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Abstract
Deep learning algorithms provide a new paradigm to study high-dimensional dynamical
behaviors, such as those in fusion plasma systems. Development of novel, data-driven model
reduction methods, coupled with detection of abnormal modes with plasma physics, opens a
unique opportunity to identify plasma instabilities through automated construction of
parsimonious models that can be tuned to balance accuracy and cost. Our fusion transfer learning
(FTL) model demonstrates success in rapidly reconstructing nonlinear kink mode structures by
learning from a limited amount of nonlinear simulation data. The knowledge transfer process
leverages a pre-trained neural encoder–decoder network, initially trained on linear simulations, to
effectively capture nonlinear dynamics. The low-dimensional embeddings extract the coherent
structures of interest, while preserving the inherent dynamics of the complex system. Experimental
results highlight FTL’s capacity to capture transitional behaviors and dynamical features in plasma
dynamics—a task often challenging for conventional methods. The model developed in this study
is generalizable and can be extended broadly through transfer learning to address various
magnetohydrodynamics modes.

1. Introduction

Modeling, design, and control of fusion plasma that characterize a high-dimensional, strong nonlinear
system are a central challenge for tokamak-based plasma devices. In such systems, the wide range of scales in
both space and time necessitates a large amount of data collection, processing, and computation to resolve all
physically relevant features for system identification and control. The intricate, multi-scale dynamics usually
render classic control methods impractical for real-time feedback control of tokamak experiments. Dynamic
model-based approaches provide a viable alternative, enabling the implementation of more adaptive and
robust control strategies. However, their efficacy relies on the availability of mathematical models to
accurately emulate the system dynamics. Consequently, computational modeling plays an essential role in
understanding, estimating, and eventually developing model-based control for such complex physical
processes.

Characterizing the evolution of plasma dynamics is crucial for effective plasma control. In magnetically
confined plasmas, macroscopic magnetohydrodynamic (MHD) instabilities can be excited by equilibrium
currents or pressure gradients. Various MHD instabilities, including fishbones, sawtooth, neoclassical tearing
modes (NTM), and kink modes, can limit burning plasma performance and threaten fusion device integrity
[1–4]. Although the kink mode does not directly cause confinement degradation, it can non-linearly excite
the more destructive modes like sawtooth and NTM that affect the particle confinement or even cause a
major plasma disruption. Detecting anomalies allows for early identification of the critical events, enabling
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proactive measures to mitigate them and maintain stable plasma conditions. Investigations of plasma
instabilities can enhance understanding and prediction of core plasma dynamics and transport, as well as
edge plasma-material interactions critical for operation of future fusion devices like ITER [5, 6]. The
evolution of instabilities typically encompasses of linear and nonlinear phases, with the former characterized
by small perturbations and the later with saturated amplitude. As perturbation amplitude increases
exponentially in the linear phase, nonlinear damping effects compete against the linear instability drive,
leading to the decrease of the growth rate and eventually the saturation of the perturbation amplitude, with
fluctuation amplitudes reaching a steady level, quenching to near-zero, or exhibiting limit cycle oscillation
patterns [7, 8]. In fusion experiments, directly observing the linear growing phase is challenging.
Understanding the nonlinear evolution of fluctuations induced by instabilities is crucial for validating
simulations, predicting physical dynamics, and preventing plasma disruptions. Nonlinear bifurcations in the
dynamics of the plasma are frequently observed, exemplified by transitions such as from low-confinement
mode (L-mode) to high-confinement mode (H-mode) induced by auxiliary heating, variations in
turbulence-zonal flow interactions due to distinct damping parameters, and the formation of internal
transport barriers resulting from the saturation of macroscopic MHDmodes. The bifurcations signify the
existence of multiple steady states of plasma turbulence and often indicate pathways to enhanced
confinement. Such bifurcations appear at the nonlinear saturation of unstable waves, driven by reductions in
free energy and increased damping effects.

High-fidelity simulations of systems governed by nonlinear partial differential equations (PDEs) often
entail substantial computational costs, making them impractical for decision-making tasks in real-world
applications. To address this issue, model order reduction methods have been developed to approximate the
behaviors of such system while significantly reducing computational overhead. Reduced-order models
(ROMs) play a pivotal role in characterizing, estimating, and controlling high-dimensional complex
systems [9–12]. In an approach orthogonal to physics-based reduced order models based on first-principle
equations, data-driven methods study low-dimensional latent space trajectories for dynamical systems using
deep learning informed by simulation and/or experiment data measurements. Although the fully-resolved
state space of a complex system, e.g. turbulence and tokamak plasmas, may contain millions of degrees of
freedom, these nonlinear systems exhibit inherent low-dimensional, dominant patterns in latent space, and
typically evolve on a low-dimensional attractor that can be leveraged for effective control [13, 14]. The
essential steps in model reduction include identifying an optimal state space for the attractor and
characterizing the system’s dynamical behavior when evolved on this attractor. Conventional approaches are
projection-based, such as proper orthogonal decomposition (POD)-Galerkin method that performs the
Galerkin projection of the first principle equations onto a linear subspace of modes obtained via
POD [15–17]. Dynamic mode decomposition (DMD) is another dimensionality reduction technique to
decompose high-dimensional data into dominant spatiotemporal coherent structures [18, 19]. As a
numerical technique to approximate the Koopman operator [20–22], DMD and its variations [23, 24] have
established a strong connection to the analysis of nonlinear dynamical systems by constructing modes that
oscillate at a fixed frequency and growth or decay rate in a linear evolution model. Non-intrusive model
reduction based on projection methods enables approximating the low-dimensional operators using
regression techniques [25, 26]. However, these methods pose challenges when applied to multi-scale
dynamical systems due to the inherent linear characteristics of the model. Such limitations become
particularly pronounced in the study of plasma dynamics, where transitions can dramatically change in an
unpredictable manner due to the complex, nonlinear nature. Therefore, the development of new models is
critical to effectively capture the spatiotemporal structures in a low-dimensional space that accurately
represents the physical observations.

