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ABSTRACT

We investigate the global properties of drift waves in the beam driven field-reversed configuration (FRC), the C2-U device, in which the cen-
tral FRC and its scrape-off layer (SOL) plasma are connected with the formation sections and divertors. The ion temperature gradient modes
are globally connected and unstable across these regions, while they are linearly stable inside the FRC separatrix. The unstable global drift
waves in the SOL show an axially varying structure that is less intense near the central FRC region and the mirror throat areas, while being
more robust in the bad curvature formation exit areas.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5087079

I. INTRODUCTION

A field-reversed configuration (FRC) is an elongated prolate com-
pact toroid (CT) with magnetic fields predominantly along the poloidal
direction, which consists of a core with closed field lines and a scrape-
off layer (SOL) with open field lines.1 As a fusion reactor concept, FRC
has many advantages: The average beta (the ratio between plasma
kinetic pressure and magnetic energy density) is close to unity, which
suggests a much cheaper fusion energy than the tokamak. The compact
shape and simple geometry of FRC also lead to construction conve-
nience and high magnetic efficiency. The SOL region extends to the
device ends and forms natural divertors, which are far away from the
core region and allow extraction of fusion energy without restriction.
TAE Technologies, Inc. has launched a series of FRC experiments.2–7

A significant energetic ion population generated from neutral beam
injection (NBI) can suppress the macroinstability.8,9 Meanwhile, the
large orbit size effects of the energetic particle would not destabilize the
microturbulence and the ion scale turbulent transport is suppressed.10

These experimental efforts lead to the sustainment of beam-driven hot
FRC plasmas for more than 5ms in C-2U experiments, which is in the
confinement regime limited by turbulent transport.

In FRC, the open field line SOL region is connected to the closed
field line core region, and the turbulence in these two regions affects
each other. In recent C2-U experiment, it is found that ion-scale
turbulence fluctuation is suppressed in the core, while in the SOL, ion-
and electron-scale turbulence is observed.10 Thus, it is important to
understand the transport mechanism in FRC for the improvement of
plasma confinement. 1D and 2D magnetohydrodynamic (MHD)
codes have been built up to model the global FRC transport, which
requires turbulence simulation codes to provide the transport coeffi-
cients.11–13 First-principles particle-in-cell simulation is a powerful
tool to study the fusion plasmas combining with theory, which has
successful applications in understanding the anomalous transport in
tokamak plasmas.14–24 For the particle-in-cell study of turbulence in
FRC, some pioneer works25–27 have been performed based on the
state-of-the-art fusion plasma simulation code: Gyrokinetic Toroidal
Code (GTC). GTC has been successfully applied to simulate microtur-
bulence,21,24 energetic particle transport,28 Alfven eigenmodes,29,30

andMHD instabilities31,32 in toroidal plasmas. An upgrade to the FRC
geometry in the Boozer coordinates of GTC has been carried out by
Fulton et al.,25,26 and local gyrokinetic particle simulation study by Lau
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et al.10,27 shows that the drift wave is stable in the FRC core due to the
large orbit size, magnetic well geometry, and short electron transit
length. Meanwhile, a new global particle-in-cell FRC code, ANC, has
been developed by incorporating core and SOL regions across the
separatrix. ANC simulations show that ion scale turbulence can spread
from the SOL to the core.33,34

In order to study the turbulent transports globally up to the
divertor region for FRC, a new GTC family code, gyrokinetic toroidal
code-X (GTC-X), is developed in this work by refactoring the coordi-
nate system and geometry of the original GTC code, i.e., change the
Boozer coordinates to cylindrical coordinates and change the geome-
try from tokamak and stellarator to FRC. GTC-X enables the cross-
separatrix simulation with a field aligned mesh covering the whole
geometry of the FRC. Compared to the original GTC code, both the
particle trajectory and the Poisson solver are newly written as well as
the simulation grids in the GTC-X code. The GTC mixed-model
OpenMP-MPI parallelization35 is adopted in GTC-X. This paper
mainly presents the numerical developments, code verification, and
initial results of ion temperature gradient (ITG) modes in the global
FRC geometry. GTC-X global simulations show that ITG is unstable
in the SOL and stable in the core, which is consistent with previous
local simulations and experimental observations. We find that the ITG
mode grows along the field line direction in the SOL and shows an
axial variation. The maximum amplitude of the ITG mode is in the
formation region with bad curvature, while the mode amplitude is
small in the central FRC region. The mode structure in the SOL is sen-
sitive to the parallel domain size, which experiences a transition from
even parity to odd parity when increasing the domain size.

This paper is organized as follows. In Sec. II, we introduce the
global FRC geometry implementation. The gyrokinetic particle simu-
lation model for FRC is described in Sec. III. The benchmark simula-
tion results are shown in Sec. IV. In Sec. V, the global simulation of
ITG modes is described. The conclusion is discussed in Sec. VI.

II. GLOBAL FRC GEOMETRY IMPLEMENTATION

In order to avoid the singularity of magnetic coordinates at the
separatrix,22,36 we adapt the cylindrical coordinate system for global
FRC simulation with (R, f, Z), where the 3 independent unit vectors
satisfy the right hand rule: R̂ � f̂ � Ẑ ¼ 1. The poloidal magnetic flux
w of FRC equilibrium and cylindrical coordinates used in GTC-X is
shown in Fig. 1, which is calculated by an axisymmetric force balance
FRC equilibrium solver: LR_eqMI code.37 The equilibrium box size is

normalized by the radial position of magnetic axis: R ¼ R0 ¼ 26.8 cm,
i.e., the distance between the magnetic axis and the cylinder axis.
There are several mirror plugs in the SOL region aiming at decreasing
the particle end loss, and the expanded divertors are located at the
ends of open field lines, where we can apply the edge biasing via the
plasma-gun electrodes to improve the confinement.4 In this section,
based on the characteristics of FRC equilibrium, we will introduce the
algorithms used in GTC-X for global particle-in-cell modeling of FRC.

