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Abstract
We present a comparative study of transport in two optimized stellarator configurations:
Wendelstein 7-X (W7-X) and a recent design called quasi-symmetric turbulence konzept
(QSTK). Using global gyrokinetic toroidal code, we explore the role of zonal flows (ZFs) in
suppressing electrostatic ion temperature gradient (ITG) driven turbulence in both
configurations. The simulations reveal that ZFs significantly reduce ion heat transport in both
W7-X and QSTK, with a lower value of heat flux on the latter configuration, as suggested by the
apparently higher linear threshold (‘critical’) gradients for ITG modes. The study also highlights
that both stellarators exhibit similar mode structures. The results support the notion that linear
stability measures, in combination with nonlinear stabilization by ZFs, can play an important
role in the suppression of nonlinear heat fluxes.
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1. Introduction

Recent advancements in stellarator [1, 2] design and tech-
nology have significantly improved their plasma confine-
ment capabilities, rendering them an increasingly promising
approach in fusion research alongside the well-established
tokamak designs. The stellarator has advantages over the toka-
mak, for instance, the toroidal current, steady state operation,
and lower magnetohydrodynamic (MHD) activity. However,
these advantages come at the cost of breaking toroidal sym-
metry, which can lead to an increase in collisional transport,
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coupling ofmacro- andmicro-instabilities, and stronger damp-
ing of zonal flows [3, 4]. Design and optimization [5] of stel-
larators have led to better plasma confinement in cases like
Wendelstein 7-X (W7-X) [6], which have achieved a per-
formance closer to tokamaks. It has been confirmed that neo-
classical transport in W7-X is reduced with respect to non-
optimized stellarators [5, 7]. However, turbulence has played
a dominant role in limiting plasma performance in W7-X for
specific heating scenarios [8].

A primary obstacle in plasma confinement is the excita-
tion of micro-instabilities such as the ion temperature gradient
(ITG) and the trapped electron mode (TEM). Turbulence asso-
ciated with these drift wave instabilities can degrade plasma
confinement by transporting energy and particles. In modern
stellarator experiments such as W7-X, advanced diagnostic
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techniques like phase contrast imaging are employed to meas-
ure and characterize ITG and TEM behavior [9]. It has been
found that the stability of the ITG mode depends upon the
gradient ratio ηi = Lni/LTi , where 1/LX =−(1/X)(dX/dr) is
the gradient length scale. The critical gradient (CG) is the
threshold gradient for the onset of the ITG mode. One way
to combat losses from ITG is to increase the size and heating
power of the stellarator [10]. Another way is to address ITG
itself by changing the plasma profiles [11]. Also, radio fre-
quency waves can be used to stabilize these micro-instabilities
in fusion plasmas [12, 13].

In addition to these strategies, shaping the magnetic field
can further reduce losses due to micro-turbulence in the
plasma core. Certain implementations of this strategy tar-
get the CG of the mode [10], (CG-approach), producing the
HSK stellarator, which exhibits the most significant CG at
half radius of all known stellarators. It has also been shown
in [10] that this strategy can target the CG of the toroidal
branch of the ITG mode without compromising MHD sta-
bility. Such optimization produces a quasi-helical symmet-
ric configuration quasi-symmetric turbulence konzept (QSTK)
with strongly reduced ITG turbulence and acceptable levels of
neoclassical losses, and MHD stability, leading to improved
ion confinement.

The QSTK configuration, as visualized alongside W7-X in
figure 1, has Nfp = 6, an aspect ratio of 7.5, neoclassical trans-
port coefficient ϵeff < 1% up to half radius, large rotational
transform>1.6 and≃5% alpha particle neoclassical losses for
particles initialized at half radius. QSTK also features good
MHD stability, small bootstrap current, and it admits coils of
moderate complexity. In addition, flux-tube based gyrokinetic
simulations suggest that the heat flux is significantly reduced
compared to W7-X [10].