In this work, we introduce fusion transfer learning (FTL), a data-driven reduced order model that
efficiently characterizes and reconstructs MHDmodes. The encoder–decoder based network, as illustrated in
figure 1, captures the essential spatial features from the simulations of the internal kink modes and is capable
of rapidly detecting anomalous mode structures when presented with snapshots of dynamical plasma
structures. The network, trained on non-dynamical modes, is extended to embed time-evolution kink
instabilities through transfer learning. One of the principal challenges for ROMs is modeling transient
system behaviors particularly when the system is activated by smoothly varying external forcing. Trajectories
in the latent space provide informative changes in a low-dimensional embedding manner. We focus on
identifying the bifurcation point in the low dimensional space observed when plasma instabilities transit
from the linear to the nonlinear phase.

The remainder of the paper is organized as follows. In section 4, we elaborate the results of mode
reconstruction, detected anomalous modes, as well as learned nonlinear modes and their elicited bifurcation
using the FTL model. Section 5 discusses the physical interpretation of the tipping points observed in the
latent space, the limitation of this work and potential future directions. In section 3, we describe gyrokinetic
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Figure 1. Schematic diagram of the FTL model using an encoder (Φ) - decoder (Ψ) network. The coherent structure is
compressed to a low-dimensional vector Z while the inherent dynamics are preserved in the latent space through embedding.
Regularization is employed to impose penalties on the model’s complexity. An anomaly filtering subroutine is utilized for the
identification of outliers, thereby improving the fidelity of the pre-trained model.

toroidal code (GTC) simulation configurations, the architecture of the FTL network, the algorithm to detect
anomalous modes, and our approach to learn dynamics through pre-trained models on non-sequential data
from linear kink simulations. The contributions for this work are summarized as follows:

• Wepropose FTL, a data-driven ROM, wherein low-dimensional embeddings enable efficient reconstruction
of spatiotemporal MHDmodes.

• We develop a method for anomaly detection and filtering based on an encoder–decoder network architec-
ture, aiming to identify outliers from raw datasets and improve the fidelity of the pre-trained model.

• We demonstrate the feasibility of the proposed FTL on out-of-sample regimes in the parameter space, high-
lighting its capability for extrapolation and generalization to complexmode structureswhile achieving accel-
erated convergence with a parsimonious model through transfer learning.

• We investigate the plasma evolution and dynamic transitions in the latent space, providing insights into the
correlation between the encoded representations of dynamic transitions and their manifestations in both
real and frequency domains, thereby enhancing the interpretability of the FTL model in physics.

2. Background

2.1. Plasma instabilities
Plasma instabilities such as MHDmodes, micro-instabilities, and Alfvén eigenmodes (AEs) are extensively
studied using physics models and computational algorithms, including MHD codes [27–32], kinetic
particle-in-cell codes [33–36], and kinetic Eulerian codes [37–39], among others. GTC [33] stands as a
prominent plasma physics simulation tool, incorporating multiple simulation models such as gyrokinetic,
fully-kinetic, and fluid covering multi-scale physics. The validation of multi-scale nonlinear simulations can
be quantitatively achieved through their comparison with experimental data [40, 41]. Recent advances in
scientific machine learning (SciML) present new possibilities to address these challenges in fusion science.
Kates-Harbeck et al proposed the use of recurrent neural networks in FRNN [42] to forecast disruptions for
large burning plasma systems ITER. A recent study on deep reinforcement learning [43] explores an
autonomous, self-learning control strategy and produces a set of plasma configurations to control tokamak
plasma by acquiring knowledge interacting with its environment. The experimental investigations have
revealed that the disruptions are associated with the current-driven MHDmodes and various additional
effects [44]. However, a comprehensive physical understanding of the disruption process remains elusive,
and addressing this necessitates the utilization of a simulator capable of elucidating the physics mechanism
underlying plasma behaviors at specific time points based on real-time measurement signals. The Surrogate
of GTC (SGTC) uses deep learning methods to predict plasma instability [45]. Trained using GTC data,
SGTC can accurately predict linear stability and the 2D structure of the kink mode in a fewmilliseconds—five
orders of magnitude faster than conventional first-principle based simulations. Nevertheless, as any real
fusion plasma system is fundamentally nonlinear, complex and multi-scaled, determining control laws
directly from the high-dimensional data is hardly feasible considering its constraints. Therefore, a
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low-dimensional representation characterizing bifurcation analysis is needed to provide insights into how
such complex systems behave, in order to understand and anticipate critical transitions.

Many physical models use simplified equations to obtain insight and intuition in a low-dimensional
physical space. Examples include the Kadomtsev model, which describes the sawtooth cycle [46]; the
predator–prey model that describes zonal flow evolution [8]; and the modified Rutherford equation [47] to
describe the NTM instability. The reduced MHD equations for kink simulation used in GTC and other MHD
codes are also a type of reduced physical model. These models derive simplified equations from the complete
equations by applying assumptions that are valid within a certain parameter range. In contrast, data-driven
methods provide a general model that analyzes complex simulation or experimental data, directly extracting
latent features from raw data. Compared to other reduced models, the ML-based models offers significant
advantages: they are much faster, with an inference time typically around 1ms; their dimension reduction is
more aggressive than that of usual reduced physical models; and its methodology can be readily applied to
other physical modes such as NTM and AEs without deriving a new set of reduced equations.

