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Abstract
The accurate identification and control of plasma instabilities is important for successful fusion
experiments. First-principle simulations that can provide physics-based instability information
such as the mode structure are generally not fast enough for real-time applications. In this
work, a workflow has been presented to develop deep-learning based surrogate models for the
first-principle simulations using the gyrokinetic toroidal code (GTC). The trained surrogate
models of GTC (SGTC) can be used as physics-based fast instability simulators that run on the
order of milliseconds, which fits the requirement of the real-time plasma control system. We
demonstrate the feasibility of this workflow by first creating a big database from GTC
systematic linear global electromagnetic simulations of the current-driven kink instabilities in
DIII-D plasmas, and then developing SGTC linear internal kink instability simulators through
supervised training. SGTC linear internal kink simulators demonstrate predictive capabilities
for the mode instability properties including the growth rate and mode structure.
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1. Introduction

In real-time toroidal plasma experiments, accurate physics-
based information of plasma instabilities can provide impor-
tant guidance for successful plasma control [1]. For example,
the neoclassical tearing mode (NTM) [2] is one of the most
commonly observed causes for plasma major disruption [3],
which is the abrupt loss of plasma confinement accompa-
nied by large instantaneous energy transport that can dam-
age the experimental device, especially for larger future toka-
maks. The identification, predictions and control of the plasma
perturbations that can excite NTM, such as the sawtooth
oscillations [4, 5], form the basis for effective NTM control
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and early disruption alarms. ITER is the next-step interna-
tional toroidal fusion reactor towards unlimited carbon-free
energy [6]. Currently, the construction and design of ITER
operations and the plasma control system (PCS) are partially
dependent on the empirical extrapolation of instabilities, trans-
port and other confinement properties from smaller experi-
mental devices around the world [1, 7]. First-principles based
study of plasma instabilities can improve the understanding
and prediction of the dynamics and transport at the plasma
core [8, 9] and plasma edge [10, 11] in future fusion devices
such as ITER. Plasma instabilities such as magnetohydro-
dynamic (MHD) modes, micro-turbulence and alfven eigen-
modes are widely studied with the utilization of various types
of physics models and computational algorithms, including
fluid MHD codes [12, 13], gyrokinetic Eulerian codes [14, 15],
gyrokinetic particle-in-cell codes [16, 17] and etc. While these
physics-based simulations can provide accurate growth rate,
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mode structure, and driving mechanisms for various plasma
instabilities in their linear [18] and nonlinear stage [19] for
realistic experimental equilibrium, the first-principles simula-
tions can be expensive computationally. Simulation time for
physical instabilities using gyrokinetic particle-in-cell codes
is often on the order of hours on modern GPUs [20], making
the direct application of these codes in real-time experiments
infeasible.

On the other hand, statistical methods including machine
learning models have been applied in the PCS to predict
plasma behaviors [21–23]. Recently deep-learning based
models have achieved promising results in disruption pre-
dictions [23], the prediction of perturbed magnetic signals
[22–24], and building emulators to aid first-principles simula-
tions [25]. Compared with classical machine learning models,
deep-learning based models are built in layered fashion and
the number of layers can become large as the model becomes
‘deeper’. In this paper we present a workflow to build a deep-
learning based surrogate model as a fast physics-based insta-
bility simulator. Here, surrogate models of the first-principles
simulations are deep-learning models that runs (or inferences)
on a sub-millisecond time scale, and can output results repre-
senting those from the first-principles simulations. We show
the first results from deep-learning models trained based on
data from linear global gyrokinetic toroidal code (GTC), which
has performed thousands of electromagnetic simulations in
the fluid limit by suppressing all kinetic effects and using the
DIII-D experimental equilibria. As an initial investigation in
this area, we have trained the surrogate models on GTC sim-
ulation results of the linear internal kink modes, which are
commonly observed [26–28] current driven MHD instabilities
that are closely related to the sawtooth activities [29], fishbone
modes [30, 31], and NTMs [32]. Compared with the hours-
scale gyrokinetic simulation time of GTC with kinetic effects
for the internal kink mode, the inference time of the surro-
gate model of GTC (SGTC) is on the order of milliseconds,
which fits the requirement of the DIII-D real-time PCS. SGTC
demonstrates predictive capabilities of the linear kink mode
instability properties including the mode growth rate and mode
structure. The output of SGTC contains physics-based linear
instability properties that can complement experimental mea-
surements and provide more targeted guidance to the PCS.
SGTC can also serve as a physical simulator in other plasma
predictive algorithms, enabling the development of future AI-
based plasma control algorithms. At this stage, the SGTC kink
simulators are based on the linear global GTC simulations
and therefore the results shown in section 4 are not applica-
ble in making predictions for the nonlinear dynamics of the
kink modes, and some of the predicted linear mode properties
cannot be compared with experimental measurements directly.
The development of nonlinear capabilities is undergoing and
future work.