Several gyrokinetic simulations of micro-turbulence in stel-
larators have been done previously. For example, the global
code EUTERPE [14, 15] was used to study the effects of
radial electric field on linear ITG instability inW7-X and LHD
[16]. The effect of density gradient and micro-instabilities on
turbulent heat transport in stellarators was performed with
flux-tube code stella[17]. The electromagnetic gyrokinetic
Vlasov flux-tube code GKV was used to study the impact of
isotope ion mass on TEM driven turbulence and zonal flow
(ZF) in LHD stellarators [18]. The GENE flux-tube simulation
has been used to study the effect of ZF dynamics and turbu-
lent transport in stellarator geometry [19]. The codes GENE-
3D, KNOSOS, and TANGO were used to compute the plasma
profiles due to the combined effect of neoclassical transport,
turbulent transport, and external particles inW7-X, QSTK and
HSK stellarators [20, 21]. The GT5D code performed full-f
global simulations in LHD and the collisionless ZF damping
[22]. Global XGC-S [23] and GENE-3D [24] were used to
carry out micro-turbulence simulations using adiabatic elec-
trons in W7-X and LHD. The global gyrokinetic toroidal code
(GTC) was used to perform the nonlinear global gyrokinetic
simulations of micro-turbulence in LHD and W7-X, includ-
ing the kinetic effect of electrons in stellarators [3, 25, 26].

In addition to these efforts, global fluid simulation of plasma
turbulence in stellarators has been carried out using the GBS
[27] and BSTING [28, 29] codes.

In previous works [3, 25, 26], the global GTC has been
used to perform nonlinear global gyrokinetic simulations of
micro-turbulence in LHD andW7-X, including the benchmark
of ITG simulations with EUTERPE [30], the suppression of
ITG by neoclassical ambipolar electric field and its effects on
microturbulence in W7-X stellarator [31], the isotope effects
[32], the geometry effect on ZF [33], and the kinetic effect of
electrons in stellarators. In this paper, we compare the effect
of ZF on the turbulent transport driven by ITG turbulence
with adiabatic electrons for the stellarators W7-X and QSTK.
Recently, Carralero et al, have shown agreement between the
experimental observations and the gyrokinetic simulation of
low-frequency ZF using local (Stella) and global (EUTERPE)
codes [34]. Also, it is important to mention that these simu-
lations are very long and focused explicitly on resolving very
low-frequency (sub-kHz) oscillation to compare specifically
with the experimental measurements. The paper is organized
as follows: First, in section 2, we briefly present the physics
model and the numerical code employed. Then, in section 3,
we study the linear simulation of ITG in both stellarators. In
section 4, we perform the nonlinear simulations and evaluate
the effect of ZF on the ITG turbulence.We conclude with some
discussion in section 5.

2. Simulation model

In this paper, we use the global nonlinear code GTC [35]
to perform collisionless gyrokinetic simulations of micro-
turbulence. GTC has been extensively applied to simulate neo-
classical and turbulent transport [26, 36–39], Alfvén waves
[40, 41], energetic particles [42, 43], and radio frequency
waves [44–46] in toroidally confined plasmas.

GTC interfaces with VMEC [47], an ideal MHD code,
to obtain the non-axisymmetric equilibrium of QSTK and
standard W7-X configuration, considering closed magnetic
surfaces. This equilibrium data contains information on pol-
oidal current, toroidal current, and magnetic field described as
Fourier series in poloidal and toroidal direction, given by,

F (ψ,θ,ζ) =
∑
n

[Fc (ψ,θ,n) cos(nζ)

+Fs (ψ,θ,n) sin(nζ) ]

where (ψ,θ,ζ) are the poloidal flux, poloidal angle and tor-
oidal angle, respectively. Here, n is the toroidal harmonic num-
ber and Fc and Fs are the Fourier coefficients specified on
rectangular equilibriummesh on the ζ = const. poloidal plane.
GTC uses a global field-aligned mesh in real-space coordin-
ates, which is used to represent all turbulence quantities. This
provides computational efficiency without imposing any geo-
metrical approximations and only needs a small number of
grid points in the parallel directions to resolve the drift-wave
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Figure 1. The magnetic field of the two stellarators: (left) QSTK;
(right) W7-X on the flux surface with ψ/ψw = 0.57; the colors
represent the corresponding strength of the magnetic fields.

eigenmode structure due to the anisotropic nature of micro-
turbulence. Due to the toroidal asymmetry in stellarators, more
toroidal grid points are required than tokamak for generating
3D equilibrium quantities. In GTC, we use extra grid points
between every two turbulence grid points for generating the
equilibrium mesh, on which equilibrium magnetic fields are
calculated and used to push particles. Also note that the QSTK
has 6 field periods (Nfp = 6), while the W7-X stellarator has
5 field periods (Nfp = 5) i.e. all equilibrium quantities have a
periodicity of 2π/Nfp in the toroidal direction. Therefore, we
have constructed the spline on the equilibrium mesh for a field
period of ζ = [0,2π/Nfp] with the toroidal periodicity expli-
citly enforced at ζ = 0 and 2π/Nfp.We exploit the 2π/Nfp peri-
odicity, to simulate one period of each configuration, instead
of the full torus.