2.2. Gyrokinetic toroidal simulation and data generation
The GTC model employed to simulate the 5000 DIII-D experimental shots [45] is the single-fluid model in
low-frequency, long-wavelength limit [48]. GTC uses the perturbation method, in which the physical
quantities are separated to equilibrium and perturbed parts. The equilibrium quantities, including
temperature, density, magnetic field and the flux surface shape are taken from the reconstruction of DIII-D
experiments, and the perturbed quantities are solved from GTC equations. The equations of single-fluid
model include the continuity equation to solve charge density δn, Poisson’s equation to solve δϕ, the
Ampere’s law to solve δu∥, the Faraday’s law with the assumption E∥ = 0 to solve δA∥, and the perpendicular
force balance equation to solve δB∥. The first equation is the continuity equation for gyrocenter charge
density,

∂δn

∂t
+B0 ·∇

(
n0δu∥
B0

)
− n0v∗ ·

∇B0

B0
+ δB⊥ ·∇

(
n0u∥0
B0

)
− ∇×B0

eB2
0

·

(
∇δP∥ +

(
δP⊥ − δP∥

)
∇B0

B0

)

+∇·
(
δP∥b0∇× b0 · b0

eB0

)
−
b0 ×∇δB∥

e
·∇
(
P0
B2
0

)
−

∇× b0 ·∇δB∥

eB2
0

P0 = 0,

(1)

where n is the density, B is the magnetic field, u∥ is the parallel flow velocity, and P is the pressure. The
subscript 0 denotes the equilibrium quantity, and the equilibrium is prescribed in a single GTC simulation.
The δ prefix means the perturbed quantity, the evolution of which is calculated through the simulation.
Here, e is the elementary charge with e=−qe, and b0 = B0/B0 is the unit vector in the direction of magnetic
field line. The subscript ∥ and⊥ refer to the component parallel and perpendicular to the magnetic field of a
vector. Note that δn= δne + qiδni/qe stands for the difference of ion and electron density, and
δu∥ = δu∥e + qi δu∥i/qe denotes the difference of ion and electron flow. We have v∗ = b0 ×
∇
(
δP∥ + δP⊥

)
/(n0meΩe), whereme is the electron mass, and Ωe = eB0/me is the electron cyclotron

frequency. The perturbed electron parallel flow δu∥ can be solved from Ampere’s law,

δu∥ =
1

µ0en0
∇2

⊥δA∥, (2)

where µ0 is the permeability of vacuum. δA∥ is the perturbed vector potential. In the single fluid model,
E∥ = 0 is assumed. Then δA∥ can be solved from

∂A∥

∂t
= b0 ·∇ϕ, (3)

and the electrostatic potential ϕ can be solved from gyrokinetic Poisson’s equation (the quasi-neutrality
condition)

c2

v2A
∇2

⊥ϕ =
eδn

ϵ0
, (4)
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where c is the speed of light, vA is the Alfvén velocity, and ϵ0 is the dielectric constant of vacuum. The parallel
magnetic perturbation δB is given by the perpendicular force balance,

δB∥

B0
=−βe

2

δP⊥
P0

=−βe
2

∂P0
∂ψ0

δψ

P0
. (5)

The perturbed pressure in the fluid limit can be calculated by

δP⊥ =
∂P0
∂ψ0

δψ− 2
δB∥

B0
P0, (6)

δP∥ =
∂P0
∂ψ0

δψ−
δB∥

B0
P0. (7)

In these equations, ψ0 and δψ is the equilibrium and perturbed magnetic flux, and the evolution of δψ is
solved from

∂δψ

∂t
=− ∂ϕ

∂α0
, (8)

where α0 is from the Clebsch representation of B field, B0 =∇ψ0 ×∇α0.
For all the 5000 simulations in DIII-D tokamak geometry, we use the 100× 250× 24 mesh grids in the

radial, poloidal and parallel direction. The time step is set to∆t= 0.01R0/Cs, where R0 is the distance
between magnetic axis to the geometric center of the tokamak, Cs =

√
Te/mi is the acoustic velocity. The

physical time of∆t depends specific parameters. For typical DIII-D parameters, R0 ≈ 1.6 m, Te ≈ 10 keV, so
∆t≈ 1.6× 10−8 s. The total number of simulation steps is set to 3000. Due to the free energy contained in
the pressure gradient and the parallel current, the internal kink mode can be driven unstable. The volume
averaged mode amplitude is measured to calculate the linear mode growth rate, and a number of snapshots
during the simulation are taken to study the mode structure. In the study of kink instability, only one
toroidal mode number n= 1 is kept in the simulations, among which 1972 cases of the simulated kink modes
are identified as unstable. Several empirical methods are used to peel off the cases with large numerical noise,
and we have a total number of 1605 used to train the ML model. The cases with stable kink modes cannot
show physical kink mode structure, therefore not investigated in this paper.

Apart from the fluid simulations of the mentioned dataset, we also ran the linear and nonlinear
gyrokinetic simulation of DIII-D discharge #141216 at t= 1750 ms for this paper. This shot was selected after
meticulous calibration of measurements performed by the experimentalist, and the GTC simulation for this
shot has been well benchmarked with several other codes [49]. We use the ion Vlasov equation to solve the
perturbed ion distribution function δf i and the electron continuity equation to solve the electron perturbed
density δne, while other field equations are similar to the single fluid model. More details are specified
in [48]. The geometry is discretized with the same grid number of 100× 250× 24 in radial, poloidal, and
toroidal directions; the time step is set to∆t= 0.005R0/Cs = 1.483× 10−8 s. We run 20 000 steps for the
nonlinear simulation, in which we can clearly see the nonlinear saturation and evolution. We keep both the
n= 1 andm= n= 0 modes in the nonlinear simulation, and the toroidal variation of mode structure is
determined by that at ζ = 0 with a phase shift expiζ . For the linear simulations, the zonal flow component is
zero. Therefore, the radial-poloidal mode structure at ζ = 0 provides sufficient information to represent the
mode structure across the entire domain. In the linear simulation, all nonlinear terms are forced to be 0, and
we run 60 000 steps until we see the clear periodic behaviors. The high-fidelity nonlinear GTC simulation for
this shot provides the dataset utilized by the FTL model to learn the nonlinear plasma dynamics. For the
downstream analysis, we standarize the poloidal grid resolution across all simulations by resampling to a
unifrom 101× 180 grid in radial-poloidal ψ− θ coordinate with interpolation applied to the field data. In
this paper, we focus on analyzing the dynamics of electrostatic potential mode structures.