A. Magnetic field representation in cylindrical
coordinates

The magnetic field and associated derivatives commonly appear
in the particle dynamic equations for the simulation of magnetized
plasmas; thus, it is important that the magnetic field satisfies r � B
¼ 0 numerically. The magnetic coordinates enable the free divergence
representation for the magnetic field as B ¼ ra�rb, where a and b
are coordinates which vary along the directions orthogonal to the
magnetic field. However, magnetic coordinates fail to address the sim-
ulation containing different geometric topologies with a separatrix.36

Thus, we apply the cylindrical coordinate system as the basic coordi-
nates. In order to guarantee the free divergence property for the mag-
netic field in cylindrical coordinates, we use the poloidal magnetic flux
w to calculate the magnetic field components and their derivatives
and, thus, enforce the consistency between each component. In FRC,
the equilibrium magnetic field B has no toroidal component and can
be expressed as B ¼ rw�rf ¼ BRR̂þBZẐ. The magnetic field
strength in radial and axial directions can then be derived as

BR ¼ �
1
R
@w
@Z

(1)

and

BZ ¼
1
R
@w
@R

: (2)

From equilibrium calculated by the LR_eqMI code, we can get the
value of poloidal magnetic flux w over the whole FRC geometry on the
equal space grids in the (R, Z) plane as shown in Fig. 1, and LSR¼ 150
and LSZ ¼ 401 are the equilibrium radial and axial grid numbers,
respectively. By using the value on coarse equilibrium grids, we can
use the quadratic spline function to calculate w at the arbitrary loca-
tion (R, Z) inside the equilibrium domain as

FIG. 1. Contour plot of w=jwOj for global
FRC geometry, where wO is the poloidal
magnetic flux value at the magnetic axis
as shown by the green star. The black
solid lines represent the different field
lines (contour line of w), and the red line
represents the separatrix. The arrows
denote the directions of cylindrical
coordinates.
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w R;Zð Þ ¼w 1; i; jð Þþw 2; i; jð ÞDRþw 3; i; jð ÞDR2

þw 4; i; jð ÞDZþw 5; i; jð ÞDRDZþw 6; i; jð ÞDR2DZ

þw 7; i; jð ÞDZ2þw 8; i; jð ÞDRDZ2þw 9; i; jð ÞDR2DZ2; (3)

where i 2 ½1; LSR� and j 2 ½1; LSZ� are the radial and axial indexes of
equilibrium grids, and DR ¼ R� Ri; DZ ¼ Z � Zj; Ri � R < Riþ1
and Zj � Z < Zjþ1.

It is straightforward to show that r � B ¼ 0 is guaranteed theo-
retically and numerically

r � B ¼ 1
R
@

@R
RBRð Þ þ @BZ

@Z
¼ 0: (4)

B. Field line coordinates for the perturbed field
calculation

In magnetized plasmas, the gyrocenter drift motion across the
magnetic field is much slower than the parallel motion along the field
line; thus, the wave pattern is always anisotropic in the parallel and
perpendicular directions with kjj � k?ðkjj and k? are the parallel and
perpendicular wave vectors). In order to improve the numerical effi-
ciency and accuracy, the field aligned mesh is widely adapted for parti-
cle-in-cell simulation of magnetized plasmas, i.e., the grids are aligned
along the magnetic field direction with only a small number in the par-
allel direction, which can dramatically suppress the high kjj noise and
save computational cost without sacrificing key physics dominated by
small kjj.

23,38 In global FRC simulation, we setup a field aligned mesh
in both core and scrape-off layer (SOL) regions across the separatrix in
cylindrical coordinates. Due to the fact that the magnetic field is not
uniform in FRC, the field aligned mesh is not regular in cylindrical
coordinates. For solving perturbed fields as well as particle-grid
gather-scatter operation, we create the field line coordinates for core
ðw; ScÞ and SOL ðw; SSÞ regions on the poloidal plane, separately,
where Sc and SS represent the normalized field line distances along the
magnetic field line direction in core and SOL regions, and the mesh is
regular in the corresponding field line coordinates. Thus, in GTC-X,
we use two different coordinate systems: cylindrical coordinates and
field line coordinates to represent the location.

The simulation domain is different from equilibrium shown in
Fig. 1. Because drift wave instabilities and associated transports are
anisotropic in perpendicular and parallel directions, we choose the
simulation domain based on perpendicular coordinates w (we do not
need to consider about f domain because it is toroidally symmetric
from ð0; 2pÞ), i.e., the inner boundary in the core and the outer
boundary in SOL are labeled by poloidal magnetic flux: w0 and w1.
Furthermore, left and right boundaries in the SOL region are given
by Z0 and Z1, where Z0¼ �Z1 is symmetric with respect to outer mid-
plane Z¼ 0.

First, we define Sc and SS by tracing each field line on each w grid
in the core and SOL regions as

w icð Þ ¼ w0 þ dwc � ic � 1ð Þ;
where dwc ¼ ðwX � w0Þ=ðlspc� 1Þ, wX is the value of w at the separa-
trix, lspc is the spline resolution in the core region, and 1 � ic � lspc.
And

w iSð Þ ¼ wX þ dwS � iS � 1ð Þ;
where dwS ¼ ðw1 � wXÞ=ðlsps� 1Þ, lsps is the spline resolution in
SOL region, and 1 � iS � lsps. Both Sc and SS are normalized by the

field line length at each w grid and range from 0 to 1. In the core
region, Sc starts at the outer midplane with Z¼ 0 and increases along
the clockwise direction, and grids at Sc ¼ 0 and Sc ¼ 1 are overlapped.
In the SOL region, the parallel coordinate SS starts on the left boundary
Z0 and ends on the right boundary Z1.

