potential drops created by electrodes.

Assuming the Debye sheath drop /D as a function of Te and the
current J, we have the boundary condition /0 ¼ /w � /D Te; Jð Þ. In
parctice, the wall potential can be controlled by the electrodes, allowing

/0 to be determined self-consistently based on temperature and
current data. For the simple Debye sheath we discussed,

/0 ¼ /w þ Te
e ln

ffiffiffiffiffiffiffiffi
mi

4pme

q
can be a fixed potential boundary in the simu-

lations. However, this model assumes zero current through the Debye
sheath. In Sec. VI, we will explore the validity of this assumption and
discuss under what conditions it may hold.

In this section, we explore how changes to the simplified bound-
ary potential affect the 2D equilibrium potential. Notice that the Debye
sheath potential /D in this form is no different than providing an addi-
tional shift of /0 profile. We can produce the desired potential bound-
ary profiles by selecting appropriate wall potentials. However, one
should always keep in mind that this relationship may not hold if /D
also depends on the current, in which case its effects on /0 would be
more complex.

To implement the fixed potential boundary, we first use an ana-

lytic profile /0 wð Þ ¼ /0;max

2 1� tanh 0:34� w�w0
0:29

	 
h i
as the potential

boundary condition at the quasi-neutral plasma edge Z ¼ 620, where

w ¼ w
w1�w0

is the poloidal flux normalized by the simulation domain

size of w0;w1ð Þ, and /0;max is the maximum potential of the radial
profile. For simplification, we describe our simulations by /0 in most
cases since it is directly applied at the boundaries of our simulation
domain. A discussion on the difference between /0 and /w is provided
in Sec. VI.

When there is no resistivity and drag force (g ¼ 0, r ¼ 0), the
potential at the boundary is simply a constant shift of potential value
along each flux surface. Same amount of E � B shear will be added in
the parallel direction, saying that the boundary /0 can be accurately
transfer to the center region of FRC. When the resistivity and drag
force are included, there can be 2D variations due to the radial cou-
pling, so the introduced E � B shear from the potential boundary may
change when penetrating toward the middle region of FRC.

Figure 11 illustrates how the radial potential profile at the plasma
center of Z ¼ 0 can change when we apply different potentials at the
plasma edge of Z ¼ 620. In general, the potential profile we applied
at the boundary introduces a potential shift throughout FRC SOL.
With g ¼ 5g0, r ¼ r0, the resistive gJ term has little effects in the par-
allel electron force balance, as we discussed in Sec. IV. Thus, a solution
similar to Eq. (19) can be obtained, meaning that the total potential
can be separated into two parts: the boundary condition /0 wð Þ and
the Boltzmann-like response due torPe.

In Fig. 11(a), the potential difference between the quasi-neutral
plasma edge (Z ¼ 20) and the center profile (Z ¼ 0) already exists
when a zero potential boundary e/0;max ¼ 0 is used. A density struc-
ture with e/0;max ¼ 200 eV is also provided in Fig. 12(b), which can be
qualitatively compared to Fig. 5(b). The similarity in density structures,
whether or not a non-zero potential profile is applied, leads to a similar
potential drop along the parallel direction in both scenarios.

However, if we take a closer look at the E� B shearing rate in
Fig. 12(b), the situation is more complex than a straightforward super-
position of these effects. Specifically, the E � B shearing at Z ¼ 0 with
e/0;max ¼ 200 eV, denoted as xS Z ¼ 0; 200 eVð Þ, cannot be simply
expressed as the sum of the shearing due to the potential /0 wð Þ, i.e.,
xS Z ¼ 20; 200 eVð Þ, and the shearing caused by original density vari-
ation with zero edge profile, xS Z ¼ 0; 0 eVð Þ. The density structure is
also modified when an edge potential profile is introduced into the

FIG. 10. Electron force balance of Eqs. (14)–(16), with g ¼ 100g0, r ¼ 10r0 and
without convection term. Panel (a) Electron radial force balance at Z ¼ 0, with con-
tributions from each term in Eq. (15). Panel (b) Electron toroidal force balance at
R ¼ 1:89, with contributions from each term in Eq. (16). Panel (c) Electron parallel
force balance at R ¼ 1:89, with contributions from each term in Eq. (14). The total
sum (black line) in each panel should be around zero.
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FRC SOL, and more subtle changes exist in the radial potential
profiles.