3. Methods

Consider a full-order model of a nonlinear dynamical system characterized by a system of ordinary
differential equations ,

V̇= f(V(x, t;µ)) , (9)

V(x,0;µ) = V0 (x,µ) , (10)

where t denotes time in R+, x denotes the coordinate, V denotes the state variable, µ ∈ D denotes the system
parameters, and x0(µ) is the parameterized initial condition. The mapping f : RN ×R+ ×D→ RN denotes
the dynamics of the system.

5



Mach. Learn.: Sci. Technol. 6 (2025) 025015 Z Bai et al

Figure 2. The architecture of the FTL network used in this work that consists of convolutional, fractionally-strided
deconvolutional blocks and fully-connected layers built in an autoencoder. The architecture hyperparameters are tuned to
optimize the validation performance of the kink mode structures.

3.1. encoder–decoder network
In the proposed model, we deploy convolutional, fractionally-strided deconvolutional blocks and
fully-connected layers built in an autoencoder architecture. The convolutional kernels employed in the
network are adept at capturing spatial correlations while extracting hierarchical patterns from training data.
The encoder layers constrain coherent spatial patterns in the following bottleneck layers. The operator
Φ : RN → Rd maps the state V to a low-dimensional embeddings Z through convolutional kernels and a
feed-forward neural network. The constructed latent space encodes the spatial structures while preserving
the dynamical characteristics of the system when trained on a series of snapshots. The dimension of the
latent space d is a hyperparameter that can be evaluated based on the complexity of the system and trade-off
between compression ratio and reconstruction quality. The decoderΨ network reconstruct the original
input from the encodings through fully-connected layers and deconvolutional kernels,Ψ : Rd → RN. Batch
normalization layers are used as a regularizer to improve the training stability and prevent overfitting. We
choose the rectified linear unit activation function mapping the nonlinearities among the hidden layers, and
the hyperbolic tangent function to constrain the output variables to the range of [−1,1]. Figure 2 illustrates
the architecture of the FTL model employed for the kink mode study. The network consists of three
convolutional layers that sequentially reduce the spatial dimensions while increasing the number of channels:
1→ 8→ 16→ 32, utilizing a kernel size of 3× 3 with batch normalization. The output from the last
convolutional layer is flattened and mapped by a fully connected layer to an intermediate latent dimension of
128, followed by a hyperbolic tangent activation, which subsequently projects the latent representation into
the final encoded space dimension. The architecture hyperparameters, including layer dimensions, kernel
size, padding, strided convolutions and bottleneck size are tuned to optimize the validation performance.
The decoder component mirrors the structure of the encoder, systematically upscale spatial features while
reducing the number of channels through the transposed convolutional layers, ensuring an accurate
reconstruction of the snapshot data.

We compute the parameters of the network by minimizing the Frobenius norm of the loss function over
all the batches during the stochastic gradient descent of (re)training,

l= E
(
∥V(x, t;µ)−Ψ ◦Φ(V(x, t;µ))∥F 2

)
+λ∥ω∥22. (11)

As the model learns to reconstruct the input data while minimizing the reconstruction error, we set up a
threshold τ based on the percentile of the distribution of the relative residual,

ϵr (v) =
∥v(x;µ)−Ψ ◦Φ(v(x;µ))∥F

∥v(x;µ)∥F
, (12)

and separate normal samples from anomalies. Algorithm 1 provides a summary of the FTL offline training,
including the anomaly filtering procedure. Network hyperparameters, including the learning rate η, batch
size nbatch, maximum number of epochs nepoch are tuned to optimize the performance on the validation sets.
The regularization term λ∥ω∥22 penalizes large weights in the model to prevent overfitting for improving
generalization performance. Adjusting the parameter λ controls the strengths of the regularization applied to
the model. Early stopping is also recommended as a measure to mitigate potential overfitting. The level of
anomaly filtering is determined by the threshold parameter τ . It is important to note that the filtering
process can be iterative in hierarchical anomaly detection, especially when multiple levels of granularity or
complexity exist within the system. This iterative approach allows for a comprehensive examination of

6



Mach. Learn.: Sci. Technol. 6 (2025) 025015 Z Bai et al

Algorithm 1. FTL offline training and anomaly filtering.

Input: Network architecture; training set T ; validation set V ; anomaly threshold τ ; NN hyperparameters (learning rate
η; batch size nbatch; maximum number of epochs nepoch; regularization parameter λ; early-stopping criterion k).
1: Standardize data in the training and validation set;
2: Initialize iterations i ← 0 and initial parameters ω0;
3: while i ⩽ nepoch do
4: for j = 1, · · · ,nbatch do
5: ωi+1← ωi; ▷ update weights
6: if lival > ∀i⩾kl

i−k
val then

7: ω∗← ωi−k; ▷ early stopping
8: break;
9: end if
10: end for
11: end while
12: Set Φ← Φ(ω∗),Ψ←Ψ(ω∗); ▷ save operators
13: for v ∈ T do
14: if ϵr(v)> τ then
15: T ← T \v; ▷ filter out anomalies
16: end if
17: end for
output: Encoder Φ; decoderΨ; refined training set T .

anomalies across different levels of abstraction, ensuring a thorough identification process. Following the
removal of anomalous samples, we proceed to retrain the FTL network using the normal samples. This
retraining step aims to improve the model quality in preparation for subsequent tasks. The trained model
possesses transferable capabilities that enables acquiring low-dimensional representations from spatially
and/or temporally relevant systems when provided with a few new samples. This function notably benefits
problems with limited data availability or in the study of intricate systems where collecting a substantial
number of samples is infeasible.

Algorithm 2 outlines the procedure of leveraging the pretrained FTL model to adapt to a new dataset
through transfer learning. After standardizing the data, the initial parameters obtained from the trained
model in algorithm 1 are utilized as the starting configuration. During training, the network weights (and
biases) ω are iteratively updated to optimize reconstruction accuracy for the new data samples. Once the loss
function converges to an acceptable threshold for reconstruction, anomaly filtering can be similarly applied.
This transfer learning approach is particularly effective for online tasks involving spatially or temporally
correlated snapshots, significantly reducing computational costs while ensuring efficient model adaptation.
More importantly, the utilization of an existing trained model enables convergence acceleration, even with a
minimal number of samples, which would otherwise present challenges if starting the training process from
scratch from limited measurements.

