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Abstract
Global gyrokinetic simulations find that a beta-induced Alfvén eigenmode (BAE) and a
low-frequency mode (LFM) co-exist in the DIII-D tokamak experiments. The simulated LFM
mode structure and many of its parametric dependencies are consistent with experimental
observations. The LFM can be excited without fast ions and has a frequency inside the gap of
the beta-induced Alfvén-acoustic eigenmode (BAAE). However, an antenna scan shows that it
is NOT the conventional BAAE. Instead, the LFM is an interchange-like electromagnetic
mode excited by non-resonant drive of pressure gradients. Furthermore, the simulated BAE
mode structure is consistent with the experiment but the frequency is lower than the
experiment. The compressible magnetic perturbations significantly increase the growth rates
of the BAE and LFM. On the other hand, trapped electrons and equilibrium current have
modest effects on the BAE and LFM.

Keywords: Alfvén eigenmode, energetic particle, electromagnetic instability, gyrokinetic
simulation

(Some figures may appear in colour only in the online journal)

1. Introduction

In magnetic confinement fusion devices, energetic particles
(EPs) supplied from neutral beam injection (NBI) or fusion
reaction are essential in auxiliary or self-heating for high-
performance operation. Alfvén eigenmodes (AEs) are gener-
ally regarded as the primary driver for EP transport [1, 2].
They exist in a frequency gap between neighboring continua,
where continuum damping is absent so that EP drive can eas-
ily excite a mode. The AEs in the toroidicity-induced gap
(TAE) [3, 4] and higher frequency gaps have been extensively
studied. On the other hand, there has been less attention to
the AEs in the beta-induced low-frequency gaps: beta-induced
AE (BAE) [5, 6] and beta-induced Alfvén-acoustic eigenmode
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(BAAE) [7–9]. It was noted that simple fluid theories can-
not fully explain the excitation of the BAE [10]. Kinetic the-
ories [11–13] suggest that kinetic thermal ion gap [14, 15]
is more relevant for describing low-frequency modes (LFMs)
below the BAE range, rather than the magnetohydrodynamic
(MHD) BAAE gap. It appears to be more controversial identi-
fying the BAAE and explaining observed features in exper-
iments. An example of the ambiguity for the origin of the
modes excited inside the BAAE gap is the ‘LFMs’ described in
reference [16].

In recent DIII-D tokamak L-mode experiments, multiple
sub-TAE low-frequency AEs have been observed [17, 18].
Figure 1 shows a spectrogram from interferometer data for
the DIII-D shot #178631, where robust activities of the BAE
and LFM, together with higher frequency reversed shear AE
(RSAE), are observed in the current ramp-up phase with deu-
terium NBI. Follow-up experiments found that, surprisingly,
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Figure 1. Spectrogram from interferometer data presented in
figure 4 for DIII-D discharge #178631 showing multiple
low-frequency AE activities. Reproduced courtesy of IAEA. Figure
adapted from [17]. Copyright 2021 IAEA.

the LFM persists for a long time after the NBI is turned off
and the RSAE and BAE disappear [17]. Detailed experimental
measurements of the BAE and LFM appear in references [17,
18], respectively. Reference [17] concludes that the LFM is
not the theoretical BAAE, but a LFM having characteristics of
a low frequency Alfven mode. On the other hand, the exper-
imental BAE is driven by the fast ions and has a frequency
close to the BAE accumulation point of the MHD continuous
spectrum [18].

In this work, for physics identification and understanding
of the BAE and LFM observed in the experiments, we per-
form first-principle linear simulation study of the DIII-D shot
#178631 using global gyrokinetic toroidal code (GTC) [19],
which has been extensively verified and validated for AE simu-
lations [20–22] and applied for physics study of low-frequency
AEs [23–29]. In particular, earlier GTC simulations of a toka-
mak with concentric cross-section find that BAAE and BAE
can be simultaneously excited with comparable linear growth
rates even though damping rate of BAAE is much larger than
BAE in the absence of EPs [27].

In the current work, linear GTC simulations using realis-
tic magnetic geometry and plasma profile of the DIII-D toka-
mak shot #178631 first found that the LFM can be excited
without fast ions and has a frequency inside the gap of the
BAAE, consistent with the experimental observation in ref-
erence [17]. However, the physics interpretation of the LFM
was still unclear at that time since no eigenmode in the BAAE
gap was found in the GTC antenna scan. Then, an important
breakthrough came from the GTC simulation that found, for
the first time, that the LFM is excited by the non-resonant
drive of pressure gradients. Subsequently, detailed analyses of
the mode structure and polarization from the simulation led
us to conclude that the LFM is an interchange-like electro-
magnetic mode. These simulation results provided the physics
insights for the interpretation of the experimental observations
of the LFM and the associated deployment of the theoretical
model as reported in reference [17]. Finally, GTC simulations
found that compressible magnetic perturbations significantly
increase the growth rates of the LFM and BAE, a surpris-
ing result that took us through a lengthy process to verify by
carefully examining GTC formulation and simulation results.