Next, considering the properties of geometry topology of core
and SOL regions in FRC, forward spline functions Sc ¼ Sc½wðR;ZÞ;
hðR;ZÞ� and SS ¼ SS½wðR;ZÞ;Z� are created for the transformation
from cylindrical coordinates to field line coordinates, where sinðhÞ
¼ Z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ ðR� R0Þ2

q
is the geometric angle with respect to the

magnetic axis position ðR ¼ R0;Z ¼ 0Þ. The uniform scale of geomet-
ric angle h for creating spline function Scðw; hÞ is

h jcð Þ ¼ dh� jc � 1ð Þ;
where dh ¼ 2p=ðlstc� 1Þ, lstc is the spline resolution in the h direc-
tion, and 1 � jc � lstc. By tracing each field line and calculating the Sc
value on the uniform scales of w and h, the spline function Scðw; hÞ
can be derived as

Sc w;hð Þ ¼ Sc 1; ic; jcð Þ þ Sc 2; ic; jcð ÞDwþ Sc 3; ic; jcð ÞDw2

þSc 4; ic; jcð ÞDhþ Sc 5; ic; jcð ÞDwDhþ Sc 6; ic; jcð ÞDw2Dh

þSc 7; ic; jcð ÞDh2 þ Sc 8; ic; jcð ÞDwDh2 þ Sc 9; ic; jcð ÞDw2Dh2:

(5)

The uniform scale of Z for creating spline function SSðw;ZÞ is
Z jSð Þ ¼ dZS � jS � 1ð Þ;

where dZS ¼ ðZ1 � Z0Þ=ðlszs� 1Þ, lszs is the spline resolution in the
Z direction, and 1 � jS � lszs. By tracing each field line and calculat-
ing the SS value on the uniform scales of w and Z, SSðw;ZÞ is given as

SS w;Zð Þ¼SS 1;iS;jSð ÞþSS 2;iS;jSð ÞDwþSS 3;iS;jSð ÞDw2

þSS 4;iS;jSð ÞDZþSS 5;iS;jSð ÞDwDZþSS 6;iS;jSð ÞDw2DZ

þSS 7;iS;jSð ÞDZ2þSS 8;iS;jSð ÞDwDZ2þSS 9;iS;jSð ÞDw2DZ2:

(6)

Then, we create the inverse spline functions Rcðw; ScÞ and
Zcðw; ScÞ for the core region, and RSðw; SSÞ and ZSðw; SSÞ for the SOL
region. The uniform scales of Sc and SS for the spline function are

Sc jcð Þ ¼ dSc � jc � 1ð Þ;
where dSc ¼ 1=ðlssc� 1Þ, lssc is the spline resolution in the parallel
direction in the core region, and 1 � jc � lssc

SS jSð Þ ¼ dSS � jS � 1ð Þ;
where dSS ¼ 1=ðlsss� 1Þ, lsss is the spline resolution in the parallel
direction in the SOL region, and 1 � jS � lsss. It is straightforward to
get the values Rc½wðicÞ; ScðjcÞ�; Zc½wðicÞ; ScðjcÞ�; RS½wðiSÞ; SSðjSÞ�,
and ZS½wðiSÞ; SSðjSÞ� on the uniform scales of ðw; ScÞ and ðw; SSÞ, and
the quadratic spline functions Rcðw; ScÞ; Zcðw; ScÞ; RSðw; SSÞ, and
ZSðw; SSÞ can then be created as

Rc w;Scð Þ¼Rc 1; ic; jcð ÞþRc 2; ic; jcð ÞDwþRc 3; ic; jcð ÞDw2

þRc 4; ic; jcð ÞDSþRc 5; ic; jcð ÞDwDSþRc 6; ic; jcð ÞDw2DS

þRc 7; ic; jcð ÞDS2þRc 8; ic; jcð ÞDwDS2þRc 9; ic; jcð ÞDw2DS2;

(7)
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and

Zc w;Scð Þ ¼ Zc 1; ic; jcð ÞþZc 2; ic; jcð ÞDwþZc 3; ic; jcð ÞDw2

þZc 4; ic; jcð ÞDSþZc 5; ic; jcð ÞDwDSþZc 6; ic; jcð ÞDw2DS

þZc 7; ic; jcð ÞDS2þZc 8; ic; jcð ÞDwDS2þZc 9; ic; jcð ÞDw2DS2;

(8)

where Dw ¼ w� wðicÞ and DS ¼ Sc � SðjcÞ. wðicÞ � w < wðic þ 1Þ,
and SðjcÞ � Sc < Sðjc þ 1Þ.

RS w;SSð Þ¼RS 1;iS;jSð ÞþRS 2;iS;jSð ÞDwþRS 3;iS;jSð ÞDw2

þRS 4;iS;jSð ÞDSþRS 5;iS;jSð ÞDwDSþRS 6;iS;jSð ÞDw2DS

þRS 7;iS;jSð ÞDS2þRS 8;iS;jSð ÞDwDS2þRS 9;iS;jSð ÞDw2DS2;

(9)

and

ZS w;SSð Þ¼ZS 1;iS;jSð ÞþZS 2;iS;jSð ÞDwþZS 3;iS;jSð ÞDw2

þZS 4;iS;jSð ÞDSþZS 5;iS;jSð ÞDwDSþZS 6;iS;jSð ÞDw2DS

þZS 7;iS;jSð ÞDS2þZS 8;iS;jSð ÞDwDS2þZS 9;iS;jSð ÞDw2DS2;

(10)

where Dw ¼ w� wðiSÞ and DS ¼ SS � SðjSÞ. wðiSÞ � w < wðiS þ 1Þ
and SðjSÞ � SS < SðjS þ 1Þ.

By using Eqs. (7)–(10), we could compute the field aligned mesh
in cylindrical coordinates with a given regular mesh in the core region
ðw; ScÞ and in the SOL region ðw; SSÞ, respectively. An example of
global field aligned mesh is given in Fig. 2(a). The field aligned grids
are irregular in cylindrical coordinates. For the overlap part of core
and SOL regions at the separatrix (R> 0), the grid positions are deter-
mined by using Rcðw; ScÞ and Zcðw; ScÞ, which are shared by both
core and SOL regions with the scopes of two coordinates: ðw; ScÞ and
ðw; SSÞ as shown by the black stars. In magnetic coordinates, the grids
in SOL and core regions are regular inside each domain, respectively.
The shared grids at the separatrix are designed regularly with the inte-
rior grids in the core region (keep the same parallel coordinate Sc
value), which are shown in Figs. 2(b) and 2(c).