To see a stronger effects of the resistive current, we also run a
non-zero /0 case with g ¼ 100g0, r ¼ 10r0 in Fig. 13. Due to stron-
ger effects of the resistivity and the drag force, the radial profile of the
electrostatic potential at Z ¼ 0 can differ more from the applied /0
boundary. The toroidal electron force balance and the drift velocity in
ion dynamics, vF , can both modify the density distribution in FRC
SOL and finally changes the radial potential profile.

VI. DEBYE SHEATH MODEL FOR A BOUNDARY
CONDITION

To conclude the discussion, we want to show that Debye sheath
potential drop can possibly affect the 2D equilibrium potential struc-
ture. As discussed in Secs. III–V, the boundary condition /0 wð Þ is the
potential profile at the edge of the quasi-neutral plasma, so an addi-
tional Debye sheath potential drop should be included if we want to
compare the simulation with the actual potential value /w at the diver-
tor walls. As defined in Sec. III, /0 ¼ /w � /D, the zero boundary
conditions /0 ¼ 0 in Secs. III–V correspond to /w ¼ /D. That is, an
externally applied potential on the divertor wall is set to be identical to
the Debye sheath potential drop.

In Secs. III–V, a simple Debye sheath model was assumed,

/D wð Þ ¼ � Te wð Þ
e ln

ffiffiffiffiffiffiffiffi
mi

4pme

q
, based on a textbook derivation.46 Given

that the electron temperature is predetermined in our model, the
required additional potential drop /D is also a fixed profile throughout
the simulation. Essentially, this approach acts as an offset correction to
the profile /W and leads to a fixed boundary /0 at the quasi-neutral
plasma.

For comparison between the simulations with /w ¼ /D

(/0 ¼ 0) and with /w ¼ 0 (/0 ¼ �/D), we use an electron tempera-

ture profile Te wð Þ ¼ Te0 1:0þ 0:25 tanh 0:34� w�w0
0:29

	 

� 1

h i	 

,

with Te0 ¼ 80 eV. Figure 14(b) illustrates the potential structure under
the /w ¼ 0 conditions. The potential /0 at Z=R0 ¼ 620 is larger at
the inner radius, due to the higher electron temperature from the
specified profile. This leads to a higher Debye sheath potential drop
/Dj j.

When analyzing the differences in the 2D potential structure with
/w ¼ /D and /w ¼ 0, the variations can be elucidated in a manner
akin to what is depicted in Fig. 12(a), but now with a /0 profile
decreasing in the radial direction. Figure 15(b) illustrates the radial

FIG. 12. (a) 2D electrostatic potential e/
Te0
, and (b) density distribution Ni

N0
with g

¼ 5g0 and r ¼ r0. The potential boundary at Z=R0 ¼ 620 is set by a radial pro-
file with a maximum potential of e/0;max ¼ 200 eV at the edge of quasi-neutral
plasma.

FIG. 11. Panel (a) shows radial profiles of electrostatic potential e/Te at Z=R0 ¼ 0
with g ¼ 5g0, r ¼ r0, when maximum boundary potential e/0;max ¼ 0; 80;
200 eV. The dashed line shows the shifted /0 profile, which matches the potential
values at the point R=R0 ¼ 1:4; Z=R0 ¼ 0. Panel (b) is the corresponding E � B
shearing rates xs in the units of Cs=R0.

FIG. 13. Panel (a) shows radial profiles of electrostatic potential e/Te at Z=R0 ¼ 0
with g ¼ 100g0, r ¼ 10r0, when maximum potential e/0;max ¼ 0; 200 eV. The
dashed line shows the shifted /0 profile, which matches the potential values at the
point R=R0 ¼ 1:4; Z=R0 ¼ 0. Panel (b) shows the corresponding E � B shearing
rates xs in the units of Cs=R0.
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force balance incorporating the sheath potential drop as a boundary
condition. Here, an extra E � B flow can be observed if we look at the
radial profile labeled as “�@w/” in Figs. 15(a) and 15(b). This flow
emerges predominantly due to the Debye sheath potential boundary,

where @/0
@w ¼ � @/D

@w .