In the rest of this paper, we introduce the design and work-
flow of SGTC in section 2, followed by the data proper-
ties and GTC simulations of the linear onsets of the inter-
nal kink instabilities in section 3, and finally we present the
training details and predictive performance of SGTC models,
comparing SGTC and GTC outputs in section 4.

2. Deep learning based surrogate model of GTC
(SGTC)

The design workflow of SGTC is shown in figure 1. As shown
by the deep blue solid arrows in the left panel, experimentally
measured signals including the zero-dimensional scalar sig-
nals such as plasma core density, one-dimensional profile sig-
nals such as the plasma density profile, and two-dimensional
signals such as the magnetic field, are used as inputs to SGTC.
The inputs can easily be extended to higher dimensional mea-
surements in future work. SGTC then outputs the plasma insta-
bility information, such as the mode growth rate, frequency,
and global mode structure as illustrated by the perturbation
snapshot in DIII-D plasma poloidal plane shown in the lower
left panel. The instability properties can in turn be used in
the PCS as inputs to control algorithms, as shown by the red
arrow. SGTC output can also be fed to plasma predictive mod-
els, which then output plasma state predictions to the PCS.
SGTC architecture is shown in the green box in the right panel.
The zero-dimensional features are input to Nf1 fully connected
layers, which outputs the zero-dimensional features. The high
dimensional inputs are fed into a set of Nc convolutional layers
with dropout layers, and then Nf2 fully connected layers. The
fully connected layers are standard linear operations for fea-
ture transformation and information extraction. The convolu-
tional layers are used for more efficient feature extraction from
the high-dimensional inputs. The combined use of the convolu-
tional and fully connected layers can provide improved model-
ing capabilities [33]. The outputs from the fully connected lay-
ers are the high dimensional features that will be concatenated
with the zero-dimensional features, and then goes through the
fully connected output layers. For mode stability and growth
rate prediction models, the output dimension is 1, and for
poloidal mode structure prediction models, the output dimen-
sion is Mψ ∗ Mθ, where Mψ is the radial grid number, and
Mθ is the poloidal grid number. The hyperparameter tuning
processes of this network will be introduced in section 4.

As shown on the right-hand side in figure 1, utilizing an
‘input tuner’ and an ‘output analyzer’ that will be introduced
in detail in the next section, GTC first-principles simulation
data are generated and used for training, validation and testing
of SGTC. GTC is a global gyrokinetic simulation tool that has
been developing since 1995 [34], and has been validated for
simulations of different types of plasma instabilities in DIII-
D, JET, EAST, KSTAR, HL-2A tokamaks, W7-X and LHD
stellarators, and C2 field-reversed configuration. The first-
principles GTC simulations with associated theory and exper-
imental observations have led to scientific discovery in turbu-
lence self-regulation by zonal flows [16], zonal flow damping
[35], neoclassical transport [36], transport scaling [8], wave-
particle decorrelation [37], energetic particle transport [38],
electron transport [39], nonlinear dynamics of Alfven eigen-
modes [40], localization of Alfven eigenmodes [41], drift-
wave stability [42], transport bifurcation [43] in fusion plas-
mas. Its simulation of current driven kink instability [44] has
recently been benchmarked against different codes [45]. In this
study, we utilize GTC to create a database of the internal kink
instabilities in DIII-D plasmas.
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Figure 1. The workflow of SGTC. Measured signals are used as inputs to SGTC as shown by the deep blue solid arrows. SGTC then outputs
the plasma instability information, such as the mode growth rate, frequency, and global mode structure as illustrated by the perturbation
snapshot in DIII-D plasma poloidal plane. The instability properties can in turn be used in the PCS as inputs to control algorithms, as shown
by the red arrow. SGTC output can also be fed to plasma predictive models, which then output plasma state predictions to the PCS. SGTC
architecture is shown in the green box in the right panel. GTC data are generated and used for training, validation and testing of SGTC.