4. Results

We consider a high-dimensional spatiotemporal system V(x, t;µ) governed by first-principle PDEs
parameterized by µ, and x and t are spatial and temporal coordinates. Our goal is to develop a data-driven,
transferable ROM that extracts plasma spatial correlations while preserving the dynamics of system in the
latent space for a generalized configurations of mode structures. The simulation data used are based on the
reconstructed equilibrium of DIII-D experimental discharges.

4.1. Reconstruction and anomaly detection
In this experiment, we set the free parameter d= 3 for the dimension of the latent space, and focus on
studying the perturbed electrostatic potential in the kink modes. Generally, the structure of the kink mode
exhibits variability contingent upon a number of factors including magnetic field strength, field line tilt
(referred to as the ‘q-profile’ as a function of radial position), and the pressure profile. The ideal MHD
internal kink mode is a current-driven instability withm= n= 1, wherem and n are the poloidal and
toroidal mode number. In toroidal devices (e.g. tokamaks), the internal kink mode couples with
higher-order poloidal harmonics, thereby altering the stability. The mode structure peaks at the rational
surface, characterized by the safety factor q= 1 in tokamaks. The universal feature of the kink mode is the
dominantm= 1 component in the region of q< 1, accompanied by a subdominantm= 2 component in the
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Algorithm 2. FTL online fine-tuning.

Input: Network architecture; online set S ; encoder Φ; decoderΨ; NN hyperparameters (learning rate η; batch size
nbatch; maximum number of epochs nepoch; regularization parameter λ; early-stopping criterion k); (optional) anomaly
threshold τ .
1: Randomly split the online set S into training Str and validation set Sval;
2: Standardize data in the training and validation set;
3: Initialize iterations i ← 0;
4: Set encoder parameters ωe = ω(Φ);
5: Initialize decoder parameters ω0

d = ω(Ψ);
6: while i ⩽ nepoch do
7: for j = 1, · · · ,nbatch do
8: if lival > ∀i⩾kl

i−k
val then

9: ω∗
d ← ωi−k

d ;
10: break;
11: end if
12: end for
13: end while
14: Define Z← Φ(VS(x)); ▷ encode variables
15: V̂S(x)←Ψ(ω∗

d ) ◦Φ(VS(x)); ▷ decode embeddings
16: procedure OPTIONAL Anomaly setA
17: for v ∈ S do
18: if ϵr(v)> τ then
19: A←A∪ v;
20: end if
21: end for
22: end procedure
Output: Embeddings Z; reconstructed snapshots V̂S(x); (optional) anomaly setA.

Figure 3. Comparison between the original and reconstructed kink modes for five samples from the test data. A larger
reconstruction residual is observed for atypical mode structures.

1< q< 2 region. Them= 0 component remains constant when approaching to the magnetic axis. We focus
our study on the dominantm= (0,1,2) components in this paper while neglecting higher-order
components for physical analysis.

The specifics of the GTC simulation setup are detailed in section 2.2. In all the simulations, the initial
conditions are set to δne(t= 0) = ninit(r)cos(θ− ζ) with ninit(r) the radial envelope. The envelope peaks at
r= a/2, where a denotes the minor radius at the plasma wall. And all other quantities are set to 0 initially.
We train our FTL model using 1605 samples of simulated kink modes obtained from GTC simulations, and
test it on another set of 201 snapshots from unseen data. Note that there is no temporal correlation between
the kink mode samples studied in this section, and we investigate dynamical behaviors in section 4.2.
Figure 3 shows five examples of the reconstructed kink modes and their corresponding residuals relative to

8



Mach. Learn.: Sci. Technol. 6 (2025) 025015 Z Bai et al

Figure 4. Detected anomalous modes using trained FTL network on the test set: (a) a histogram of sample density vs. normalized
error highlighting anomalies in the tail of the distribution, (b) the original, reconstruction, and residual for five kink mode
samples in the highlighted in the anomalous (shaded) region of (a), threshold parameter τ = 0.95.

the original data. General kink mode structures including mode radial location and the different phase
angles are well captured via the decoder. The reconstruction error is bigger for atypical structures, such as a
dominantm= 2 structure or a dominant structure near the edge. Unstable kink modes are observed in the
first four simulations. The fourth snapshot shows a less common scenario as the ‘reverse-shear’ equilibrium.
With increasing radius, the q-profile first decreases to a minimum value (qmin), and then increases. If
qmin < 1, there exist two radial positions at which q= 1, and them= 1 structure is mainly located between
the two q= 1 points. The FTL model discovers the structure at the region outside the q= qmin flux surface
and disregards the structures near the magnetic axis. The fifth instance is a stable case where typical kink
structures are absent, resulting in a larger reconstruction error as anticipated.

As the kink modes are produced from GTC simulation, certain output samples are subjected to
subsequent reevaluation and filtration processes. Certain anomalous (non-physical) modes may be caused by
an unrealistic profile or an unconverged EFIT equilibrium used as the input of a GTC simulation. By
undergoing extensive training using a substantial dataset comprising numerous kink modes obtained from
simulation, the FTL model demonstrates proficiency in reconstructing typical mode structures. This
capability enables it to function as an effective filtering mechanism for identifying anomalous modes by
examining the deviations when comparing the decoded outputs and original modes, as elucidated in
algorithm 1. To construct the training dataset, we have cleaned the data via expert labeling and automatic
scripts using empirical criteria to exclude the stable or numerical diverging cases. Figure 4(a) presents a
histogram illustrating the distribution of normalized reconstruction errors. More than 60% of the test
samples resemble the input data with a relative error smaller than 0.2. The few samples collected in the
shaded region that have relatively larger reconstruction errors are shown in figure 4(b). One of the prevalent
anomalies observed is the edge effect, characterized by the aggregation of small-scale structures at the
boundary of the poloidal plane. We find these cases are not the physical modes yet failed to be identified by
the previous empirical methods. Similarly, the model FTL effectively reconstructs the multi-scale structures
of AEs by preserving a higher dimensional latent space. Anomalous AEs are identified through algorithm 1,
as illustrated in figure A2.