This paper is organized as follows. In section 2, we present
the primary results of GTC simulations of BAE and LFM in the
DIII-D #178631 showing that the LFM inside the BAAE gap
can be excited without fast ions. In section 3, we present mode
polarization properties. In section 4, we present the results of
energy exchange analysis which reveals that LFM is reactively
excited. In section 5, we present various parameter scans. In
section 6, we compare BAE and LFM from linear GTC sim-
ulations with experimental measurements. The paper closes
by summarizing key results of the simulations, listing points
of agreement and disagreement between simulation results
and experimental measurements, and outlining future work
(section 7).

2. Linear dispersion and mode structure

First, we describe simulation model and input parameters
used in GTC simulations. The linear electromagnetic global
δ f gyrokinetic simulations use gyrokinetic fast and thermal
ions and fluid-kinetic hybrid electrons [30, 31], with initial
Maxwellian distribution for all species. We neglect collisions
and toroidal rotation in the simulation, but add Doppler-shift
to frequencies of the BAE and LFM from simulations when
comparing experimental measurements [32, 33]. We include
perturbed compressible magnetic field (δB‖) in simulations
[34]. GTC simulations use experimental equilibrium and pro-
file [35] as shown in figure 2 for the DIII-D shot #178631
at the time t = 1200 ms, obtained by the equilibrium fit-
ting (EFIT) reconstruction [36]. Important on-axis parame-
ters are nea = 4.05 × 1019 m−3, Tea = 4.15 keV, Ba = 2.0 T,
a = 0.64 m and R0 = 1.65 m. The q-profile has a reversed
shear configuration with qmin = 1.33. The relaxed fast ion pro-
file provided with EFIT reconstruction is used for comparison
to the case with the classical fast ion profile obtained using
TRANSP/NUBEAM [37, 38]. The true fast ion profile likely
lies between these two extreme cases. For simulations, we use
100 × 200 × 24 grids in radial, poloidal and parallel direc-
tions, respectively. Particle number per cell is 1000 for each
species. We simulate an n = 3 BAE and an n = 6 LFM to
compare with experimental measurements, since they are rep-
resentative BAE and LFM observed in the experiment. For a
physics study, we simulate and compare the n = 3 BAE with
an n = 3 LFM. Since 1.3 < qmin < 1.4, we keep only poloidal
harmonics m ∈ [n, 2n] for each single-n simulation focusing
on m ≈ nqmin.

We find from these linear GTC simulations that an unstable
BAE and a LFM in the BAAE frequency gap co-exist in the
DIII-D #178631. The LFM is excited in the simulation with-
out the fast ions. In the simulations with the fast ions, BAE
is strongly excited. Figure 3 shows an overview of these low
frequency Alfvénic modes, together with ideal MHD continua
calculated by an ideal MHD eigenvalue solver ALCON [39].
Taking into account geodesic compressibility and contribution
from adiabatic fast ions, we use an effective MHD pressure as
input for ALCON as follows:

Peff = Pe +
7
4

Pi

1 − nf/ne
. (1)
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Figure 2. Radial profiles of (a) density and (b) temperature of
DIII-D #178631 used for GTC simulations, normalized by on-axis
electron density and temperature, respectively.

Here, Pe,i are electron and thermal ion pressures and nf,e

are fast ion and electron densities, respectively. Note that the
low-frequency MHD continua calculated for the case with-
out the fast ions show only small quantitative difference from
figure 3. We emphasize that LFM is not a conventional AE
driven by the fast ions, and hereafter LFM in this paper is
always from simulations without fast ions. The result is con-
sistent with observations in the follow-up DIII-D experiments
[17], where BAAE activity persist for a long-time after the
NBI is turned off. GTC finds no unstable n = 3 mode from
linear electrostatic simulations, with or without fast ions. It
indicates that the LFMs observed in these DIII-D experiments
are not electrostatic modes. Both BAE and LFM propagate in
the direction of ion diamagnetic drift [15, 16].

Note that LFM is closer to the qmin surface than the BAE.
In figure 3, the full-width-half-maximum of the radial mode
structures of the BAE and LFM are marked by double-sided
arrows. BAE is located near the radial location of the m = 4
BAE accumulation point. The location of the LFM is closer to
the q = 4/3 surface. Note that the BAE frequency = 57 kHz
with the classical fast ion profile is lower in the BAE gap than
the BAE with the relaxed fast ion profile. Linear growth rates
of the BAE with classical and relaxed fast ion profiles are,

Figure 3. Frequency and radial widths of unstable n = 3 BAE and
n = 3 LFM from linear GTC simulations, together with ALCON
plot of n = 3 MHD continua in the plasma frame. BAE-cl and
BAE-rlx denote BAE excited by classical and relaxed fast ion
profiles, respectively.

respectively, γ/2π = 5.4 × 104 s−1 and 2.8 × 104 s−1, and
that of the LFM is 1.4 × 104 s−1. Ratios of the linear growth
rate to the frequency are γ/ω = 0.95, 0.38 and 1.0, respec-
tively. Large values of γ/ω ∼ O (1) indicate that there can
be either a broad wave–particle resonance or a strong non-
resonant drive for both unstable BAE and LFM. The simulated
BAE linear eigenmode structure using the classical fast ion
profile is closer to the measured mode structure than that using
the relaxed fast ion profile, so we mainly use the classical fast
ion profile in this paper.