The Debye sheath potential drop in our simulation, as a simple
function of electron temperature, essentially acts as an additional
adjustment to the /0 profile at the boundary. This model assumes zero
net current through the Debye sheath, Jk ¼ 0, by balancing the ion
and electron contributions. Specifically, at the boundary of the plasma,
the parallel current Jk can be expressed as the sum of the contributions
from ions and electrons, Jk ¼ ZiCik � eCek, where Cik and Cek are
parallel particle fluxes of ions and electrons, respectively.

Given our maintenance of the quasi-neutral condition, the total
ion flow from all boundaries must equal the total electron flow. This

means that any local current entering the region at one boundary must
exit at another. Illustratively, if we examine the radial profile of the par-
allel current at Z ¼ 20 shown in Fig. 6(a), we observe current entering
the region from the larger radius and exiting at the smaller radius, as
further detailed in Fig. 16(a).

Figure 16(b) presents the current flow when a boundary potential
profile with e/0;max ¼ 200 eV was applied. Although a lower potential
at the smaller radius tends to direct currents toward that area, this trend
was not pronounced in our simulations. The current pattern remained
largely unchanged after altering the potential boundary profile, consis-
tent with our earlier findings that most potential variations at the
boundary primarily influence E � B flow. Additionally, the effects of
resistive current terms are relatively minor in the overall force balance.

This observation suggests that assuming zero current through the
Debye sheath and applying a simplified Deba sheath model at the
larger radius may be a reasonable approximation. However, this
should not be considered a definitive conclusion, as our fluid model
includes several simplifications which limits our ability to compare
with actual experiments. In the future, more comprehensive Debye
sheath models will be necessary to accurately match the current and
potential drop near the boundary.

For example, considering a Debye sheath model that
includes non-zero current through the Debye sheath boundary. This
necessitates accounting for the current flow balance Jk ¼ ZiCik
�eCek Te;/Dð Þ at the boundary. Assuming electrons flow out of the
boundary with a half-Maxwellian distribution, we obtain an electron

flux, Cek Te;/Dð Þ ¼ ne0
ffiffiffiffiffiffiffiffi
Te

2pme

q
exp e/D

Te

	 

, from which the Debye sheath

potential can be estimated with the simulated Jk and Cik. However,
this still requires several assumptions, such as a definite flow direction

FIG. 14. (a) 2D electrostatic potential e/
Te0

with a varying Te wð Þ profile and /w

¼ /D (/0 ¼ 0) at Z=R0 ¼ 620, and (b) 2D electrostatic potential e/Te0 with a vary-
ing Te wð Þ profile and /w ¼ 0 (/0 ¼ �/D).

FIG. 15. (a) Electron radial force balance at Z ¼ 0 with a varying Te wð Þ profile and
/w ¼ /D (/0 ¼ 0) at Z=R0 ¼ 620, and (b) electron radial force balance at
Z ¼ 0 with a varying Te wð Þ profile and /w ¼ 0 (/0 ¼ �/D). The total sum (black
line) in each panel should be around zero.

FIG. 16. (a) The radial profiles of currents at Z=R0 ¼ 20 from ions (solid line) and
electrons (dashed line) with g ¼ 5g0, r ¼ r0 and the boundary potential
e/0;max ¼ 0 eV. (b) The radial profiles of currents with a different boundary poten-
tial profile with e/0;max ¼ 200 eV. The area-averaged ion current flow ZiCik over
the radial profile and the total parallel current Jk were also listed in the figure. The
currents are in the units, A=cm2.
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of electrons, i.e., Jk < ZiCik. Also, special attention is meeded when
Cek approaches zero, since /D ! �1 given finite ne0 and Te. These
potential issues underline the need for future tests and implementa-
tions of a self-consistent Debye sheath boundary in the model.

Future investigations will utilize current flow data at the boundary to
explore more sophisticated Debye sheath models and validate them
against experimental data, improving the model’s fidelity. Potential useful
references for developing such sheath boundaries could be the Chapter 3
in a recent textbook by Rozhansky, 202351 and the related treatment in
the SOLPS-ITER code.28,29 The simple Debye sheath model used in this
study mainly acts as a preliminary tool, highlighting the importance of
incorporating a precise sheath model for more accurate simulations.