In GTC-X, particle dynamic equations are evolved in cylindrical
coordinates ðR; f;ZÞ to avoid the singularity at the separatrix.
However, the field aligned mesh is irregular in (R, Z) space, which is
difficult to carry out particle-grid gather-scatter operation for PIC sim-
ulation. It is noted that the field aligned grids are labeled by both cylin-
drical and magnetic coordinates: (R, Z) and ðw; ScÞ in the core region
and (R, Z) and ðw; SSÞ in the SOL region. The mesh is regular in mag-
netic coordinates in the core and SOL regions, respectively, as shown
in Fig. 2. Thus, we can transform the particle coordinate from (R, Z) to
ðw; ScÞ and ðw; SSÞ by using Eqs. (3), (5), and (6), and then a simple
linear interpolation between the particle location and the regular rect-
angular mesh can be used for particle-grid gather-scatter operation,

FIG. 2. (a) Global field aligned mesh in cylindrical coordinates. Field aligned mesh mapping from cylindrical coordinates to magnetic coordinates: (b) core region grids in
ðw; ScÞ coordinates and (c) SOL region grids in ðw; SSÞ coordinates. The black stars represent the shared grids at the separatrix. The grids shown here are only for illustrating
the algorithm, which are much sparser than the ones used in realistic simulation.
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where we implement 3 1D linear interpolations along w, f, and Sc=SS
for the simulations in 3 dimensional ðw; f; Sc=SSÞ space.

C. Laplacian operator

In the global simulation of FRC geometry with the field aligned
mesh, the perpendicular Laplacian operator is discretized in ðw; f; ScÞ
space for the core region and in ðw; f; SSÞ space for the SOL region,
respectively, since the irregular mesh in cylindrical coordinates
becomes regular in magnetic coordinates.

The Laplacian operator can be expanded in a generalized
coordinates

r2f ¼ 1
J
@

@na Jrna � rnb @f

@nb

� �
; (11)

where f represents an arbitrary scalar field, na; nb refer to the three
dimensional coordinates, and J is Jacobian and defined as J�1�abc

¼ rna �rnb � rnc; rna ¼ @na

@R R̂ þ
@na

@f
1
R f̂ þ @na

@Z Ẑ , and �abc ¼ 1,

and it becomes antisymmetric when the indices change.39

In the core region with ðw; f; ScÞ, considering
Sc ¼ Sc½wðR;ZÞ; hðR;ZÞ�, the Laplacian is written as

r2
c f ¼ gww @

2f

@w2 þ 2gwS
c

@2f
@w@Sc

þ gSSc
@2f
@S2c
þ gff @

2f

@f2

þ 1
Jc

@ Jcgww
� �
@w

þ @ JcgwS
c

� �
@Sc

" #
@f
@w

þ 1
Jc

@ JcgwS
c

� �
@w

þ @ JcgSSc
� �
@Sc

" #
@f
@Sc

; (12)

where

J�1c ¼ rw�rf � rSc

¼ @w
@R

R̂ þ @w
@Z

Ẑ

� �
� 1
R

f̂ � @Sc
@w

@w
@R

R̂ þ @w
@Z

Ẑ

� �"

þ @Sc
@h

@h
@R

R̂ þ @h
@Z

Ẑ

� ��
¼ 1

R
@w
@R

@Sc
@h

@h
@Z
� 1
R
@w
@Z

@Sc
@h

@h
@R

;

gww ¼ rw � rw ¼ @w
@R

� �2

þ @w
@Z

� �2

;

gSSc ¼ rSc � rSc ¼
@Sc
@w

@w
@R
þ @Sc
@h

@h
@R

� �2

þ @Sc
@w

@w
@Z
þ @Sc
@h

@h
@Z

� �2

;

gwS
c ¼ rw � rSc

¼ @Sc
@w

@w
@R

� �2

þ @w
@Z

� �2
" #

þ @Sc
@h

@w
@R

@h
@R
þ @w
@Z

@h
@Z

� �
;

gff ¼ rf � rf ¼ 1
R2
:

In the SOL region with ðw; f; SSÞ, considering SS ¼ SS½wðR;
ZÞ;Z�, the Laplacian is written as

r2
Sf ¼ gww @

2f

@w2 þ 2gwS
S

@2f
@w@SS

þ gSSS
@2f
@S2S
þ gff @

2f

@f2

þ 1
JS

@ JSgww
� �
@w

þ
@ JSg

wS
S

	 

@SS

24 35 @f
@w

þ 1
JS

@ JSg
wS
S

	 

@w

þ
@ JSgSSS
� �
@SS

24 35 @f
@SS

; (13)

where

J�1S ¼ rw�rf � rSS

¼ @w
@R

R̂ þ @w
@Z

Ẑ

� �
� 1
R

f̂ � @SS
@w

@w
@R

R̂ þ @w
@Z

Ẑ

� �
þ @SS
@Z

Ẑ

" #

¼ 1
R
@w
@R

@SS
@Z

;

gSSS ¼ rSS � rSS ¼
@SS
@w

@w
@R

� �2

þ @SS
@w

@w
@Z
þ @SS
@Z

� �2

;

gwS
S ¼ rw � rSS ¼

@SS
@w

@w
@R

� �2

þ @w
@Z

� �2
" #

þ @w
@Z

@SS
@Z

:

For the shared grids between core and SOL regions at the separatrix,
the perpendicular Laplacian operator is expanded as

r2
?;Xf ¼ gww @

2f

@w2

���
b0�f
þ 1
JX

@JXgww

@w
@f
@w

���
b0�f
þ gff @

2f
@f

; (14)

where jb0�f represents the partial derivative with respect to w among
the orthogonal grids along the b0 � f direction, and

J�1X ¼ rw�rf � rSX

¼ @w
@R

R̂ þ @w
@Z

Ẑ

� �
� 1
R

f̂ � @SX
@R

R̂ þ @SX
@Z

Ẑ

� �
¼ 1

R
@w
@R

@SX
@Z
� 1
R
@w
@Z

@SX
@R

:

Taking advantage of the toroidal symmetry of FRC, we could
transform the Laplacian operator into Fourier space with respect to
the toroidal angle f, which can avoid solving the 3 dimensional matrix.
In this paper, we can also simplify Eqs. (12)–(14) assuming k? � j
and kjj � k?, where j ¼ rB0=B0. Thus, for each toroidal mode n
(@=@f ¼ inf), the Laplacian operators in the core region, SOL region,
and at the separatrix can be written as

r2
?cfn 	 gww @

2fn
@w2 þ 2gwS

c
@2fn
@w@Sc

þ gSSc
@2fn
@S2c
� n2gfffn ; (15)

r2
?Sfn 	 gww @

2fn
@w2 þ 2gwS

S
@2fn
@w@SS

þ gSSS
@2fn
@S2S
� n2gfffn ; (16)

r2
?Xfn 	 gww@

2fn
@w2

���
b0�f
� n2gfffn; (17)

where fn is the n toroidal mode component of f.
The grids shown in Figs. 2 and 3 are only for illustrating the field

aligned grid algorithm in cylindrical coordinates clearly, which are
much sparser than the realistic simulation.
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III. PHYSICS MODEL
A. Formulation