Figure 4 shows 2D structures of electrostatic potentials in
the poloidal planes. Mode structure of the BAE is more bal-
looning with multiple poloidal harmonics m and that of the
LFM is more interchange-like dominated by a single poloidal
harmonic m ≈ nq. The contours of the BAE have a triangular
shape, while those of the LFM have an elliptic one. In gen-
eral, it is known to be due to the non-perturbative fast ion
effects [1, 20, 21, 40–42], either by fast ion non-uniformity or
fast ion–wave interaction. The 2D poloidal mode structures in
figure 4 are consistent with the radial profiles of poloidal har-
monics of the electrostatic potential in figure 5. For both the
BAE and LFM, the primary poloidal harmonic is m = 4. Con-
tribution from sidebands (m = 3, 5, 6) to the LFM is weaker
than that to the BAE, consistent with its weaker ballooning
character.

3. Polarization

For electrostatic perturbations such as ion acoustic wave
(IAW) and drift wave (DW), the parallel electric field E‖
only contains an electrostatic component E‖,ES due to the per-
turbed electrostatic potential, i.e., E‖ = E‖,ES. On the other
hand, E‖ = 0 for Alfvénic waves in the ideal MHD state
due to the cancellation between the electrostatic compo-
nent and the inductive component, which can be broken by
resistivity, electron inertia, wave–particle interaction, finite-
Larmor-radius effect, and toroidicity [1]. Coupling of the
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Figure 4. Two-dimensional structure of electrostatic potential φ of
(a) BAE and (b) LFM on the poloidal plane. Periodic change from
positive (red) to negative (blue) values in poloidal angle shows
dominant m = 4 harmonic for both BAE and LFM.

Alfvén waves with the IAW and DW could also induce
finite E‖.

We find that the unstable BAE has predominantly Alfvénic
polarization while the unstable LFM is relatively more acous-
tic. Figure 6 shows radial structures of the parallel electric field
E‖ of the BAE and LFM for each poloidal harmonic. They are
normalized by the radial peak of the root-mean-square (rms)
of electrostatic component E‖,ES. Figure 6 clearly shows that
the sidebands carry most of the parallel electric field. The esti-
mated polarization E‖/E‖,ES using volume-average of square

Figure 5. Radial profiles of electrostatic potential φ of (a) BAE and
(b) LFM for each poloidal harmonic (solid lines), together with
q-profile (dashed purple line). The φ is normalized by its maximal
value of the primary poloidal harmonic. The vertical black dashed
lines indicate radial location of various q values.

of E‖ and E‖,ES is 0.10 for the BAE and 0.28 for the LFM,
showing that the polarization of the LFM significantly devi-
ates from that of the ideal MHD perturbation. In figure 6,
it is obvious that the main poloidal harmonic has a negligi-
ble contribution to the parallel electric field compared to the
sideband near the mode peak. It is a natural consequence of
coupling between the shear Alfvén wave (SAW) and IAW
[7, 8], which is crucial for the low frequency gaps [43]. The
LFM has more acoustic component compared to the BAE.
Note that it is different than the fast ion-driven BAAEs from
GTC simulations of a simple tokamak plasma [27], where
the polarization of an unstable BAAE is very similar to an
unstable BAE.

We have analyzed another polarization property, B̃‖/B̃⊥,
the ratio of parallel to perpendicular magnetic perturbations.
It measures the deviation from shear Alfvénic polarization,
as B̃‖/B̃⊥ = 0 for shear Alfvénic wave while it is finite for
fast/slow magnetosonic waves [44]. Figure 7 shows radial pro-
files of rms of the magnetic perturbations in for the BAE and
LFM. The compressible component B̃‖ peaks near the mode
rational surface for both the BAE and LFM. Note that the val-
ues B̃‖/B̃⊥ ∼ 0.5 in this DIII-D plasma with β = 2.8% are
much larger than a typical SAW ordering [1, 45, 46], where
B̃‖/B̃⊥ ∼ O (β). Discussions on the result B̃‖/B̃⊥ ∼ O (1) is
presented in appendix A with a more precise ordering.
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Figure 6. Radial profiles of parallel electric field E|| of (a) BAE and
(b) LFM for each poloidal harmonic, together with q-profile. They
are normalized by the value at radial peak of rms of the electrostatic
part of the parallel electric field E‖,ES.

4. Energy exchange

To understand the excitation of the unstable BAE and LFM, we
now analyze the wave–particle energy exchanges. We find that
the drive of the LFM is mainly non-resonant, interchange type,
in contrast to the mostly resonant drive of the BAE. The time
rate of energy loss by particles is equivalent to the time rate
of change of the wave energy density, since the local energy
conservation law holds for a collisionless gyrokinetic system
[45, 47, 48]. Therefore, we have [27]

dδW
dt

∼= −
∑

s

es

[
〈〈v⊥s · E⊥〉v〉+ 〈〈v‖sE‖〉v〉

]
, (2)

where δW is the flux-surface-averaged wave energy density,
and the brackets 〈· · ·〉 and 〈· · ·〉v denote flux-surface-average
and gyrocenter velocity space integral weighted by perturbed
distribution function, respectively. Here, s is an index for
species, es is charge of the species, and v⊥s and v‖s are gyrocen-
ter velocities in the perpendicular and the parallel directions,
respectively. Accordingly, the first and the second terms in the
right-hand side of equation (2) denote perpendicular and par-
allel channels of wave–particle energy exchange rate, respec-
tively. Note that they include both non-resonant (fluid) and
resonant (kinetic) energy exchanges.