As the first-step towards synthetic instability simulations,
we run GTC electromagnetic linear simulations of the non-
tearing n = 1 instabilities in the ideal MHD limit with
equilibrium current and compressible magnetic perturbations
[46, 47], where n is the toroidal mode number, for 5758 equi-
libriums selected from DIII-D experiments from magnetic
EFIT01 [48] and motional stark effect (MSE) EFIT02 [49].
The complete GTC electromagnetic formulation is described
in detail separately in [50]. GTC gyrokinetic simulation model
reduces to the ideal MHD model by assuming zero resistivity,
long wavelength, low beta and adiabatic electron response. The
formulation of the MHD simulations in this study is derived
and presented in section 2.4 in [50]. The GTC ideal MHD sim-
ulation is verified and validated using DIII-D shot #141216
[45], where a long-lived internal kink mode is identified exper-
imentally. In [45] it is shown that the mode structures from
the linear ideal MHD simulation quantitatively agree with
electron cyclotron emission measurements with a corrected q
profile. After completing GTC runs, we then performed super-
vised training of SGTC models with these DIII-D equilibria
and GTC output data. In most of the GTC simulations find-
ing unstable modes, the mode structures resemble those of
the internal kink modes with dominant m = 1 component in
electrostatic potential near the q = 1 rational surface [51],
where m is the poloidal mode number, and q is the plasma
safety factor. In the following text, we refer to the n = 1 MHD
instabilities in GTC and SGTC outputs as the kink instabili-
ties or the kink modes. SGTC models trained for these data
can be considered as internal kink mode simulators for DIII-D
plasmas.

3. Data and GTC simulations

A list of DIII-D archived data that are used as GTC inputs are
shown in table 1. Time sliced data are selected randomly from
shot # 139520 to shot # 180844, with the condition that the
listed data are available, and internal kink mode is possibly
present at the time slice of interest. The presence of possi-
ble internal kink mode is determined from the combination
of measured magnetic perturbations from the Mirnov coils
and the minimum safety factor qmin from EFIT [48]. EFIT02
data usually provide finer magnetic pitch angle (i.e. safety fac-
tor q) information, as it includes input information from the
MSE diagnostics [52]. Among the 5758 DIII-D equilibria we
simulated for this work, 2872 are based on magnetic EFIT01
output, and 2886 are based on MSE EFIT02 output. These sim-
ulations have been carried out in 12 GTC runs, each simulating
500 DIII-D experiments in parallel using 2000 nodes of the
Summit supercomputer at ORNL for about 30 min (Summit
has about 4700 nodes).

As shown by the GTC data generation workflow on the right
of the dashed green box in figure 1, we first use an ‘input tuner’
to generate GTC inputs from experimental data. In this step
we utilized the ORBIT code [53] to convert equilibrium data
to Boozer coordinates.

With the inputs, global GTC electromagnetic simulations
in the MHD limit are run for each input (i.e. each equilibrium
of the DIII-D experiments) for 3000 time steps, with time step
size 0.01 R0

Cs
, where R0 is the major radius and Cs =

√
(Te/mi)

is the ion sound speed with Te as the on-axis electron tem-
perature and mi as the ion mass. Typical total simulation time
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Table 1. List of DIII-D experimental data used as inputs for GTC simulations. Magnetic
perturbation signals are only used for the selection of equilibriums.