In the present work, we assume that the electrons follow a
Boltzmann distribution. The collisionless gyrokinetic Vlasov
equation, which describes the thermal ions in an inhomogen-
eous magnetic field, is given by [25, 26, 48]

d
dt
f
(
X,µ,v||, t

)
=

[
∂

∂t
+ Ẋ ·∇+ v̇||

∂

∂v||

]
f = 0;

Ẋ= v||b+ vd + vE (1)

where, v̇|| = − 1
m
B∗

B
· (µ∇B+Zi∇ϕ)

vd =
v2||
Ω

(∇× b)+
µ

mΩ
(b×∇B)

vE =
c
B

(b×∇ϕ)

where f(X,µ,v||, t) is the particle distribution function, with X
is the gyrocenter position, µ is the magnetic moment, v|| is the
parallel velocity, Zi is the ion charge,m is ionmass, andϕ is the
electrostatic perturbed potential.B is the equilibriummagnetic
field at the particle position, B∗ = B+

Bv||
Ω ∇× b, and b= B

B .
In the present work, we retain the ZF generated by the ITG
turbulence, while neglecting the equilibrium radial electric
field.

To reduce the particle noise in the simulation, GTC uses the
δf method [49]. In this scheme, we decompose the distribution
function into an unperturbed equilibrium part and a perturbed
part as f = f0 + δf. Further, the propagator in equation (1) can
be separated into an equilibrium part L0 and a perturbed part,
δL so that the equation (1) can be written as (L0 + δL)( f0 +
δf) = 0, where

L0 =
∂

∂t
+
(
v||b+ vd

)
·∇− 1

m
B∗

B
· (µ∇B) ∂

∂v||
,

δL= vE ·∇− 1
m
B∗

B
·Zi∇ϕ

∂

∂v||
.

The equilibrium distribution function f 0 is determined by
the condition L0f0 = 0. The solution of this equation is approx-
imated to be the local Maxwellian

f0 =
ni

(2πTi/m)
3/2

exp

(
−
2µB+mv2||

2Ti

)

where ni and Ti are the equilibrium ion density and temper-
ature, respectively. Next, we define the particle weight w=
δf/f0, and the evolution of this dynamical variable correspond-
ing to thermal ions is given by

dw
dt

= (1−w)

[
−vE ·

∇f0
f0

+
Zi
mf0

B∗

B
·∇ϕ ∂f0

∂v||

]
. (2)

We note from equation (2) that we have neglected the neo-
classical effect, since the term vd ·∇f0 does not appear in the
above equation. The electrostatic potential ϕ is obtained from
the following gyrokinetic Poisson equation [37, 38, 50],

ϕ− ϕ̃ =
Ti
niZ2i

(Zin̄i − ene) , (3)

where ϕ̃ is the second gyro averaged potential, n̄i and ne are the
ion and electron guiding center density, respectively. In GTC,
we can decompose the electrostatic potential ϕ and ion density
perturbation n̄i into zonal and non-zonal components as

ϕ = ⟨ϕ⟩+ δϕ,

n̄i = ⟨n̄i⟩+ δn̄i,

with ⟨δϕ⟩= 0, ⟨δn̄i⟩= 0, ⟨δne⟩= 0 and the ⟨· · · ⟩ represent
flux-surface averaging. The non-zonal part of gyrokinetic
Poisson equation thus becomes

δϕ− δϕ̃ =
Ti
niZ2i

(Zi δn̄i − e δne) ; (4)

δϕ̃ =
1
2π

ˆ
d3v
ˆ

d3X f0 (X) δϕ̄(X) δ (X+ρ− x) (5)

where δne = n0eδϕ/Te, Te is the electron temperature. x andX
are the particle position and the particle guiding center position
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coordinates, respectively, and ρ is the gyro-radius vector. δϕ̄
is the first gyro-averaged perturbed potential given by

δϕ̄(X) =
ˆ

d3x
ˆ

dα
2π

δϕ(x) δ (x−X−ρ) ,

where α denotes the gyro-phase. Similarly, the ion perturbed
density at the location of the guiding center is given by

δn̄i (x) =
ˆ

d3X
ˆ

dα
2π

δf(X) δ (x−X−ρ) .