Figure 8 shows radial profiles of the wave–particle energy
exchange rates of the BAE and LFM. Overall, the BAE has
a wider domain of wave–particle interaction compared to the

Figure 7. Radial profiles of flux surface-averaged perpendicular
(black) and parallel (red) perturbed magnetic fields Brms of (a) BAE
and (b) LFM, together with q-profile. The Brms is normalized by the
maximal values of the corresponding perpendicular perturbed
magnetic field.

LFM, which is consistent with the wider width of the mode
structure of the BAE shown in figure 3. In figure 8, we use
shorthand notations i⊥, e⊥,na and f⊥ for perpendicular channels
(solid lines) and i‖, e‖,na and f‖ for parallel channels (dashed
lines). Explicit expressions for these notations are presented
in appendix B. The nonadiabatic, i.e., the kinetic parts of the
wave–electron energy exchange rate (e⊥,na and e‖,na) are cal-
culated using the non-adiabatic electron response in the fluid-
kinetic hybrid electron model [30]. Meanwhile, the adiabatic
component of the electron response is used to calculate the
fluid parts of the energy exchange rate, i.e., interchange drive
(eic):

eic = 〈δPe,incomp

(
b0 ×∇B0

B2
0

+
∇× b0

B0

)
· ∇φ〉, (3)

where δPe,incomp is the incompressible electron pressure per-
turbation as defined in appendix B. Similarly, we can calculate
the interchange drives of the thermal (iic) and fast (fic) ions.
Note that the total energy exchanges are (eic + e⊥,na + e‖,na)
for electrons, (i⊥ + i‖) for thermal ions, and (f⊥ + f‖) for fast
ions.

Figure 8(a) shows that perpendicular resonant wave–fast
ion energy exchange is the main drive of the BAE. It suggests
the crucial role of bounce-drift fast ion resonance on the BAE
excitation. In contrast, figure 8(b) shows that the main drive
of the LFM is the interchange-type energy exchange. Note
that non-interchange contribution from the ion perpendicular
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Figure 8. Radial profiles of wave–particle energy exchange rates
for (a) BAE and (b) LFM, in parallel and perpendicular channels of
each species, normalized by the maximum amplitude of the
dominant one. The subscripts ‘na’ and ‘ic’ denote ‘non-adiabatic’
and ‘interchange’, respectively.

channel nearly cancels out with that from the ion parallel chan-
nel so that the net ion drive is also very close to the ion inter-
change drive. While figure 8(a) shows that there is little energy
sink in the BAE, figure 8(b) shows that there is a significant
energy sink in the LFM due to thermal ion Landau damping
[49].

The energy exchange analysis reveals clear non-local
aspects for both BAE and LFM. First, for both BAE and LFM,
the width of the radial domain of the energy exchanges is on the
macroscopic length scale Lpi/a ∼= 0.2. Second, for both BAE
and LFM, there is a radial mismatch between local source and
sink, indicating a radial energy flux. Third, for BAE, the per-
pendicular thermal ion channel plays a role of a source in the
outer half, while it acts as a sink in the inner half. Fourth,
for LFM, the parallel thermal ion channel, which provides
the main sink, has double peaks with a dent in the middle.
Locations of the peaks coincide with those of the maximal
parallel electric field in figure 6. It clearly shows that acous-
tic sidebands play an important role via ion Landau damping.
All these non-local aspects indicate that physics understanding
from conventional concepts of a single narrow kinetic layer
and an outer ideal MHD region is insufficient for the low-n
BAEs and LFMs.

Figure 9. Saturated amplitude (solid line with circles) of
electrostatic potential in GTC antenna frequency scan using uniform
thermal plasma. Fitting curve (dashed line) shows clear resonance
peak of antenna-driven BAE, but there is no clear resonance in low
frequency regime.

5. Antenna excitation and parameter scans

In this section, we present GTC simulation results of antenna
excitation and parameter scans for linear dispersions of the
BAE and the LFM. The antenna scan shows a clear resonance
peak for the BAE, but no peak for the LFM. The antenna field

A‖,ant = A (ψ) cos (mθ − nζ) cos ωt, (4)

has a Gaussian envelope A (ψ) peaking at the same radial loca-
tion of the LFM peak. Here, ψ is poloidal magnetic flux which
labels magnetic surface, and θ and ζ are poloidal and toroidal
angles, respectively.