Shot number Data

5758 equilibriums from shot # 139520–180844 EFIT01 gfile
EFIT02 gfile

ZIPFIT01 electron temperature profile
ZIPFIT01 electron density profile
ZIPFIT01 ion temperature profile

Magnetic perturbation (mpi66M307D)
Magnetic perturbation (mpi66M322D)

Figure 2. Histogram of the kink growth rate from GTC simulations in training (left), validation (middle) and test (right) dataset. Simulation
results with stable internal kink mode are not plotted.

for each equilibrium is on the order of 0.1 ms for the physical
duration of the experiments.

After completing GTC simulations, we used an ‘output
analyzer’ to examine the output data, exclude numerical insta-
bilities, and prepare proper target data such as the mode growth
rate, and poloidal eigenmode structure for SGTC. For results
from each GTC simulation corresponding to a DIII-D equi-
librium, the n = 1 mode growth rate is calculated with a lin-
ear fit of the perturbed parallel vector potential from the last
1000 time steps of the simulation. If there is no significant
mode growth during the given time window, the equilibrium
is linearly kink stable. On the other hand, if the growth rate is
positive, the equilibrium is linearly unstable or the simulation
is considered numerically unstable. To check numerical insta-
bilities, the perturbed potential variation near q = 1 surface
is analyzed. There are two criteria for a ‘physically’ unstable
signal. Firstly, the mode should have nearly zero frequency.
Secondly there should not be significant phase change, i.e.
the mode does not rotate in poloidal and toroidal direction.
If the simulation result does not meet both of the two crite-
ria, the simulation is considered numerically unstable and this
data point is dropped. After dropping the numerically unsta-
ble cases, we have comparable numbers of stable and unstable
cases. Note that the ‘output analyzer’ is an important part of the
workflow, since it performs preconditioning of the raw simula-
tion results, contains the important physical standards for the
phenomena of interest, and establishes the training database
for the SGTC neural network.

In statistical learning, it is standard practice to divide
the data into training, validation and testing sets, where the
training data is used to fit the model. The validation set is

also given to the model in the training and hyperparameter
selection phase, to provide a standard of the model perfor-
mance, and prevent over fitting on the training set. The test
set is unseen to the model, until the training and hyperparame-
ter selection processes are done, to evaluate the final model
predictive capability on new data. Among the 5758 DIII-D
equilibria that GTC simulated in this study, 1972 equilibria
have unstable n = 1 kink modes, 2531 equilibria are linearly
stable for kink modes, and the remaining equilibria exhibit
numerical instability. GTC simulation results of all the 1972
unstable cases and 2531 stable cases are used for training
(80% of the data), validation (10% of the data), and testing
(10% of the data) of SGTC. The histogram of the unstable
mode growth rate in training, validation and testing dataset for
the neural networks are shown in figure 2. Since the simula-
tions are in the ideal MHD limit without kinetic effects, the
linear growth rate can be large, for example above 400 kHz.
The distribution of the mode instability in physical parame-
ter space is shown in figure 3. The x axis r (q = 1) denotes
the minor radius of the q = 1 surface. The y axis in figure 3

is defined as δβp = −R0
2∫ r1 p′r2 dr
B0

2r1
4 , where r1 denotes the minor

radius of the q = 1 surface, p′ denotes the radial derivative of
the plasma pressure profile, and B0 denotes the toroidal mag-
netic field. δβp is a relevant parameter for the kink instability in
linear ideal MHD theory [54]. We investigated the data distri-
bution on other parameters, e.g. magnetic shear, plasma beta,
pressure gradient, and minimum value of q profile, and found
that the q = 1 surface location and δβp are the two parameters
most relevant to the stability of internal kink mode [50]. It is
possible to use machine learning algorithm to find two param-
eters which better separate the stable and unstable cases than
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Figure 3. Kink instability distribution in parameter space from GTC
simulations.

in figure 3, but normally it is very difficult to find the physical
meanings of such automatically generated parameters. There-
fore, we use r(q = 1) and δβp with clear physical meanings in
figures 3 and 5.