A finite difference method is used to obtain the non-zonal
electrostatic potential, while the flux-surface average gyrokin-
etic equation for the zonal component of electrostatic potential
is computed using traditional integration in GTC.

3. Linear simulation of ITG in stellarators

3.1. ITG instability in W7-X

We apply the same plasma profiles for both QSTK and
W7-X to simulate the linear and nonlinear physics of ITG tur-
bulence in the two optimized stellarators and the effect of ZF.
In figures 2 and 3 we show the temperature profile and safety
factor, respectively, for W7-X and QSTK. The ion density ni,
electron density ne, and electron temperature Te are assumed to
be constant along radius, i.e. ηi =∞. The definition of radial
coordinate is r= a

√
ψ/ψw, with a the minor radius corres-

ponding to ψw. The temperature gradient length scale, meas-
ured relative to the minor radius a, is defined as(

a
LTm

)
=−2

∂ lnTm
∂ψ̃

√
ψ̃, where

1
LTm

=−∂ lnTm
∂r

(6)

Here, ψ̃ = ψ/ψw, withm= {i,e} and ψw represents the flux at
the last close flux surface. The boundaries of the radial sim-
ulation domain are ψinner = 0.05ψw and ψouter = 0.7ψw. The
maximum value of the ITG length scale measured relative to
minor radius is 1.21 as shown in figure 2. Other parameters
used in the simulation are major radius R0 = 5.58 m, magnetic
field on axis B0 = 2.79T and electron temperature Te = 6.50
keV. After the convergence test, we use 9 parallel grid points,
121 radial grid points, 4400 poloidal grid points, 200 ions per
cell, and∆t= 0.01R0/Cs where Cs/R0 = 14.11× 104s−1 and
Cs =

√
Te/mi is the ion acoustic speed. Figure 4(left) repres-

ents the electrostatic potential of ITG mode on ζ = 0 poloidal
plane during the linear phase of the nonlinear simulation at
t= 25.0R0/Cs. The mode is localized at the outer mid-plane,
where the curvature is bad in the toroidal angle with a bean-
shape cross section, and it peaks around ψ ∼ 0.51ψw. The
mode amplitude peaks at the flux value where the poloidal har-
monic number is m= 82, and the corresponding toroidal har-
monic number is n= 71 with a frequency of wr = 1.54Cs/R0.
Themode propagates in the ion diamagnetic direction having a
growth rate of γ = 0.51Cs/R0, and normalized perpendicular
wave number k⊥ρi = 0.55.

Figure 2. (Left) radial profiles of equilibrium ion (blue) and
electron (red) temperatures. Both quantities are normalized by Temag ,
the electron temperature on-axis. (Right) we plot the quantity a/LTm
{m = {ions, electrons}} as defined in equation (6). The dashed
vertical lines indicate the simulation domain.

Figure 3. Safety factor (q) for both W7-X (red) and QSTK (blue)
are shown in continuous curve and the dashed lines indicate the
simulation domain.

3.2. ITG instability in QSTK

The linear ITG simulations for QSTK employ identical spatial
resolutions and plasma profiles as those utilized in above ana-
lysis forW7-X. The simulation domain is restricted toψouter =
0.7ψw due to numerical issues in the QSTK EFIT data. The
plasma profile parameters are carefully chosen to ensure the
mode is localized within the computational domain, prevent-
ing boundary artifacts. The simulation time step used for the
linear simulation is∆t= 0.02R0/Cs with Cs/R0 = 9.37× 104

sec−1. Furthermore, the major radius for the QSTK is R0 =
8.40 m, and the magnetic field on axis value is B0 = 1.01T.
In figure 4(right) we show the mode structure of the electro-
static potential of ITG on the ζ = 0 poloidal plane for QSTK
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Figure 4. The normalized electrostatic perturbed potential, eδϕ/Te, on the ζ= 0 poloidal plane in the linear phase, at t= 25.0R0/Cs for
W7-X (left) and at t= 37.5R0/Cs for QSTK (right) with the ITG a/LTi = 1.21. The black curves represent the inner and outer simulation
boundaries. We choose the simulation domain upto ψouter = 0.7ψw since there is a numerical issue with the EFIT data in QSTK. Also, we
choose the plasma profile in a manner so that the mode does not spreads to the boundary of domain.