Figure 9 shows the result of GTC simulations of antenna-
driven mode amplitudes in a uniform thermal plasma. Values
of the uniform densities and temperatures were set to be the
same as those at the unstable LFM peak. A fitting with a cavity
resonance formula [50]

φ2 ∝ 1(
ωant − ωres + γdamp

)2
+ γ2

damp

, (5)

shows a clear resonance corresponding to a damped BAE [23]
with frequency f res = ωres/2π = 85 kHz and linear damping
rate γdamp/2π = −1.4× 104 s−1. Note that the resonance peak
in figure 9 has been down-shifted by an amount of γdamp.
Also, the resonance frequency of the antenna-driven BAE
is significantly higher than that of the fast ion-driven BAE
∼ 57 kHz. It shows that thermal plasma non-uniformity and
non-perturbative fast ion effect reduce the BAE frequency. The
absence of a lower-frequency resonance peak, in contrast to the
previous GTC study of antenna-excited BAAEs [26], implies
that LFM excited in the DIII-D discharge #178631 is not a con-
ventional AE. Rather, the LFM is an Alfvénic mode driven by
thermal plasma inhomogeneity.

6
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Figure 10. Dependence of real frequencies (solid) and growth rates
(dashed) on fast ion (a) density and (b) temperature for the most
unstable mode, which change from LFM to BAE as fast ion pressure
gradient increases. Black lines are from the most comprehensive
model incorporating most of relevant physics. Blue, green and red
lines correspond to the models without kink drive, parallel magnetic
compression and kinetic electrons, respectively.

Scans of fast ion density and temperature show continuous
change, rather than a sudden transition, of the most unstable
mode from the BAE to the LFM. Figure 10(a) shows a scan
with decreasing fast ion density from the experimental density.
Note that the lower fast ion density is relevant to an experi-
mental condition with lower beam power. Meanwhile, a scan
with decreasing fast ion temperature in figure 10(b) is rele-
vant to the slow thermalization of fast ions after the beams
turn off. The simulation without fast ions (T f = 0) describes
fully thermalized fast ions. Overall, in figure 10, we find strong
non-perturbative effects on the BAE and LFM, leading to a
continuous change of the linear dispersion from the BAE to
the LFM.

Comparing results in figure 10(a) from various simulation
models, one can delineate the effects of equilibrium electron
current ue0 (kink drive in GTC [51, 52]), parallel magnetic
perturbation δB‖ and trapped electrons. The cases with (black
lines) and without (blue lines) ue0 show that kink drive is weak,
as expected. The cases with (black lines) and without (green
lines) δB‖ show that the compressible magnetic perturbation

is strongly destabilizing. Also, δB‖ decreases the BAE fre-
quency. The result is consistent with the cancellation of the
drift-reversal stabilization by the compressible magnetic per-
turbation [34, 53–55] and minimization of the plasma potential
energy δW [56, 57]. The cases with (black lines) and with-
out (red lines) kinetic effects from trapped electrons show that
their stabilizing role is modest.

Figure 11 shows the dependences of the LFM frequency
and linear growth rate on the thermal plasma density and tem-
perature. We find that high electron temperature and density
are strongly destabilizing for the LFM. Meanwhile, ion tem-
perature is responsible for the LFM frequency, and higher ion
temperature is stabilizing for a given total pressure. The over-
all feature of these results is consistent with energy exchange
analysis, indicating roles of electrons and thermal ions on
the LFM stability through the pressure gradient drive and the
ion Landau damping. In particular, this is consistent with the
DIII-D experiments where LFM excitation has a strong posi-
tive correlation with the electron temperature [17].

Note that both BAE and LFM propagate in direction of the
ion diamagnetic drift. For the BAE it comes from fast ion res-
onances. For the LFM frequency, figure 11(b) shows that it
monotonically increases with ion temperature, indicating ion
diamagnetic effect. Electron temperature and density do not
change LFM frequency much. In particular, the electron den-
sity dependence of LFM frequency is completely different
from that of Alfvén frequency, which should decrease with
the electron density. It is another evidence that the LFM is
not a conventional AE. Figure 11(c) shows the results of ther-
mal ion temperature scan keeping the same total pressure by
increasing electron temperature accordingly when decreasing
ion temperature. The result shows stabilizing role of thermal
ions compared to electrons at a given total beta.

We find an ideal interchange/ballooning mode using an
incompressible ideal MHD model in GTC. Linear growth rate
of the ideal MHD mode with parallel magnetic compression
is γ/2π = 3.6× 104 s−1, much higher than 1.8× 104 s−1 for
the LFM from the gyrokinetic simulation with a low ion tem-
perature. This is expected from the ideal MHD model with-
out parallel electric field, as there is no ion Landau damp-
ing and radiative damping by kinetic SAW. Therefore, the
LFM found in linear GTC simulations, theoretical interpre-
tation, and in DIII-D experiments without NBI [17], is basi-
cally an interchange-typemode with finite frequency due to ion
diamagnetic effects. This is a pressure-driven Alfvénic mode
excited inside the kinetic thermal ion gap (0,ω∗pi) reactively,
where ω∗pi is the ion diamagnetic frequency [12–14, 17].
For example, our simulations find that the n = 3 LFM fre-
quency is 11 kHz andω∗pi = 15 kHz at the radial location with
the maximal mode amplitude. As a reference, the thermal ion
transit, bounce and precession frequencies at the LFM peak
locations are, respectively, ωti ≈ 16 kHz, ωbi ≈ 6 kHz and
nωpri ≈ 2 kHz. Therefore, there can be ion transit resonance
as indicated by the wave–particle energy exchanges show
in figure 8.