4. Training and performance of SGTC

In SGTC internal kink simulators, we trained neural networks
to predict the mode instability (which is a binary value to indi-
cate whether the equilibrium of interest is kink unstable), mode
growth rate, and two dimensional poloidal mode structure. The
first predictive task of SGTC is the prediction of mode insta-
bility. In addition to deep learning (DL) based models, we also
tested the performance of classical algorithms in which mod-
els cannot be easily extended in a stacked layers fashion. In
figure 4, we show comparison of the predictive capabilities
of the neural networks and of the classical algorithms. Inputs
of the models are described in section 2, and the output of
the model is an instability score. When the instability score
is above a certain threshold, the mode is considered unstable,
and otherwise considered stable. The instability threshold can
be varied to achieve a receiver operating characteristic (ROC)
curve for each model as shown in figure 4, where the y-axis is
the true positive rate (TPR) defined as the number of correctly
predicted unstable cases divided by the number of all unstable
cases, and the x-axis is the false positive rate (FPR) defined as
the number of stable cases which are incorrectly predicted as
unstable, divided by the number of all stable cases. We used
the area under the ROC curve (AUC) as the metric to evaluate
model performance.

We trained multiple classical models in the sklearn pack-
age, and the best performing one is the random forest (RF)
model [55]. We hand-tuned both the RF model and the neural
network for the instability prediction on the validation dataset,
and reported the ROC curve on the test dataset. The AUC for
the DL based model and the RF model on the test dataset are
0.945 and 0.927 respectively. Figure 4 shows that the neural
network outperforms the RF model near the optimal thresh-
old regime, where on the ROC curve the distance to the upper

Figure 4. ROC curve of instability predictions for the neural
network in a solid blue line and the RF model in a dashed red line on
the test set. The area under the ROC curve (AUC)s are 0.945 and
0.927 for the neural network and RF respectively.

left corner (TPR = 1 and FPR = 0) is minimized. At the
optimal instability threshold based on the validation dataset,
the prediction results on all test data from magnetic EFIT01
equilibria are visualized in figure 5 in physical parameter
space. The accuracy (the number of correctly predicted cases
divided by the number of all cases) for the neural network and
the RF model on the test set is 0.89 and 0.85, respectively.
These results demonstrate that SGTC has predictive capabil-
ities for the onset conditions associated with kink modes.

For the second task of SGTC predictions of the mode
growth rate, we performed automatic hyperparameter tuning,
by randomly generating 100 models in the hyperparameter
space. The mean squared error is used as the loss function
in this regression problem. After training all 100 models, we
select 10 best performing models based on their validation
loss, and report the ensemble result of these 10 models. A
visualization of the test result is shown in figure 6, where the
left panel shows the true value of the growth rate vs the pre-
dicted value of the growth rate. The right panel of figure 6
shows a histogram of prediction error. There are some sig-
nificant under predictions for several test data points with the
growth rate greater than 200 kHz. The accuracy of the predic-
tion decreases when the growth rate becomes large, possibly
due to the small number of training data in the large growth rate
regime, as shown in the histogram of growth rate in figure 2.
In figure 7, we compared SGTC performance with a simpli-
fied analytic formula of the internal kink instability [51] γ ∝
k3

z VAr2(q = 1), where kz denotes the parallel wave number,
and VA denotes the Alfven velocity. In the left panel of figure 7,
we showed a comparison of the mean squared error of the
prediction of the growth rate from random guess, the analytic
formula and SGTC for all the data in the test set. The random
guess is randomly generated values from uniform distribution
ranging from 0–10 kHz, where 10 kHz is around the mean
growth rate of the unstable cases. The error bar is the standard
deviation divided by the square root of the number of test data
points. We normalized the analytic formula such that the mean
growth rate on the test set matches the true value, which is not
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Figure 5. Prediction of kink instability on test dataset from DL method in the left panel and RF method in the right panel. Solid red dot
represents the true positive (TP), solid blue triangle represents the true negative (TN), shaded circles represent the false positive (FP), and
shaded triangles represent the false negative (FN).