VII. CONCLUSION

In this paper, an axisymmetric 2D equilibrium potential in the
FRC SOL is simulated by assuming the timescale separation between
the turbulence evolution and the steady-state equilibrium with a preas-
signed potential boundaries. The formulation to calculate the pre-
sheath equilibrium includes a full-f gyrokinetic ion model and a
massless electron model for a quasi-neutral plasma before entering the
microscopic Debye sheath layer or thin magnetic presheath layer. Due
to the particle flow through the SOL toward the divertors, the equilib-
rium presheath potential is intrinsically 2D, which involves the balance
between radial and parallel transport.

Themodel was first verified in a simplified simulation when the resis-
tivity and the drag force on ions are neglected, which reduces the equilib-
rium to 1D. The simplified model uses a Boltzmann-like electron response
and can restore the ion parallel force balance and continuity equation on
each flux surface. The potential boundary in this 1D equilibrium can per-
fectly transfer to the center region of the FRC SOL from the divertors.

After verifying the 1D physics in the parallel direction, parameter
scans were performed to analyze the influences of resistivity and drag
force on the 2D equilibrium. When considering classical resistivity corre-
sponding to electron–ion collisions, the resistive current exhibited mini-
mal effects in electron parallel force balance. The drag force, initially
approximated using the ion–ion collision frequency, induced an outward
transport of particles directed toward the divertors. This results in a
slightly lower potential profile in the center region of the SOL. A more
pronounced impact on electron toroidal force balance and subsequent
radial transport behavior was observed when the resistivity was increased
to two orders of magnitude above the classical value, combined with a
drag force equivalent to ten times the ion–ion collision frequency.

The parallel electron force balance is always Boltzmann-like within
the parameter ranges in this paper, which provides a simple solution to
estimate the potential structure in the FRC SOL. The resistive current
can be important in explaining the electron toroidal force balance, but
not in the electron parallel and radial force balance. The collisional
effects mainly appear through the density profile change, and then mod-
ify the potential structure through electron pressure gradient.

The effects of a changing radial profile of electrostatic potential at
the quasi-neutral plasma boundary were investigated. However, an addi-
tional potential drop, associated with the Debye sheath layer, should be
added for accurate comparisons with the actual potential at the divertor
walls. In this paper, we only explored a simple Debye sheath model by
including a Debye sheath potential drop proportional to electron temper-
ature. This simplified Debye sheath model makes the Debye sheath
potential drop an additional correction to the potential boundary applied

at the edge of quasi-neutral plasma. This can be a rough estimation since
the present simulation settings predicted a relatively small current flow.
However, more accurate Debye sheath model should be considered to
self-consistently match the sheath drop and the current flow, in order to
compare with experimental measurements in the future.

Eventually, the interplay between the potential edge profiles and
the parallel variation of potential due to the density structure within
the SOL will determine the radial electric field at the center of the FRC
SOL. The E � B shearing rates can also be drastically changed under
different resistivity and drag force. An accurate estimation of density
profiles can be a key point in order to correctly predict the electrostatic
equilibrium potential.

Although we have scanned a certain range of parameter space of our
2D model, simulations with a more realistic setting are still required. In
this paper, a uniform density sourcing rate within a fixed simulation region
is used, but the real particle source should be particle transported from the
core region into the SOL region, together with other particle injections,
such as NBI systems and fueling system. More accurate resistivity and
drag force coefficients are also needed, which requires more experimental
data such as the neutrals density. Additionally, current information at the
boundary should also be considered for a self-consistent calculation of
Debye sheath potential drop as we just mentioned. A well-defined Debye
sheath model could significantly enhance the capability to accurately esti-
mate the potential changes near the divertor walls.