We use the electrostatic Vlasov-Poisson system for physics simu-
lation in this paper. Particle dynamics is described by the gyrokinetic
equation using gyrocenter position R, magnetic moment l, and paral-
lel velocity vjj as independent variables in five dimensional phase space

@

@t
þ _R � r þ _vjj

@

@vjj

 !
fa R; vjj; l; tð Þ ¼ 0; (18)

_R ¼ vjjbþ vE þ vd; (19)

_vjj ¼ �
1
ma

B


B
jj
� Zarhd/i þ lrBð Þ; (20)

where Za,ma, and fa are the charge, mass, and distribution function of
a species. B is the equilibrium magnetic field, b ¼ B=B; B
 ¼ B
þðBvjj=XcaÞr � b, and B
jj ¼ b � B
. d/ is the electrostatic potential.
h� � �i ¼ ð1=2pÞ

Ð
dxdnð� � �ÞdðRþ qa � xÞ represents the gyrophase

average, n is the gyrophase angle, x represents the particle position,
qa ¼ b� v?=Xca is the particle gyroradius, and Xca is the particle
cyclotron frequency. vE is the E � B velocity, and vd is the magnetic
drift velocity, which are given as

vE ¼
cb�rhd/i

B
jj
;

vd ¼
cmav2jj
ZaB
jj

b� b � rbð Þ þ cl
ZaB
jj

b�rB:

In order to minimize the particle noise, the perturbative df simula-
tionmethod16,17 is applied. The particle distribution is decomposed into
equilibrium and perturbed parts as fa ¼ fa0ðR;l; vjjÞ þ dfaðR; l; vjj; tÞ,
and the equilibrium fa0 satisfies the following equation:

L0fa0 ¼ 0; (21)

where L0 ¼ @=@t þ ðvjjbþ vdÞ � r � ðl=maÞB
 � rB=B
jjð@=@vjjÞ.
Because vd is only in the f̂ direction, the particle drift orbit width is

zero in FRC geometry, then fa0 ¼ na0ð ma
2pTa0
Þ1:5exp½�mav2jjþ2lB

2Ta0
� is the

exact solution of Eq. (21), and na0ðwÞ and Ta0ðwÞ are the 1D function
of magnetic flux surface. Subtracting Eq. (18) by Eq. (21), we have the
equation for perturbed distribution dfa

Ldfa ¼ �dLfa0; (22)

where dL ¼ vE � r � ðZa=ma=B
jjÞB
 � rhd/ið@=@vjjÞ and L ¼ L0
þdL. Defining particle weight as wa ¼ dfa=fa, we can derive the
weight equation from Eq. (22) as

dwa

dt
¼ 1� wað Þ �vE �

rfa0
fa0

����
v?

�
Zavjjb � rhd/i

Ta0

"

� Za

Ta0

lb�rB0

maXca
þ

v2jj
Xca

b� b � rbð Þ

 !
� rhd/i

#
; (23)

where we have used the chain rulerfa0jv? ¼ rfa0jl þ ðlfa0rB=Ta0Þ
in the derivation of Eq. (23) from Eq. (22).

The gyrokinetic Vlasov equation is used for ion species, and its
perturbed density is

hdni x; tð Þi ¼
ð

dfi R;l; vjj; tð ÞdvdRdnd Rþ qi � xð Þ= 2pð Þ: (24)

Electron dynamics is assumed as adiabatic for simplicity, and the elec-
tron perturbed density is

dne x; tð Þ ¼
ed/
Te0

ne0: (25)

The gyrokinetic Poisson’s equation is14

Z2
i ni0
Ti0

d/� fd/
	 


¼ Zihdnii � edne; (26)

where ni0 and Ti0 are the equilibrium ion density and temperature. fd/
is the double gyrophase average of electrostatic potential for ion spe-
cies, which is given as

fd/ x; tð Þ ¼
1
ni0

ð
fi0 R;l; vjjð Þhd/idvdRdnd Rþ qi � xð Þ= 2pð Þ; (27)

where
Ð
dv ¼ 2pB

mi

Ð
dvjjdl.

B. Implementation of dynamic equations in cylindrical
coordinates

The gyrocenter equation of motion is

_R ¼ vjjb|{z}
fparallel motiong

þ
v2jj
Xca
r� b|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

fcurvature driftg

þ lb�rB
maXca|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

fgrad�B driftg

þ cb�rhd/i
B|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

fE�B driftg

; (28)

with

vjjb|{z}
fparallel motiong

¼ vjjðbRR̂þbZẐÞ;

v2jj
Xca
r� b|fflfflfflfflfflffl{zfflfflfflfflfflffl}

fcurvature driftg

¼ 1
maXca

mav2jj
B

bZ
@B
@R
� bR

@B
@Z

� �"

þ
v2jj

XcaB
@BR

@Z
� @BZ

@R

� �#
f̂;

FIG. 3. The green þ symbols denote the orthogonal grids in the SOL and core
regions with respect to the shared grids at the separatrix, and the dotted line in
magenta is along the perpendicular direction b0 � f̂ from the shared grids as
shown by the black stars. The grids shown here are only for illustrating the algo-
rithm, which are much sparser than the ones used in realistic simulation.
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lb�rB
maXca|fflfflfflfflffl{zfflfflfflfflffl}

fgrad�B driftg

¼ l
maXca

bZ
@B
@R
� bR

@B
@Z

� �
f̂;

cb�rhd/i
B|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

E�B drift

¼ c
B
� 1
R
bZ
@hd/i
@f

R̂þ bZ
@hd/i
@R

� bR
@hd/i
@Z

� �
f̂

"

þ 1
R
bR
@hd/i
@f

Ẑ

#
;

and

_vjj ¼�
1
ma

1
B

Bþ
Bvjj
Xca
r�b

� �
� Zarhd/iþlrBð Þ

¼� 1
ma

b � Zarhd/iþlrBð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fIg

� 1
ma

vjj
Xca
r�b � Zarhd/iþlrBð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fIIg