Toroidal mode number n scan shows that the linear growth
rates of both BAE and LFM have weak n-dependences.
Figures 12(a) and (b) show the n-scan results of the linear

7
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Figure 11. Dependence of LFM real frequencies (solid) and growth
rates (dashed) on (a) electron density, and (b) electron and ion
temperatures. Panel (c) is an ion temperature scan with fixed total
plasma pressure.

dispersion for the BAE and LFM, respectively. The scaling
of the LFM frequency ∼ω∗pi is consistent with our interpre-
tation that the LFM is an interchange-type mode. Note that in
figure 12(b), the ion diamagnetic frequency has been estimated
at the mode peak location for each n mode. The LFM scaling
also indicates that an interpretation with the thermal ion gap
with the upper bound ∼ω∗pi is more appropriate than one with
the MHD BAAE gap. Note that there is no drop of LFM linear

Figure 12. Toroidal mode number n dependence of real frequency
(blue) and linear growth rate (red) of (a) BAE and (b) LFM. Black
triangles in panel (b) denote ion diamagnetic frequency.

growth rate when LFM frequency increases across the upper
bound of the MHD BAAE gap (see figure 3). The n = 3, 6 and
9 LFMs have mode peaks at similar locations and have simi-
lar growth rates to each other, even though their mode numbers
and frequencies are largely different. This is another indication
of the interchange-type mode. The reason for the stable n = 4
and 5 LFMs is due to the absence of a mode rational surface
near qmin = 1.325, where magnetic shear-induced stabilization
is weak.

For completeness of the physics identification of the LFM,
we have performed linear electrostatic GTC simulations over
the range of the toroidal mode numbers in figure 12. Excited
electrostatic modes have much smaller linear growth rates
than corresponding electromagnetic modes. The electrostatic
modes propagate in the electron diamagnetic direction with
frequencies similar to trapped electron precessional frequency
so they are likely collisionless trapped electron modes.

6. Comparison with experimental measurements

In this section, we discuss the comparison of linear GTC sim-
ulation results to experimental measurements in the DIII-D
discharge #178631 near 1200 ms. While radial structures from
simulations and experimental measurements agree rather well,
frequencies show significant differences. Figures 13(a) and (b)
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show the radial structures of the electron temperature perturba-
tion normalized by the local equilibrium temperature, δTe/Te0,
obtained from linear GTC and electron cyclotron emission
(ECE) measurements. Note that for the comparison, δTe/Te0

from the linear GTC and the ECE have been further normal-
ized by their values at radial peak. In the simulations, δTe/Te0

is estimated using the adiabatic (incompressible) electron tem-
perature response as follows

δTe � −ξ · ∇Te0,

where ξ is the plasma displacement. We have verified that
the inclusion of non-adiabatic electron response does not
change significantly the radial structure of the δTe/Te0. We
focus on the n = 3 BAE and the n = 6 LFM in this
section, as they are two most unstable modes observed in the
experiment [17].

One can find from figures 13(a) and (b) that radial structures
of BAE and LFM from linear simulations agree qualitatively
with ECE measurements, especially the radial location and
mode width for both the LFM and the BAE. For reference, the
BAE and the LFM in the ECE measurements are distinguished
by their frequencies. Figure 13(c) shows the mode structure
of the n = 6 LFM for each poloidal harmonic from the lin-
ear simulation. We would like to warn readers, however, that
it is a nonlinearly evolving mode that we measure in experi-
ments. It suggests further nonlinear simulations as a follow-
up work for more precise comparison with experimental
measurements.

Linear GTC simulations find that the frequency of the
n = 3 BAE in the plasma frame is 56.6 kHz with the classi-
cal fast ion profile, and is 73.5 kHz with the relaxed fast ion
profile. The experimental m = 4, n = 3 BAE occurs around
1215 ms when qmin from EFIT is ∼1.30 and has a frequency
in the laboratory frame of f lab = 106 kHz, although the mode
actually chirps rapidly about 10% in frequency [18]. Since
the toroidal rotation at the peak of the eigenfunction is f rot =
8.5 kHz, the estimated BAE frequency in the plasma frame
fplasma = f lab − n f rot is ∼81 kHz is considerably higher than
the simulated frequency and closer to the accumulation point
of the Alfven continuum (figure 3). Figure 10 provides a likely
explanation for this discrepancy. In the experiment, anisotropic
population of co-passing tangential beams drives the instabil-
ity but the simulations use an isotropic distribution function.
As figure 10 shows, stronger fast-ion drive raises the computed
mode frequency. Perhaps simulations with a more realistic dis-
tribution function will find better agreement with the measured
frequency but that is left for future work.