Though not discussed in this paper, our full-f scheme has success-
fully replicated the ion temperature gradient (ITG) instability observed
in previous delta-f simulations. This comprehensive full-f scheme holds
promise for future investigations into turbulent transport in FRC, incor-
porating the dynamic 2D equilibrium obtained in this paper.
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APPENDIX A: CALCULATION OF GEOMETRIC TENSOR
AND EQUATIONS IN GENERAL COORDINATES

To implement the fluid model for axisymmetric 2D equilib-
rium potential in GTC-X, we must express Eqs. (12)–(17) in the
field-line coordinates, w; f; Sð Þ. This involves the calculation of geo-
metric tensor

gab ¼ ea � eb; (A1)

where a and b are labels for the three covariant basis vectors, which
are defined as ew ¼ @r

@w, ef ¼ @r
@f, and eS ¼ @r

@S. In GTC-X, we also use
cylindrical coordinates R; f;Zð Þ as the base coordinates system.22

Using transformation functions in cylindrical coordinates, we can
calculate the values of geometric tensor in the physical space

ew ¼ @r
@w

¼ @R
@w
bR þ @Z

@w
bZ; ef ¼ Rbf; eS ¼ @R

@S
bR þ @Z

@S
bZ;

gww ¼ ew � ew ¼ @R
@w

� �2

þ @Z
@w

� �2

; gff ¼ ef � ef ¼ R2;

gSS ¼ eS � eS ¼ @R
@S

� �2

þ @Z
@S

� �2

;

gwS ¼ ew � eS ¼ @R
@w

@R
@S

þ @Z
@w

@Z
@S

:

(A2)

The calculation of contravariant components gab of the geometric
tensor and the Jacobian 1ffiffi

g
p ¼ rw�rf � rS are shown in previous

work by Bao et al.22

Note that the parallel components in the b direction differ
from the projection onto the field-line basis eS. In the FRC geome-
try, the magnetic field without toroidal component is represented as

B ¼ rw�rf ¼ BRbR þ BZbZ, with eS ¼ ffiffiffi
g

p rw�rf. This leads
to the relationship, b ¼ B

B ¼ 1
B
ffiffi
g

p eS. Therefore, the parallel flow can

be related to the covariant component as Ui;k ¼ Ui � b ¼ 1
B
ffiffi
g

p US in

the FRC geometry. By expressing UiS ¼ gSwU
w
i þ gSSUS

i , we can sub-

stitute US
i ¼ g�1

SS UiS � gSwU
w
i

	 

into the equation. The equation set

can be further simplified by recognizing B ¼ Bb ¼ 1ffiffi
g

p eS. Thus,

BS ¼ 1ffiffi
g

p and BS ¼ B2 ffiffiffi
g

p
.

Up to now, we have successfully derived a set of linear expres-
sions for our equations, except for the nonlinear convection term,
Ui � rUi. To address this challenge, one approach is to utilize the
flow velocity from the previous time step and calculate the compli-
cated convection term as a known source term in the current time
step. Because we are interested in the steady-state solution, this
approach can be reasonable, provided that the simulation can
numerically converge. In the future, we may explore the develop-
ment of a nonlinear algorithm to rigorously solve these nonlinear
terms.

By arranging the known terms on the right-hand side and the
unknown variables on the left-hand side, express the equations in a
matrix form

0
@
ffiffiffi
g

p
@w

þ ffiffiffi
g

p @

@w

@
ffiffiffi
g

p
@S

þ ffiffiffi
g

p @

@S
0 0 0

0 �1 0 0 0 �rgff

@

@S
gkgSw gkgSS 0 0 0

@

@w
gk � g?ð Þg2wSg�1

SS þ g?gww gkgwS
1
Nee

0 �1

0 � 1
Nee

0 g?gff 1 0

� @

@w
� gk � g?ð Þg2wSg�1

SS þ g?gww
h i

�gkgwS 0 �
r gww � g2wSg

�1
SS

	 

NiZi

1

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA

/

Jw

JS

Jf

Uw
i

Uf
i

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA

¼

0

miNi Ui � rUi½ � 0ð Þ � ef � �r2U 0ð Þ
i � ef

1
Nee

@

@S
Pe

1
Nee

@

@w
Pe

0
1

NiZi

@

@w
Pi þ rgwS

gSS
UiS þmiNi Ui � rUi½ � 0ð Þ � ew � �r2U 0ð Þ

i � ew
� �

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
: (A3)
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Here, both the convection term and the diffusion term are calculated
using the values from previous time step. To clarify this, we label the
quantities from previous time step with the superscript, “(0).”