¼� Za

ma

@hd/i
@S
� l
ma

bR
@B
@R
þbZ

@B
@Z

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fIg

� Za

ma

vjj
Xca

1
R
@hd/i
@f

bZ
@B
@R
�bR

@B
@Z

� �
þ @BR

@Z
�@BZ

@R

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fIIg

: (29)

The weight equation is

dwi

dt
¼ 1� wið Þ � vE �

rfi0
fi0

����
v?|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

wdrive

þ Zi

Ti0
vjjEjj|fflfflfflfflfflffl{zfflfflfflfflfflffl}

wpara

þ Zi

Ti0
vd � E?|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

wdrift

0B@
1CA; (30)

where

�vE �
rfi0
fi0

����
v?|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

wdrive

¼ c
B0

bZ
1
R
@hd/i
@f

1
ni0

@ni0
@R
þ �

Ti0
� 1:5

� �
1
Ti0

@Ti0

@R

" #

� c
B0

bR
1
R
@hd/i
@f

1
ni0

@ni0
@Z
þ �

Ti0
� 1:5

� �
1
Ti0

@Ti0

@Z

" #
;

with � ¼ 0:5miv2jj þ lB,

Zi

Ti0
vjjEjj|fflfflfflffl{zfflfflfflffl}

wpara

¼ � Zi

Ti0
vjjb � rhd/i ¼ �

Zivjj
Ti0

@hd/i
@S

;

with S¼ Sc� L or S¼ SS� L, and L is the field line length, and

Zi

Ti0
vd � E?|fflfflfflfflfflffl{zfflfflfflfflfflffl}
wdrift

¼ � Zi

Ti0

lb�rB
miXci

þ
v2jj
Xca
r� b

 !
� rhd/i

¼ � Zi

Ti0

1
R
1
B
@hd/i
@f

c
Zi

lþ
miv2jj
B

� �
bZ
@B
@R
� bR

@B
@Z

� �"

þ
v2jj
Xci

@BR

@Z
� @BZ

@R

� �#
:

In GTC-X, the gyro-average is performed analytically by multi-
plying the fields with Bessel function as hd/i ¼ d/J0ðkfqiÞ and
hdnii ¼ dni J0ðkfqiÞ, where qi ¼ vth;i=Xci is the ion gyroradius,
vth;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
; Xci ¼ ZiB=cmi; kf ¼ n=R is the toroidal wave vec-

tor, n is the toroidal mode number, and R is the radial position, which
is only valid for single toroidal mode simulation. The radial compo-
nent of perpendicular wave vector kr is not considered for the gyro-
average in the current implementation for simplicity. In the future
work, a more realistic gyro-average using the 4 point average method21

will be implemented in GTC-X for multiple mode simulation, which is
used in another FRC drift wave code ANC.

The comparisons between gyrocenter and fully kinetic particle
trajectories with different particle energies and locations are shown in
Fig. 4. Both gyrocenter and fully kinetic particle pitch angles at the
outer midplane are tan h ¼ vjj=v? ¼ 1, which are trapped between
two mirror throats. It is seen that gyrokinetic description is suitable for
SOL region simulation with low temperature and high magnetic field,
and its fidelity decreases with increasing the particle energy and mov-
ing toward the core region. Recently, a theoretical work has illustrated
that the fidelity of the gyrokinetic equation is well achieved in the non-
uniform magnetic field with � ¼ q/L< 1,40 where q is the gyroradius
and L is the magnetic field gradient scale length. With regard to FRC
geometry, the gyrokinetic description of thermal ion can capture the
gyro-orbit but not betatron and figure-8 orbit.41 However, a strong
finite Larmor radius effect stabilizes the drift wave instability near or
inside the core region, which has been observed in experiment10 and
by previous local simulations.25–27 Thus, in this paper, we focus on
gyrokinetic simulation of ITG instability in FRC as the first step to
demonstrate the code capability for GTC-X as well as reveal the global
nature of ITG instability in the SOL region.

C. Poisson solver

Poisson’s equation is solved in a semispectral form. Applying
Pad�e approximation,fd/ 	 1

1þk2?q2
i
d/, Eq. (26) can be written as

e2ni0
Te0

�Z2
i

e2
q2
s 1þ e2

Z2
i

ne0
ni0

Ti

Te

 !
r2
? þ

ne0
ni0

" #
dw

¼ Zidni
1

1þ e2

Z2
i

ne0
ni0

Ti0

Te0

; (31)

FIG. 4. Comparison of the trajectory between the fully kinetic particle and the gyro-
center for 44.4 eV and 1022 eV deuterium cases. The black solid line represents
the separatrix, and green solid lines are the contour of magnetic flux.
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where dw ¼ d/� Ti0
Zini0

dni= 1þ e2

Z2
i

ne0
ni0

Ti0
Te0

	 

; qs ¼ Cs=Xci, and Cs

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the ion sound speed. By applying the Fourier transform

in the toroidal direction to Eq. (31), we have

e2ni0
Te0

�Z2
i

e2
q2
s 1þ e2

Z2
i

ne0
ni0

Ti

Te

 !
r2
? nð Þ þ ne0

ni0

" #
dw nð Þ

¼ Zidni nð Þ
1

1þ e2

Z2
i

ne0
ni0

Ti0

Te0

: (32)

For each toroidally spectral component with mode number n, we
carry out central finite difference of r2

?ðnÞ as shown by Eqs.
(15)–(17) on the (R, Z) plane and construct the tridiagonal matrix on
field aligned simulation grids. Then, the sparse discrete matrix equa-
tion for Eq. (32) is solved using the Krylov method implemented in
PETSc software.

IV. CODE VERIFICATION
A. Slab limit

In this section, we show the benchmark results of GTC-X against
the analytical dispersion relation in an approximately uniform mag-
netic field (ignore the ion diamagnetic and curvature drifts). Applying
Fourier transform @t ¼ �ix; b0 � r ¼ ikjj, and r? ¼ ik? for Eq.
(22) in linear plasmas in a uniform magnetic field, we can derive the
linear perturbed distribution of gyrokinetic ion species

dfi ¼
1

x� kjjvjj
�Zi

Ti
x
i 1þ

miv2jj þ 2lB0

2Ti
� 1:5

 !
gi

" #(

þ
Zikjjvjj
Ti

)
hd/ifi0; (33)

where hd/i ¼ 1
2p

Þ
d/ðxÞdf ¼

P
k d/ðkÞexpðik � RÞJ0 k?v?