For the LFM, GTC finds a frequency in the plasma frame of
26.9 kHz. The experimental n= 6 LFM occurs around 1183 ms
when qmin from the EFIT is ∼1.33 and has a frequency in
the laboratory frame of f lab = 38 kHz. Using fplasma = f lab −
n f rot, this implies a plasma frame frequency of −3 kHz (in
the electron direction), with an uncertainty of ∼5 kHz [17]. In
contrast to the BAE, the LFM simulated frequency is higher
than the frequency inferred from the experiment. One source of
uncertainty in this comparison comes from the estimations of
the Doppler shift of the mode frequencies. An oft-used approx-
imation of the Doppler shift [32, 33] is nωφ, where ωφ is the

Figure 13. Radial profiles of perturbed electron temperature of
(a) BAE and (b) LFM, obtained from GTC simulations (black) and
ECE measurements (red). Panel (c) is radial structures of poloidal
harmonics of the n = 6 LFM, together with q-profile. They are
normalized by maximal value of the main poloidal harmonic.

toroidal rotation angular frequency. However, finite equilib-
rium poloidal flow, together with finite pressure, contributes
to radial electric field in the radial force balance. Therefore,
it can make a difference of the true Doppler shift from its
simple estimation nωφ. Note that current simulations use a
local Maxwellian as an approximation to the neoclassical dis-
tribution function, thus neglect all neoclassical flows. There-
fore, there exists uncertainty also from the simulation side,
which can enlarge difference of estimated frequencies from the
simulations and experiments, especially for the LFM.

A striking feature in the experiment is the strong depen-
dence of BAE and LFM stabilities on relatively modest
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Figure 14. qmin scan of frequency (solid line) and linear growth rate
(dashed line) of n = 3 BAE (red) and n = 6 LFM (black) by shifting
overall value of q-profile from the reference case (qmin = 1.325).

changes in the q-profile. For example, the n = 3 BAE persists
about 30 ms, while the n = 6 LFM is only unstable for a few
milliseconds. In 30 ms, qmin only changes by∼0.03 so the BAE
stability and especially the LFM stability is extremely sensi-
tive to q. Figure 14 shows the simulated dependence on the
qmin for the mode frequencies and growth rates. The depen-
dence on qmin for the BAE is weaker than the experiment,
although this discrepancy may also be caused by the use of
an isotropic distribution function, as the experimental anal-
ysis suggests that the dependence of the resonant frequency
of the injected co-passing ions on the qmin is the dominant
factor determining the mode stability [18]. For the LFM, the
simulations do show a significant dependence of the growth
rate on qmin, although the dependence is still weaker than
that suggested by the experimental ‘Christmas light’ pattern
of modes that only appear when qmin approaches a rational
value [17].

7. Conclusion

In this work, we find both unstable BAE and LFM from GTC
linear gyrokinetic simulations of the DIII-D shot #178631.
The simulations find that the LFM is an interchange-type
electromagnetic mode, and has several features similar to the
LFM observed in the DIII-D experiments and the theoretical
interpretation presented in reference [17]:

(a) It is excited even without fast ions.
(b) The mode structure is localized to the qmin and, com-

pared to the BAE, the peak is closer to the qmin, as in
experiment [18]. Also, as in the experiment, the mode
phase depends strongly on radius.

(c) As in the experiment, the frequency is in the range of the
ion diamagnetic frequency but is somewhat higher than
that suggested by the experiment.

(d) Instability is found over the same range of toroidal mode
numbers as observed experimentally.

(e) As in the experiment, high electron temperature is
strongly destabilizing but increasing ion temperature is
stabilizing.

(f) Like the experiment, the calculated growth rate is sensi-
tive to the qmin but the dependence appears weaker than
that in the experiment.

The simulated BAE also has several features that resemble
experiment.

(a) The mode stability is a strong function of fast-ion param-
eters. In the linear simulations, the mode frequency
depends on the fast-ion density and temperature. This dif-
fers from the experiment, but the experimental observa-
tion of rapid frequency chirping suggests that the mode
frequency is sensitive to the fast-ion population.

(b) The mode structure peaks near the qmin but shifts in posi-
tion depending upon the qmin and the fast-ion parameters.
Similar variation in the peak of the BAE eigenfunction
is observed experimentally. Also, for both simulation and
experiment, the phase of the mode varies with the radius.

(c) Unlike the experiment, the simulated frequency is well
below the BAE accumulation frequency.

(d) Unstable toroidal modes are predicted over the same range
as that observed experimentally.

(e) The dependence of the BAE stability on the ion tempera-
ture is weak in both simulation and experiment.

(f ) Unlike in the experiment, the simulated growth rate
depends only weakly on the qmin.

The BAE and LFM from linear GTC simulations have the
following common features: overall polarization is close to
Alfvénic, but the sidebands have significant acoustic compo-
nent. Parallel current drive is very weak and trapped elec-
trons are stabilizing. Parallel magnetic compression is strongly
destabilizing.

The simulated BAE and LFM also have distinct features.
First, the main drive is wave–fast ion resonance for the BAE,
while it is non-resonant interchange drive for the LFM. The
sidebands of the LFM have stronger acoustic component than
the BAE. While BAE shows a triangular mode structure, LFM
has an elliptic shape.