To compute the convection term in general coordinates, we

employ the vector identity, Ui � rUi ¼ r� Uið Þ � Ui þr U2
i
2

	 

to

avoid the need for direct derivation on the basis vector. By introduc-
ing the ion flow vorticity, xi ¼ r� Ui, the convection term we
used in Eq. (A3) can then be expressed as

Ui � rUi½ � � ef ¼ r U2
i

2

� �
þ xi � Ui

� �
� ef

¼ ffiffiffi
g

p
xS

i U
w
i � xw

i U
S
i

	 

;

Ui � rUi½ � � ew ¼ r U2
i

2

� �
þ xi � Ui

� �
� ew

¼ @

@w
UiaUa

i

2

� �
þ ffiffiffi

g
p

xf
i U

S
i � xS

i U
f
i

	 

;

(A4)

where

xw
i ¼ r� Ui � rw ¼ � 1ffiffiffi

g
p @Uif

@S
;

xf
i ¼ r� Ui � rf ¼ 1ffiffiffi

g
p @Uiw

@S
� @UiS

@w

� �
;

xS
i ¼ r� Ui � rS ¼ 1ffiffiffi

g
p @Uif

@w
:

(A5)

Again, we exploit the symmetry in the toroidal direction, @
@f ¼ 0,

and UiaUa
i sums over all the coordinate components.

Similarly, we can use the identity, r2Ui ¼ r r � Uið Þ � r
� r� Uið Þ, to reformulate the diffusion term in the general
coordinates

r2Ui � ef ¼ r r � Uið Þ � r � r� Uið Þ½ � � ef
¼ 1ffiffiffi

g
p @

@S
xi;w � @

@w
xi;S

� �
;

r2Ui � ew ¼ r r � Uið Þ � r � r� Uið Þ½ � � ew
¼ � @

@w
1ffiffiffi
g

p @

@w
ffiffiffi
g

p
Uw

i

	 

þ 1ffiffiffi

g
p @

@S
ffiffiffi
g

p
US

i

� �" #
� 1ffiffiffi

g
p @

@S
xi;f;

(A6)

where xiw ¼ gwwx
w
i þ gwSxS

i ; xif ¼ gffx
f
i ; xiS ¼ gSwx

w
i þ gSSxS

i .

APPENDIX B: CALCULATION OF PRESSURE TENSOR IN
FRC GEOMETRY

For a general pressure tensor, P ¼ Pk � P?ð Þbbþ P?I, with
different pressure in parallel and perpendicular direction, we can
take the divergence as

r � P ¼ r� brk
� �

P? þ brkPk þ Pk � P?ð Þr � bb: (B1)

The first two terms can reduce to the rP term in Eqs. (7)–(10),
when we equate P ¼ Pk ¼ P?. The r � bb will only appear when
the pressures are distinct in different directions. To calculate this
additional term, we use the identity r � bb ¼ b r � bð Þ þ b � rb
and notice b � rb ¼ �b� r� bð Þ.

For FRC geometry, r� b ¼ r� bð Þfbf is only in f direc-
tion,22 so we can write

b � rb ¼ r� bð Þ � b ¼ r� bð Þf
R

ef � 1
B
ffiffiffi
g

p eS ¼ r� bð Þf
RB

ew;

b r � bð Þ ¼ � brkB
B

;

with

r� bð Þf ¼
1
B

@BR

@Z
� @BZ

@R

� �
þ @B

@R
bZ � @B

@Z
bR

� �� �
in R; f;Zð Þ coordinates; (B2)

where we have used 1ffiffi
g

p ef � eS ¼ ew. Now, the pressure tensor in
FRC geometry becomes

r � P ¼ r� brk
� �

P? þ brkPk

þ Pk � P?ð Þ � 1
B
brkBþ r� bð Þf

RB
ew

� �
: (B3)

We simply need to replace @P
@S by

@Pk
@S þ P? � Pkð Þ 1

B
@B
@S

h i
, and @P

@w

by @P?
@w þ Pk � P?ð Þ r�bð Þf

RB

h i
for any species in Eqs. (12)–(17), to

account for the additional effects from r � bb term in the pressure
tensor.
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