Figure 6. Prediction results of the kink growth rate for entire test dataset. The left panel visualizes the true value of the growth rate vs the
predicted value of the growth rate. The solid black line indicates x = = y where perfect predictions occur. The right panel shows a histogram
of prediction error.

available in realistic scenarios, therefore the analytic formula
should be considered ‘boosted’. The high error level of the ana-
lytic formula from GTC results shows that GTC simulation of
the kink mode in the MHD limit for realistic DIII-D geometry
yields significantly different results from simplified analytic
estimations. The mean squared error of SGTC predictions of
the mode growth rate for the test dataset is 4.4 × 103 kHz2,
significantly lower than the analytic formula estimation. In the
right panel of figure 7, we compared the mean squared error of
the prediction of the growth rate for unstable cases with growth
rate smaller than 50 kHz. The yellow bar represents the differ-
ence between GTC simulation and simulation result from four
other MHD codes M3D-C1, GAM-solver, NOVA, and XTOR-
K [45] for the DIII-D shot number 141216 at 1750 ms, which
has unstable kink mode in the MHD limit with a growth rate
around 50 kHz. The details of this benchmark is presented in
[45]. These results show that SGTC has predictive capabilities
for the kink linear growth rate. With more training data and
advanced algorithms, its performance can be further improved
to better represent GTC simulation results.

We would like to highlight that the average inference time
of the ensemble model on NVIDIA V100 GPUs is 0.88 ms.
With parallel algorithms, this inference model would fit the run
time requirement of the DIII-D PCS. This facilitates the incor-
poration of the physics-based instability information from the
first-principles based global electromagnetic simulations into
the PCS of modern tokamaks.

For the third task of the SGTC predictions of the poloidal
mode structure, we used the linear mode structure of the
perturbed electrostatic potential and perturbed parallel vector
potential from GTC simulations as the SGTC model outputs.
Examples of the poloidal mode structures from GTC simu-
lations are shown in the upper panels of figure 8. We tuned
the hyperparameter automatically by training 10 models in
the random hyperparameter space, and selecting the model
with the minimum validation loss. Visualization of the SGTC
prediction of the mode structure is shown in the lower pan-
els of figure 8. A qualitative agreement is achieved for about
85% of the test dataset. An example where SGTC predictions
of the mode structures agree well with the GTC output is
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Figure 7. Comparison of SGTC performance for all test dataset with random guess and analytic formula in the left panel. Right panel shows
the comparison of SGTC performance with random guess, analytic formula for test data with kink growth rate smaller than 50 kHz. Yellow
bar represents the difference between GTC and four other MHD-based simulations [45] for DIII-D shot #141216 at 1750 ms.

Figure 8. Example of SGTC prediction results of the mode structure of shot #162930 at 1820 ms using magnetic EFIT01 reconstruction in
the left 4 panels and shot #140510 at 3145 ms in the right 4 panels using MSE EFIT02 equilibrium reconstruction. Upper panels are GTC
outputs and lower panels are SGTC outputs.
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Figure 9. SGTC prediction of internal kink mode linear properties for shot #141216. Left panels show plasma signals from experimental
measurements. Magnetic spectrograms from the Mirnov coils are shown in panels (a) and (b), where (b) shows the toroidal mode number n
calculated from two coils. Panels (c)–(i) show magnetic perturbation amplitude, minimum safety factor from MSE EFIT02 equilibrium
reconstruction, total input beam power, total input beam torque, normalized plasma beta, plasma temperature profile and plasma density
profile respectively. The SGTC predicted time evolution of the internal kink mode growth rate is shown in panel (n), and the predicted mode
structures for time slices 1750 ms, 2050 ms, 4650 ms and 5100 ms are shown in panels ( j)–(m) respectively.