Further linear simulations with anisotropic slowing-down
fast ion distribution function to study beam angle-dependence
of the BAE excitation, and nonlinear simulations to study BAE
and LFM saturation and fast and thermal ion transport will be
performed in the near future.
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Appendix A

In this appendix, we present a more precise ordering for
δB‖/δB⊥ beyond a typical ordering

∣∣δB‖
∣∣ / |δB⊥| ∼ O (β).

The first order perpendicular force balance in the long wave-
length limit yields

δB‖
B0

� −4π
B2

0

δp. (A1)

Note that general pressure perturbation is [58]

δp = −ξ · ∇P0 + δpcomp. (A2)

The first and the second terms in rhs of equation (A2)
are the incompressible and compressible parts, respectively.
Then, we take an ordering assuming that the contribution from
the incompressible part is comparable to the total pressure
perturbation

|δp| ∼ |ξ⊥ · ∇P0| . (A3)

From perpendicular component of the induction equation,

|δB⊥|
B0

∼
∣∣k‖∣∣ |ξ⊥| . (A4)

Combining equations (A1), (A3) and (A4), we finally get
the following ordering.

∣∣δB‖
∣∣

|δB⊥|
∼ 4πP′

0

B2
0

∣∣k‖∣∣ ∼
β

Lp

∣∣k‖∣∣ � O (β) . (A5)

Note that
∣∣k‖∣∣ � 1/qR0 near the mode rational surface for

the interchange-type mode structure, and therefore it can lead
to

∣∣δB‖
∣∣ / |δB⊥| ∼ O (1) for BAE and LFM from linear GTC

simulations. Note that equation (A5) can also be obtained from
GTC formulation. With small parallel electric field, one can
rewrite incompressible pressure response as

δpincomp = −ξ · ∇P0 � P′
0δψ. (A6)

Here, δψ is the perturbed poloidal magnetic flux.
In appendix B, we discuss more on this. Substituting

equation (A6) into equation (A1), with |δp| ∼ |δpincomp|, we
have ∣∣δB‖

∣∣
B0

∼ β

|∇ψ| Lp
δψ. (A7)

Also in GTC, we use the following approximate expression
for the perturbed perpendicular magnetic field [59].

δB⊥ � ∇δψ ×∇α+∇ψ ×∇δα. (A8)

Taking ∇ψ· to equation (A8), we have

∇ψ · δB⊥ � B0 · ∇δψ, (A9)

which leads to
|δB⊥|

B0
∼

∣∣k‖∣∣
|∇ψ|δψ. (A10)

From equations (A7) and (A10), we finally obtain the same
ordering with equation (A5).

Appendix B

In this appendix, we present explicit expressions of energy
exchange rates, denoted by shorthand notations in the main
body, and details of the interchange-type energy exchange
rate which is used as an estimation of ideal MHD-like pres-
sure drive. In equation (2), the complete expression of energy
exchange rate, the first and the second terms in rhs corre-
spond to the perpendicular and parallel channels, respectively.
We further decompose each channel into each species as
follows

s⊥ = es〈〈v⊥s · E⊥〉v〉, (B1)

s‖ = es〈〈v‖sE‖〉v〉. (B2)

Here, s = i, e and f correspond to thermal ion, electron and
fast ion, respectively. As explained in section 4, 〈· · ·〉v is a
velocity space integral weighted by the perturbed distribution
function.

In GTC, we use fluid-kinetic hybrid electron model, where
the electron perturbed distribution function is separated into
the adiabatic part and the non-adiabatic part [59]. The velocity
space integration in equations (B1) and (B2) can thus be sep-
arated into two components. The adiabatic electron response
gives rise to an interchange-type energy exchange rate sic.
That is,

sic = 〈P′
s0δψ

(
b0 ×∇B0

B2
0

+
∇× b0

B0

)
· ∇φ〉, (B3)

where the dominant component of the electron pressure pertur-
bation corresponds to the incompressible ideal MHD pressure
perturbation,

δPs,incomp = P′
s0δψ. (B4)

Here, δψ is the perturbed poloidal magnetic flux and the
subscript s represents electron species. The subdominant com-
ponents of the electron pressure perturbation include the elec-
tron density perturbation and compressible magnetic pertur-
bation. On the other hand, the resonant energy exchange
e⊥,na, e‖,na can be calculated using the non-adiabatic electron
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response in equations (B1) and (B2). The total wave–electron
energy exchange rate is the sum of e⊥,na, e‖,na and eic in figure 8.

We note that this total wave–electron energy exchange
rate is consistent with the conventional calculation of the
interchange drive. We rewrite equation (B1) with gyrofluid
moments [45, 60, 61] as follows

s⊥ = 〈
(
δP⊥s

b0 ×∇B0

B2
0

+ δP‖s
∇× b0

B0

)
· ∇φ〉. (B5)

Note that the perpendicular and parallel gyrocenter pres-
sures

δP⊥s ≡
∫

d3VμB0δ f s, δP‖s ≡
∫

d3Vmsv
2
‖δ f s, (B6)

contain both resonant and non-resonant responses [62]. The
non-resonant (adiabatic) response includes the dominant
incompressible component of equation (B4) and the subdom-
inant compressible components.
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