during the growing phase of the nonlinear simulation at t=
37.5R0/Cs. The poloidal mode number and the toroidal mode
numbers at the location where the eigenmode peaks (ψ ∼
0.52ψw) arem= 59 and n= 63, respectively, with a frequency
wr = 2.64Cs/R0 propagating in the ion diamagnetic direction
with growth rate γ = 0.35 Cs/R0 and normalized wave num-
ber k⊥ρi =0.75. While the normalized temperature gradient
a/LTi is chosen to be the same in both QSTK andW7-X cases,
the absolute ITG length scale LTi differs due to differences in
the local geometry and equilibrium parameters. In both QSTK
and W7-X, the linear mode structures of ITG resemble the
typical ballooning structure, localized on the outer midplane,
and the widths of the linear modes (full width at half max-
imum) for both stellarators have almost similar values of 0.06
in units of r/a. At both sides of the radial simulation domain,
fixed boundary conditions are applied for all fluctuating
quantities, and all the out-of-boundary particles are brought
back into the simulation domain through energy-conserving
boundary conditions and by setting particle weight to be
zero.

4. Nonlinear ITG simulations

In this section, we focus on the turbulence features for QSTK
and W7-X using the same plasma profiles. Specifically, we
study the effect of ZFs on the collisionless ITG saturation
mechanism in both W7-X and QSTK. The spatial resolutions
and the marker particle numbers for these nonlinear simula-
tions are the same as the linear cases; however, the time step
for these simulations is ∆t=0.01R0/Cs. Figure 5 represents
the contour plots of the electrostatic potential in the nonlinear
phase of ITG micro-turbulence in the absence (via numerical
suppression) and presence of ZFs for the QSTK and W7-X
stellarators. When ZFs are artificially removed in the non-
linear phase, the linear mode structure spreads radially from

the linear eigenmode due to nonlinear toroidal mode coup-
ling figures 5(a) and (c). Once we include ZFs in the sim-
ulation, the zonal shear breaks these eddies into fine struc-
tures figures 5(b) and (d) similar to turbulent self-regulation by
ZFs in the tokamak [35]. To demonstrate the effect of ZFs on
the electrostatic potential, we have calculated the root-mean-
square value of δϕ in the absence and presence of ZFs as the
flux surface averaged radial electric field generated by turbu-
lence at the nonlinear stage at t= 55R0/Cs, and for QSTK
at t= 65R0/Cs, see figure (6). The difference in turbulence
potential, shown by the red and blue lines, highlights the sup-
pression of ITG turbulence by ZFs in both configurations.
In W7-X, the suppression is ∼2.1 times, while in QSTK, it
is ∼5.9 times, including ZFs, compared to the case without
ZFs. This demonstrates the significant role of ZFs in reducing
ITG-driven turbulent transport [25] in these two optimized
stellarators.

To further evaluate the ZF effect, we have analyzed the
poloidal spectrum of the time-averaged electrostatic potential
during the nonlinear phase. Figure 7 shows the time-averaged
poloidal wave number spectrum for QSTK (left) and W7-X
(right) in the presence and absence of ZFs. For QSTK, we
consider the time average from 65.05R0/Cs to 72.5R0/Cs and
for W7-X, from 47.5 R0/Cs to 52.5 R0/Cs. The wave num-
ber spectra are broad due to the nonlinear mode coupling
kθ ∈ [0,0.15] mm−1 and kθ ∈ [0,0.4] mm−1 for QSTK and
W7-X, respectively, in the absence of ZFs. Interestingly, in
figure 7, it is shown that the poloidal wave numbers move
to a rather low value for QSTK, whereas high poloidal wave
numbers still dominate for W7-X. We conjecture that this is a
result of the effects of CG optimization, which, by increasing
the gradient of the binormal coordinate along magnetic field
lines (see figure 8), stabilizes ITG modes with large poloidal
wavenumbers relative to those with lower wavenumbers. The
resulting low wavenumber modes are driven more weakly by
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Figure 5. Contour plots of the electrostatic perturbed potential in the nonlinear phase for both machines with ion temperature gradient
a/LTi = 1.21. (a) QSTK without ZFs, (b) QSTK with ZFs at t= 55.0R0/Cs, (c) W7-X without ZFs, (d) W7-X with ZFs at t= 45.0R0/Cs.
The black curves indicate the inner and outer simulation boundaries.