This outcome demonstrates FTL’s capacity to discern pollution within the collected data, thereby
enhancing the performance of other models trained on the same data. Similarly, the trained model can be
utilized to identify anomalous modes in real-world experiments, where unexpected structures manifest as
outliers in the distribution, detected through the algorithm.

4.2. Learning nonlinear dynamics
We extend the study of kink modes derived from the linear GTC simulation in section 4.1 to a nonlinear
GTC simulation with kinetic effects. Due to the inclusion of kinetic ion effect, the mode structure rotation
with a finite frequency can be observed after the eigenmode is established in the linear phase. This leads to a
trajectory rather than a fixed point in the latent space. We notice an abrupt tweak in the modes when the
system evolves to the nonlinear phase, and the structure rotates at different speed at different radial positions
(i.e. flow shear) after zonal flow is generated. The flow shear caused by the zonal flow is the main reason for
the nonlinear transition and saturation of the mode amplitude. Due to the presence of flow shear, the mode
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Figure 5. (a) Simulated Kink modes with kinetic effects and reconstructed nonlinear mode structures at
t= 0.073,0.135,0.186,0.223,0.250,0.272,0.295 ms using the trained FTL model. (b) Training and test error of the three models
vs. epoch number. The solid (training) and dash (test) curves represent results averaged over using 20 different random
realizations. The shaded region indicates the distribution of the variance of the reconstruction error in the multiple runs. Early
stopping (red dots) is used during the NN training to prevent overfitting.

structures are tilted, accompanied by variations in the relative amplitude of differentm components when
compared to the linear stage.

Leveraging the network trained on linear modes from section 4.1, we illustrate that the FTL model is able
to embed the modes within the latent space and reconstruct the modes accommodating the rotational
behaviors in the linear phase. The detailed implementation of the transfer learning process is provided in
algorithm 2. The nonlinear evolution of the mode structures exhibits distinctive features, for which transfer
learning can be used to accelerate the training process using a limited set of data. We fine tune the decoder via
retraining the FTL network on 128 snapshots randomly sampled on the data from the nonlinear simulation.
Figure 5(a) shows the reconstructed modes from the test set, which are temporally correlated to the training
set while unseen by the retrained network. The decoded mode structures present strong consistency with the
original data, displaying only minor discrepancies. As seen in figure 5(b), the mean-square-error (MSE) loss
shows rapid convergence during the network training process for both the training set and test sets using
FTL, reaching values below 1× 10−3 following 100 epochs. Early stopping is employed to prevent overfitting
for generalized performance. The convolutional encoder explores the manifold through learning the
variances of the mode structures over a large number of samples, and provides approximate optimal
embeddings in such latent space that significantly reduce the online learning time for MHD instabilities. The
fine-tuned FTL model then adeptly reproduces the mode rotation in the linear stage, captures the structure
variation at the transition point, and accurately depicts the mode structure evolution. We compare the
reconstruction accuracy of our model with that of principle component analysis (PCA) in appendix.
Notably, our encoder–decoder architecture in FTL demonstrates more stable performance by approximately
optimizing the low-dimensional embeddings across the phase transition from linear to nonlinear regimes. In
contrast, PCA tends to prioritize the reconstruction of dominant linear mode patterns, on which its principle
component basis is constructed, at the expense of accurately capturing the patterns of nonlinear modes.

4.3. Computational evaluation
We evaluate the accuracy and computational cost of the FTL model in reconstructing modes and compare its
performance to two other ML models: (i) a Baseline model, which involves training an encoder–decoder
model from scratch using the same network architecture, and (ii) an Enhanced model, which retrains the
encoder–decoder model using the previous trained model obtained on the equilibrium data in section 4.1.
Leveraging the pre-trained model, both the Enhanced model and FTL model exhibit more rapid loss
convergence compared to the Baseline model. Additionally, FTL outperforms the Enhanced model at the
same number of training epochs nepoch = 200, by achieving a smaller test error and less uncertainty variation
in the reconstruction results. This can be attributed to the increased generalizability gained from the
pre-trained encoder when trained with a bigger training set, while the retrained autoencoder tends to overfit
to a smaller size of training set, leading to higher error when the model is evaluated on hold-out data. The
training and test errors, as well as total trainable parameter counts of the three models are presented in
table 1. As the number of trainable parameters drops by 49.8%, a significant amount of computational
workload and memory usage is reduced during back-propagation and optimization, saving the storage
requirements for the gradients and optimizer states. FTL demonstrates advantageous performance compared
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Table 1. Comparison of the evaluation of three ML models (Baseline, Enhanced, and FTL) on the training and test sets at a fixed number
of epochs, nepoch = 200. Both the mean (µ) and standard deviation (σ) of the mean-square error (MSE) are presented for the training
and test loss. The last column reports the total number of trainable parameters in each model.

Training MSE Test MSE Trainable
parameter countModel µ σ µ σ

Baseline model 3.14× 10−3 4.19× 10−3 3.27× 10−3 4.21× 10−3 424052
Enhanced model 4.19× 10−4 2.97× 10−5 8.05× 10−4 4.72× 10−4 424052
FTL model 5.68× 10−4 5.06× 10−5 7.32× 10−4 1.15× 10−4 212817

Note: Bold indicates the performance of the FTL model.