demonstrated in the left panels of figure 8. The right
panels of figure 8 show GTC and SGTC output of the poloidal
mode structure for the equilibrium in shot #140510 at 3145 ms,
where SGTC provides correct predictions for the mode struc-
ture in most parts of the simulation domain, but misses the fine
structure near the magnetic axis. The SGTC prediction is actu-
ally a more ‘typical’ internal kink mode structure compared to
the ground truth. That means the model has learned the mode
structure features statistically. In both cases, the model learns
the importance of q = 1 surface to the mode structure. As
the low mode number kink linear structure is relatively sim-
ple, we still used the standard mean squared error as the loss
function, and did not quantitatively define a ‘good’ prediction
for the mode structure. Beyond the scope of this paper, for the
predictions for instabilities involving more complicated mode
structures in future work, we can use unsupervised training
algorithms such as clustering to more carefully define a mode
structure predictive capability.

Finally, SGTC can be applied to simulate the entire duration
of the DIII-D experiments for linear analysis of the internal
kink mode onset. The inference for large amount of archived
experimental data can provide useful database for statistical
analysis. An example of SGTC ‘simulation’ of the internal
kink linear mode structure evolution for shot # 141216 from
1500 ms to 5200 ms is shown in figure 9. The left panels
show the evolution of measured physical parameters, and the
right panels show SGTC outputs. SGTC output shows that the
n = 1 kink mode is linearly unstable for most part of the shot,
except at around 2–2.5 s when the growth rate decreases. The
mode structure shifts between q = 1 and q = 2 surfaces. This
result can be qualitatively consistent with observations such
as the Mirnov coil data. Since SGTC in this work is limited to
the onset conditions and linear properties of the mode, some
of the prediction results cannot be compared directly with
experimental observations, which are primarily nonlinear in
character. Realistic equilibrium and instability scenarios are
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complicated by the fishbone modes, tearing modes, the kinetic
effects and nonlinear dynamics of all the instabilities, which
SGTC will be trained and tested on in future studies.

5. Conclusions and discussions

In this work we designed and constructed a framework for DL
based surrogate models for first-principles global electromag-
netic toroidal plasma simulations. As a demonstration of this
new tool, we simulated 5758 DIII-D equilibria using GTC in
the MHD limit. The surrogate models of GTC (SGTC) are
trained to predict for the linear properties of the n = 1 cur-
rent driven internal kink instabilities in DIII-D plasmas. The
SGTC linear internal kink simulators demonstrate predictive
capabilities for the GTC linear simulations that captures the
kink mode onset conditions. SGTC shortens the simulation
time by at least six orders of magnitude, and presents for the
first time the possibility of bringing physics-based instability
information from the first-principles based massively parallel
simulations into the PCS of modern tokamaks.

This paper focuses on comparing SGTC output with GTC
simulations results, as shown in figures 4 to 8. Since the GTC
simulation model used in this work is in the ideal MHD limit
in the linear kink simulations, without kinetic effects, ener-
getic particle effects, sheared flow, nonlinear dynamics etc,
the training data and prediction results may not be realistic
in quantitative comparison with experimental data. This work
demonstrates the verification of SGTC against GTC results
for the onset of the internal kink modes, and the equilibrium
database used in this work is based on magnetic EFIT01 and
MSE EFIT02. For validation against experimental data in next-
step work, kinetic equilibrium reconstructions [49] will be
considered. In the future, SGTC can be trained to output the
instability properties of the fishbone, tearing mode, Alfven
eigenmode, and microturbulence, together with their nonlinear
dynamics and transport levels. The methodology of SGTC can
also be applied to training emulators for other first-principle
plasma simulations such as the MHD codes.

Finally, we would like to highlight that although the capa-
bilities of current simulation tools are still limited in many
challenging aspects such as the nonlinear modeling of the
full experimental plasma scenarios, current first-principles
simulations are extremely useful in uncovering the physics
in fusion plasmas and are absolutely necessary for the pre-
diction of plasma conditions in future tokamaks such as
ITER. Therefore, the advancements of these simulations using
modern computational and statistical methods, such as the
SGTC framework (which provided a path to the fundamental
advancement in simulation time to allow real-time applica-
tions) that this paper is initiating, can be valuable for the fusion
community.
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