Figure 6. The flux surface variation of root-mean-squared electrostatic perturbed potential (δϕrms) with (blue line) and without (red line) ZF
and the radial electric field (Er) (black line) from the turbulence at the saturation stage of ITG turbulence at time t= 55R0/Cs for W7-X
(top) and t= 65R0/Cs QSTK (bottom). The electrostatic potential is normalized with Te/e, and the radial electric field resulting from the
turbulence is normalized with

√
Te/e. The ion temperature gradient, in this case, is a/LTi = 1.21.
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Figure 7. The poloidal wave number spectrum in QSTK (Left) and W7-X (Right) for the ion temperature gradient a/LTi = 1.21. The
poloidal wave number decreases for both configurations in the presence of ZFs. For QSTK, the poloidal spectrum is plotted by taking the
average over the saturation phase t= [65.0,72.5]R0/Cs with and without ZFs. For W7-X, the same quantity is plotted by averaging over
t= [32.5,40]R0/Cs with and without ZFs.

toroidal curvature (through the drift factor vd in the gyrokin-
etic equation) and are thus expected to have smaller relative
growth rates.

Finally, to quantify the ZF effect on micro-turbulence, we
computed the transport coefficients in these two configurations
in the presence and absence of ZFs. Figure 9(a) shows the
time trace of ion heat conductivity, which is calculated in GTC
as [37]

χi =
1

⟨|∇ψ|2⟩ni ∂Ti∂ψ

⟨ˆ
d3vδf

(
1
2
miv

2 − 3
2
Ti

)
vE ·∇ψ

⟩
.

(7)

To calculate the above quantity, we first evaluate the term
in numerator and the terms ⟨|∇ψ|2⟩ni in denominator. We then
divide the whole quantity by the maximum value of ∂Ti/∂ψ
(as shown in figure 2) to get the value of χi. We calculate
the reduction due to ZFs by taking the mean value of the
χi in the saturated regime as shown in figure 9(a). The res-
ults for this reduction is presented in table 1. We also per-
formed a scan in ITGs (a/LTi = [1.21,2.42,3.63]), retaining
ZFs, and calculated the normalized ion heat diffusivity in the
figure 9(b). QSTK has lower ion heat diffusivity over the entire

range of gradients, even above the apparent ITG threshold
near a/LTi = 1.2. The more modest (though still significant)
suppression factors at higher gradients are expected once the
CGs of both configurations are exceeded, as appears to be
the case in light of the a/LT scan shown in figure 9(b), since
both configurations produce finite heat fluxes at these gradi-
ents. In figures 9(c) and (e), we present the time evolution
of the radial profile of χi for QSTK and W7-X, respectively.
Similarly, in figures 9(d) and (f), we plot the corresponding
shearing rate defined as ωE = (∂2⟨ϕ⟩/∂ψ2)(∆r/∆θ)RBθ/q
[51] where,∆r and r∆θ are the radial and poloidal correlation
lengths, respectively, and Bθ is the poloidal magnetic field.
We assume that the radial and poloidal correlation lengths are
equal for the purpose of evaluating ωE. We observe that W7-X
exhibits a higher shearing rate than QSTK. The ZF generated
during nonlinear ITG saturation is rapidly damped by colli-
sionless magnetic pumping effects [52], resulting in a lower
residual level. Linear GTC simulations indicate higher resid-
ual levels for QSTK (0.48) compared to W7-X (0.27). A key
feature of figures 9(c)–(f) is that the nonlinear frequency of ZF
inW7-X is higher than inQSTK.Additionally, the radial struc-
ture of QSTK is more coherent and stable than that of W7-X,
suggesting a stronger nonlinear instability of ZFs in W7-X.
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Figure 8. Geometric quantities entering the gyrokinetic equation, plotted along the standard flux tube on the outboard midplane at ζ= 0,
illustrating the difference in drift curvature and squared gradient of the binormal coordinate∇y at the radius ψ/ψedge = 0.25, for both
QSTK and W7-X. The y coordinate corresponds to the field line label α, B=∇ψ ×∇α, such that y=