Figure 6. (a) Dynamics trajectory of the plasma state evolution in the latent space with time mapped as color. A bifurcation point
(marked by red square) is observed when the modes transit from linear to nonlinear. The nonlinear trajectory developed from
FTL shows a similar pattern with the same transition point when compared to the result obtained from the baseline model. (b)
latent space vector vs. time. (c) Correlation coefficient of reconstructed modes and ground truth over the time window,
∆ts = 0.5R0/Cs = 1.483µs.

to the other two models in terms of reconstruction accuracy, stability, and computational efficiency during
the online training phase. Although the encoder–decoder framework is general for any suitable
autoencoders, our findings indicate the convolutional autoencoder with regularization delivers the best
performance. A comparison with variational autoencoders (VAEs) is detailed in appendix , where we
investigate the effect of regularization of KL divergence on reconstruction accuracy.

4.4. Bifurcation analysis
As the kink instabilities progress from the linear to nonlinear phase, significant alterations occur in both the
characteristics of the mode structures and the rotational state. We investigate the temporal evolution of the
kink modes within the low-dimensional embeddings, Z(t) =Φ(V(x, t;µ)) where the spatial domain is
compressed to Rd for each snapshot.

Specifically, we study two cases including one simulation derived from the linear GTC simulation with
kinetic effects and the other from the GTC simulation with kinetic and nonlinear effects. The linear and
nonlinear simulations start at identical initial conditions. Our investigation focuses on the bifurcation point
in the temporal evolution of the kink modes, with the exclusion of the first snapshots under initial effects.
Although the mapping between the latent space coordinates and physical space structures is nonlinear
through the encoding layers, which results in the complexity in attributing the effect of a single coordinate, it
remains interesting to visualize and examine the relationship between the trajectories in the latent space and
their real-space counterparts. Figure 6(a) shows the dynamic trajectories of the kink mode evolution in the
three-dimensional embedded space, highlighting where the bifurcation occurs between the linear and
nonlinear phase of the mode evolution. In the linear stage of the nonlinear simulation, the effect of the
nonlinear terms is small, resulting in a system that closely resembles the linear simulation. This can be
confirmed by the overlap of the first half of the linear and nonlinear trajectories.

11



Mach. Learn.: Sci. Technol. 6 (2025) 025015 Z Bai et al

In the early stage of the simulation, different eigenmodes co-exist and the trajectory shows how the
dominant kink eigenmode structure prevails. The compact oscillation between t= 30R0/Cs and t= 35R0/Cs

may correspond to a physical mode characterized by high frequency and low growth rate. Here, R0/Cs is used
as the time unit, where the major radius at the magnetic axis is R0 = 1.78m, and the ion sound speed is
Cs = 6.01× 105ms−1. The subsequent smooth evolution in both the trajectories corresponds to the rotation
of the most unstable eigenmode in the physical space. When the bifurcation occurs at t= 76.5R0/Cs, the
linear trajectory continues to evolve on the consistent path while the nonlinear case deviates from the track
sharply and starts to exhibit disturbed behaviors in the latent space. Simultaneously, we observe a transition
in the mode rotation direction in the physical space of the nonlinear simulation, shifting from clockwise to
counterclockwise at the tipping point. Note that a closer examination in the latent space in figure 6(a) shows
that FTL resembles the evolution in the low-dimensional trajectory of the baseline model whose autoencoder
is trained from scratch without any a prior embedding information. The next change in the direction of the
nonlinear trajectory may correspond to an increase of the mode tilt. At the later stage, the counterclockwise
rotation transits to a minor oscillatory mode where we observe a ‘reverse’ in the trajectory. Overall,
examining the dynamics of the latent space proves highly illustrative, revealing distinct physical stages that
may not be readily discernible in the real physical space.

The FTL model effectively encodes the coherent mode structures while retaining the intrinsic dynamics
within the learned manifold. Figure 6(b) illustrates the dynamic changes of the embeddings for Zi over the
time domain. The first two components, Z1 and Z2 represent the positive and negative variations,
respectively, of the latent variables; the third component Z3 captures the transitional points of the
instabilities, i.e. when the modes evolve to a stable rotational state at t= 0.10 ms after the initial
perturbations, and the transitional point at bifurcation. The Pearson correlation coefficient r computed
between the original snapshot V(x) and corresponding reconstructed data V̂(x) across the entire temporal
domain is depicted in figure 6(c), with each snapshot data being centered and scale-invariant,

r=

∑n
i=1

(
V(x)i −V(x)

)(
V̂(x)i − V̂(x)

)
√∑n

i=1

(
V(x)i −V(x)

)2√∑n
i=1

(
V̂(x)i − V̂(x)

)2 , (13)

where V(x) and V̂(x) refer to the mean of original snapshots and reconstructed data correspondingly. A high
linear correlation is observed when eigenmode is formed in the well-defined linear phase, and the coefficient
r begins to decrease from 0.998 to 0.985 subsequent to the transition point. The linear eigenmode structure is
relatively easy to estimate, given the nature of its simple dynamics while we utilize the FTL model to fine tune
with temporally correlated data. The decrease in the correlation aligns with the emergence of mode
structures predominantly influenced by the nonlinear effects. Nevertheless, despite this reduction, the
reconstruction quality remains acceptable.

4.5. Towards small or sparse datasets
In this section, we evaluate the performance of the FTL model on a limited number of snapshots, which
targets real-time tasks for online learning. This is crucial for applications where only a small dataset,
characterized by a short temporal span or sparse sampling, is available and expeditious decisions-making is
imperative. Extending the FTL architecture, we retrained the network on 17 snapshots collected from the
simulation with a larger sampling interval∆ts = 5R0/Cs, while maintaining the same initial conditions as in
section 4.2.

Figure 7(a) shows the original and reconstructed snapshots of the 2D kink mode structures, capturing
the transitional behaviors at the bifurcation point and the subsequent nonlinear evolution of modes. The
fine-tuned FTL network effectively reconstruct the coherent structures in both the linear and nonlinear
phases, exhibiting minor degradation in clarity and sharpness. The Fourier decomposition provides a more
quantitative comparison; the Fourier coefficients in figure 7(b) show that the FTL reconstruction
qualitatively preserves the amplitude and phase of the first three Fourier harmonics. Although the
reconstructed structure exhibits minor zigzags, their impact on the physical analysis is negligible. It is
remarkable that the reconstructed structures reproduce the critical changes of the Fourier components at the
magnetic axis point, i.e. q= 1 and q= 2 surfaces precisely, despite that a small amount of loss is observed in
the higher order mode.