Xci

	 

; x is

the particle position, and R is the gyrocenter position, x
i ¼ cTi
ZiB0

1
ni0

@ni0
@r kf is the ion diamagnetic drift frequency (negative value for the

normal profile which decreases along the R̂ direction), kf ¼ n=R is the
perpendicular wave vector, and gi ¼ dlnTi=dlnni0. Integrating Eq.
(33) to the 0th order, the ion density perturbation becomes

hdnii ¼ �Zini0
Ti
� Zini0

Ti

x� x
i
x

niZ nið Þ

þZini0

Ti
gi

x
i
x

n2i 1þ niZ nið Þ½ �� 3
2
Zini0
Ti

gi
x
i
x

niZ nið Þ
�

� C0 k2?q2
i

� �
d/þ Zini0

Ti
gi

x
i
x

niZ nið Þ 1� k2?q2
i

� ��
� C0 k2?q2

i

� �
þ k2?q2

i C1 k2?q2
i

� ��
d/; (34)

where C0ðk2?q2
i Þ ¼ I0ðk2?q2

i Þexpð�k2?q2
i Þ; C1ðk2?q2

i Þ ¼ I1ðk2?q2
i Þ

expð�k2?q2
i Þ and ZðniÞ ¼ p�1=2

Ðþ1
�1

dtexpð�t2Þ
t�ni

is the plasma function.

Combing Eqs. (34), (25), and (26), we can derive the linear dis-
persion relation as15

FIG. 5. Frequency and growth rate of the ITG mode dependence on k?qi in panels
(a) and (b) and dependence on s ¼ Te/Ti in panels (c) and (d).

FIG. 6. (a) Magnetic poloidal flux normalized by a separatrix value: w=jwOj, (b)–(d)
are total magnetic field B, radial magnetic field BR, and axial magnetic field BZ nor-
malized by B0 ¼ 531 G. The circles represent the separatrix.
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0 ¼ 1� C0 k2?q2
i

� �� �
þ Ti

Te

e2ne0
Z2
i ni0
� gi

x
i
x

niZ nið Þ

� 1� k2?q2
i

� �
C0 k2?q2

i

� �
þ k2?q2

i C1 k2?q2
i

� �� �
� �1� 1� x
i

x

� �
niZ nið Þ þ gi

x
i
x

n2i 1þ niZ nið Þ½ �

� 3
2
gi

x
i
x

niZ nið Þ
�

C0 k2?q2
i

� �
: (35)

Next, in order to compare with theory Eq. (35) in the slab limit, we
carry out simulations in the domain of Fig. 1: Z=R0 2 ½�0:2; 0:2� and
w ranges from wðR ¼ 1:702R0;Z ¼ 0Þ to wðR ¼ 1:705R0;Z ¼ 0Þ,
where the magnetic field variation is small and magnetic drift effect
can be ignored. In the simulation, jTi ¼ 1

Ti

@Ti
@R jZ¼0 ¼ 5:0; jTe ¼ 1

Te
@Te
@R jZ¼0 ¼ 0:0; jni ¼ jne ¼ 1

Ti

@ni
@R jZ¼0 ¼ 2:5; gi ¼ jTi=jni ¼ 2:0,

and the parallel vector kjj is fixed: kjjqi ¼ 1:08� 10�2, and the per-
pendicular vector is determined by the toroidal component: k? ¼ kf.
We first fixed s ¼ Te/Ti ¼ 0.35 and scanned k?qi (we use deuterium
as ion species in the simulation) by increasing kf; and the simulation
results agree well with theory as shown in Figs. 5(a) and 5(b). Then,

FIG. 7. (a) Ion temperature and density gradients at outer midplane Z¼ 0, where Ti
is normalized by electron temperature at the axis Tea ¼ 80.0 eV, ni is normalized
by electron density at the axis nea ¼ 2.44� 1013 cm�3, and r is normalized by R0
¼ 26.8 cm. (b) Magnetic field strength B, rB, and r� B scale length along the
parallel direction at field line w ¼ wðR ¼ 2:02R0; Z ¼ 0Þ.

FIG. 8. (a) Electrostatic potential of the ITG mode in FRC. The circles represent the separatrix. The mode structures of real and imaginary parts (b) along the radial direction
at the outer midplane (Z¼ 0) as shown by the black dotted line in (a), and the separatrix radial location is R/R0 ¼ 1.42, and (c) along the parallel direction [field line with
wðR ¼ 2:02R0; Z ¼ 0Þ as shown by the black dashed line in (a)].
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we fixed k?qi ¼ 2:0 and scanned s; and GTC-X simulation results are
in good agreement with theory as shown in Figs. 5(c) and 5(d). In Fig.
5, the frequency and growth rate are normalized by vth;i=L, where

vth;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
is the ion thermal speed, and L¼ 0.4R0 is the parallel

length of simulation domain.

B. FRC geometry

Next, we carry out simulation in the middle part of a realistic FRC
geometry. The deuterium plasma is simulated in this case which is con-
sistent with experiments.10 The inner boundary and outer boundary of
the simulation domain are w0 ¼ 0.96wO and w1 ¼ 13:8jwOj, where
wO is the poloidal magnetic flux value at the magnetic axis, R=R0