√
ψ0/ψw (q(θ− θ0)− ζ), with ψ0

the chosen flux surface, q0 the safety factor at that surface, and θ0 the ballooning angle. The horizontal axes of both plots are in units of arc
length normalized to the respective minor radius a of each configuration, while the vertical axes are dimensionless but also normalized to
the minor radius of each respective configuration. One toroidal turn is chosen for the extent along the field line in both cases. (a) The drift
curvature Ky = (1/B2)B×∇B ·∇y showing a narrower connection length between ‘good’ (positive) and ‘bad’ (negative) curvature for
QSTK compared to W7-X. (b) Plotting gyy = |∇y|2 shows that that |∇y|2 is noticeably larger for QSTK at the central unstable bad curvature
well near ℓ= 0, suggesting enhanced finite Larmor radius stabilization at larger poloidal wavenumbers. We also plot the metric quantities
using the GTC code. gθθ for (c) QSTK and (d) for W7-X. gζζ for (e) QSTK and (f) for W7-X.
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Figure 9. (a) Comparison of ion heat conductivity (χi) in QSTK and W7-X, with and without ZFs for the ion temperature gradient
a/LTi = 1.21. We find that there is a numerical instability for the case of without ZF in the case of W7-X at late times. (b) In the presence of
ZFs, the normalized ion heat diffusivity in gyro-Bohm units is plotted as a function of the ion temperature gradient. We see that the
normalized ion heat diffusivity is lower in QSTK compared to the W7-X over the entire range of ion temperature gradient. The time
evolution of the radial profile of χi for QSTK and W7-X is shown in (c) and (e), while the corresponding shearing rates are presented in (d)
and (f), respectively, for a/LTi = 1.21.
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Table 1. Comparison of the effect of ZF for the two stellarators. We
compare the ion heat conductivity (χi) in the nonlinear regime for
the two cases listed below. The reduction (= χiwoZF/χiwzf ) is
calculated by taking the ratio of the mean of χi in the nonlinear
regime shown in figure 9(a). We also compare the effect of
temperature gradient on the reduction of χi in the presence of ZFs in
the two machines.

Case a/LTi

Reduction
in χi

W7-X (w/o ZF) vs QSTK (w/o ZF) 1.21 ∼34.12
W7-X (w/ ZF) vs QSTK(w/ ZF) 1.21 ∼27.25
W7-X (w/ ZF) vs QSTK(w/ ZF) 2.42 ∼8.6
W7-X (w/ ZF) vs QSTK(w/ ZF) 3.63 ∼4.9

5. Conclusion and discussion

In this work we have carried out the study of ITG-driven tur-
bulence in the optimized stellarators W7-X and QSTK. The
latter design resulted from a recent optimization study that
targeted the CG of the ITG mode [10]. We found a sensitiv-
ity of the turbulence saturation level on the ZFs. The ion heat
flux, differed by a large factor (∼ 34) between the two stel-
larators at the lowest gradient, where QSTK is close to the
ITG marginality. Such a large relative factor at this gradient
suggests a threshold behavior in line with the targeting of a
high linear CG for ITG modes in QSTK. At higher temper-
ature gradients, apparently above this threshold, QSTK con-
tinues to enjoy lower nonlinear heat fluxes in comparison to
W7-X, perhaps in part because of reduced linear growth rates
for ITG modes. We thus expect CG optimization to continue
to be useful in guiding stellarator design for reduced ion trans-
port, whether as a result of improved thresholds at low gradi-
ents, lower growth rates at high gradients, or through some
interplay of the two effects. ZF generation is more pronounced
when ITG turbulence is near marginal stability, i.e. when the
linear growth rate is low. In such conditions, ZFs can persist
longer and effectively suppress turbulent transport, as illus-
trated in figure 9. This study provides valuable insights into
how 3Dgeometries, such asQSTK andW7-X stellarators offer
a crucial tool for designing and optimising new stellarators.
However, the ultimate determinant of a stellarator’s feasib-
ility as a fusion reactor will be the level of turbulent trans-
port, with the ability to self-regulate playing a pivotal role.
The present focus of this paper is to study the ZF physics
with adiabatic electrons. However, the kinetic electrons will
play a significant role in evaluating more accurate heat flux as
described in detail in [25, 53, 54], which will be carried out in
future work.
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