2 ½0:0; 2:45� in the radial direction at the outer midplane, Z=R0

2 ½�9:37; 9:37� in the axial direction, R0 ¼ 26.8 cm, and the region
close to the magnetic axis w 2 ½0;w0� is excluded for the gyrokinetic
model validation. Both particle and field boundary conditions at the
field line ends (Z/R0 ¼ 69.37) are periodic since the FRC center is far
away from the divertor region, where the sheath effect becomes impor-
tant. In this paper, we do not take into account the presheath and
sheath effects on the ITG in the FRC center and formation region. In
the radial boundaries, i.e., w ¼ w0 and w ¼ w1, we apply the reflected
boundary condition for particle and zero boundary condition for fields
since the fluctuations of ITG are considered to be zero there. The w, B,
BR, and BZ value are shown in Fig. 6, which are normalized by the mag-
netic field strength B0¼ 531G at the cross point between the separatrix
and the outer midplane: (R ¼ RX ¼ 1.42R0, Z¼ 0). The ion tempera-
ture and density gradients are shown in Fig. 7. We choose to simulate
the ITG mode with the toroidal mode number n¼ 20, and the corre-
sponding kfqi ¼ 0:36. The elongated parallel mode structure and finite
radial structure of the ITG mode are found in our simulation as shown
in Fig. 8, i.e., kjj � kr and kjj � kf, and we can estimate krqi 	 0.57.
According to the parallel mode structure along the field line w
¼ wðR ¼ 2:02R0;Z ¼ 0Þ as shown in Fig. 8(c), both the real and
imaginary parts of electrostatic potential perturbation of n¼ 20 mode
are even parity. The frequency and growth rates are xr ¼ �5:98vth;i=
LS ¼ �0:0108Xcp and c ¼ 1:22vth;i=LS ¼ 0:0022Xcp, where LS
¼ 18.8R0 is the field line distance between left and right boundaries and
Xcp ¼ eB0=ðcmpÞ is the proton cyclotron frequency. GTC-X
simulation of the ITG mode in the local FRC geometry agrees with
another gyrokinetic particle code ANC, which gives the result
xr;ANC ¼ �5:30vth;i=LS and cANC ¼ 1:17vth;i= LS.

33,34 The location of
the unstable ITG mode is determined by a balance of temperature
drive, gi value, and magnetic drift strength. In FRC, the magnetic gradi-
ent drift is opposite to diamagnetic drift, and magnetic curvature drift

is the same as the diamagnetic drift in the outer midplane and opposite
to diamagnetic drift in mirror throats.

V. GLOBAL GYROKINETIC SIMULATION OF ITG
INSTABILITY

In this section, we study the global effects of FRC on the ITG.
Using FRC equilibrium as shown in Fig. 1, we choose the parallel
domain Z/R0 as [�13.6, 13.6], [�16.2, 16.2], [�19.2, 19.2], and
[�21.0, 21.0], respectively, for simulations of deuterium plasmas. The
plasma profile and radial domain are the same with Sec. IVB as shown
in Fig. 7(a). We still focus on the n¼ 20 toroidal mode (kfqi ¼ 0.36)
and compare the mode structure, frequency, and growth rate among
simulations with different parallel domain lengths, which are shown in
Table I. The 2D poloidal mode structure and 1D parallel mode

TABLE I. Parallel domain size effects on the ITG mode.

Domain size Frequency Growth rate Parity of real part Parity of imaginary part

Z=R0 2 ½�9:37; 9:37� �0.0108Xcp 0.0022Xcp Even Even
Z=R0 2 ½�13:6; 13:6� �0.0046Xcp 0.0046Xcp Even Even
Z=R0 2 ½�16:2; 16:2� �0.0022Xcp 0.0030Xcp Even Even
Z=R0 2 ½�19:2; 19:2� �0:0052Xcp 0.0035Xcp Odd Odd
Z=R0 2 ½�21:0; 21:0� �0:0043Xcp 0.0037Xcp Odd Odd

FIG. 9. Comparison of 2D poloidal mode structures of ITG instability between differ-
ent parallel domain simulations: (a) Z=R0 2 ½�13:6; 13:6�, (b) Z=R0 2 ½�16:2;
16:2�, (c) Z=R0 2 ½�19:2; 19:2�, and (d) Z=R0 2 ½�21:0; 21:0�. The dashed lines
show the flux surfaces with the maximum mode amplitude. The blue solid line is
the separatrix.
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structure are shown in Figs. 9 and 10, respectively. The global FRC
simulation shows that the ITG mode grows along the field line direc-
tion with long parallel wavelength mode structure in SOL crossing the
regions of the central chamber and formation sections with the transi-
tion mirror regions included. The maximum amplitude of this mode
is in the formation region with bad curvature. Meanwhile, in central
FRC, the amplitude is much lower as shown in Fig. 9. In the core, ITG
is stable. This is due to the large electron parallel dynamics, large
Larmor radius effect, and large grad-B drift the direction of which is
opposite to ion diamagnetic drift.27 We also find that the ITG parity
changes from even to odd by increasing the parallel domain length.
For the even parity modes, when increasing the domain size, the fre-
quency shows a down shift, while the growth rate first increases and
then decreases, which is caused by the balance between good curvature
and bad curvature. The odd parity mode becomes more unstable than
the even parity mode by including more formation region
(Z=R0 � �10 and Z=R0 � 10) into the parallel domain, and the fre-
quency and growth rate vary with the domain size. Furthermore, by
comparing the mode structures from simulations with different
domain sizes, the maximum amplitude location of the modes is in the
formation region. From our global gyrokinetic particle simulation, it
shows that ITG type drift waves are stable in the core region and
unstable in the SOL region in FRC.

VI. CONCLUSIONS

In this paper, we have studied the global dynamics of drift waves
in the FRC plasma that consists of various elements such as the closed
field FRC central region with its squeezed SOL, strongmirrors, the for-
mation sections, another set of strong mirrors, and divertors. It is
important that we can now look at the globally developed drift waves
that are extended in the axial direction, while localized only in the SOL
region. This study was enabled by developing the global GTC particle
model: a new global particle-in-cell code GTC-X. Two sets of coordi-
nates, field line coordinates and cylindrical coordinates, are used in the
simulation, which enable the maximum numerical efficiency for cross-
separatrix simulation. A field aligned mesh is applied to suppress the
unphysical short wave length noise and dramatically decrease the
computational cost. GTC-X is well benchmarked with theory and
ANC for ITG instability with adiabatic electrons. Global FRC simula-
tions show that the ITG mode is unstable in the SOL distributed along
the field line and stable in the core, which is consistent with local simu-
lations and experiments. By extending the simulation domain along
the SOL field lines, the parity of the ITG mode changes from even to
odd, which shows that the parallel domain size is important for deter-
mining the most unstable eigenmode of the drift wave. The nonlinear
simulation of ITG transport with kinetic electrons in global FRC
geometry will be reported in a future paper.
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