4.6. Understanding tipping points in latent space
Interpretation the tipping points in the latent space involves understanding significant transitions or critical
thresholds that occur within the underlying data representation. These tipping points may signify abrupt
physical state changes, phase transitions, or critical events in the system being studied. Analyzing these points
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Figure 7. 2D mode structures and radial structures of the Fourier modes elucidating the transition from linear to nonlinear phase:
(a) the original snapshots and reconstructed snapshots at t= 0.222,0.237,0.281 ms, (b) the amplitude of first three Fourier
coefficients (m= 0,1,2) along the radius on the poloidal plane at the respective time. The solid and dash lines mark the q profiles
of q= 1 and q= 2 along the radius of the poloidal plane.

can provide insights into the inherent dynamics, identify regime shifts, or reveal features of importance in
the data distribution.

We compare the first three Fourier modes in both their real and imaginary parts in figure 8. Periodicity is
observed in all the five components: the real parts of F 0(v),F 1(v),F 2(v), and the imaginary parts of
F 1(v),F 2(v). Figure 9 illustrates the latent space trajectory associated with a linear simulation spanning an
extended time evolution. The mode structure in the physical space exhibits a rotational period, which in the
latent space corresponds to a closed loop. In traditional methods, an eigenmode can be represented by
separating the oscillation over time, the toroidal harmonics, and the poloidal harmonics by carrying out a
Fourier transformation. The FTL embeddings provide a low-dimensional representation of the eigenmode,
i.e. a visualization of the linear loop trajectory in the encoded latent space. The trajectory in figure 9 also
exhibits dynamical characteristics in addition to the periodic mode rotation. For example, the abrupt
direction changes observed at the two flagged points relate to the amplitude of the standing wave component
in the physical space.

The identified tipping points in the latent space are depicted in both physical space and the Fourier
domain, demonstrating their correspondence. Figure 10(a) depicts the tipping points observed in the latent
space are close to normalized spatial maxima and minima for all the snapshots in the extended linear
simulation. The phase shift occurs at approximately t= 0.35 ms and t= 0.65 ms in the Fourier domain, as in
figure 10(b), and signifies the transition point where the real-space structure exhibits a distinct change.
Specifically, this shift indicates the moment when the pure cosinusoidal wave cos(mθ) becomes
predominant, while the sinusoidal pattern diminishes. The potential can be generally expressed as

v= ϕ(ρ,θ, t) =
∑
m=0

[(
ϕ̂R,m (ρ, t)+ iϕ̂I,m (ρ, t)

)
eimθ +

(
ϕ̂R,m (ρ, t)− iϕ̂I,m (ρ, t)

)
e−imθ

]
, (14)
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Figure 8. Real and Imaginary parts of the Fourier modes for all the snapshots. The reconstructed results (bottom) of the Fourier
modes shown good alignment with those obtained from the original GTC data (top). The dash lines mark the q profiles of
q= 1,2 along the radius of the poloidal plane.

Figure 9. Dynamic trajectory of one linear case evolution displayed from three different perspectives in the latent space. At
t= 0.665 ms, a complete evolution period is observed, culminating in the formation of a closed loop. Two tipping points at
t= 0.355,0.651 ms are highlighted as large black circles, denoting points of notable inflection observed in the evolutionary
trajectory.

where ϕ(ρ,θ, t) is a real number, and the subscripts R and I indicate the real and imaginary parts. For a
certain mode numberm, when the imaginary Fourier component is 0 at t= t0, we have
ϕ(ρ,θ, t0) = 2ϕ̂R,m cos(mθ). Note that in general ϕ̂I,m(ρ, t)may not be 0 for all r and allm numbers. In this
particular case, the imaginary parts vanish almost altogether near t= 0.35 ms and t= 0.65 ms, thus creating
the two special tipping points.

5. Conclusion and discussion

We have developed FTL, an encoder–decoder based transfer learning model to represent high-dimensional
snapshots of MHDmodes in low-dimensional embeddings. Our approach has demonstrated its effectiveness
in mode reconstruction, anomaly detection, and revealing transitional dynamical features for unstable kink
modes. Compared to the Baseline and Enhanced models, the proposed FTL delivers greater stability and
higher reconstruction accuracy while using less computation and memory. The transferable architecture of
FTL, capable of extracting essential information from spatially and/or temporally relevant problems, even
with limited datasets, enhances the model’s adaptability and efficiency to a spectrum of MHD problems. The
analysis of plasma dynamics in the latent space enables correlations of dynamic transitions with real and
frequency domain behaviors, and adds a layer of physical interpretability to the FTL model.
Limitations and future directions. Despite the substantial advances enabled by the FTL model, there are

several aspects to be improved upon. Whereas this work primarily focuses on mode structures, with snapshot
amplitudes being normalized to enhance anomaly detection capabilities, future work will endeavor to
incorporate amplitude as well as their growth rates into the FTL model. Moreover, we envisage leveraging the
versatile FTL architecture to encompass multiple physical modes including NTMs thereby expanding the
model’s capability. One limitation lies in generality of the current hyperparameter settings of FTL’s
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Figure 10. The correspondence of the identified tipping points (latent space) in physical space and Fourier domain: (a)
normalized spatial maxima and minima for each snapshot in the time domain. (b) the ratio of the real and imaginary parts
weighted by the amplitude of the Fourier modes. A phase shift is detected at the same time regime of the transition points as in
figure 9.

architecture model. Each physical problem necessitates its own hyperpameter tuning, and exploration of
network settings, including a network size, depth, activation functions, learning rate, optimizers,
regularization methods and loss functions.

Another avenue for future direction involves addressing concerns regarding the applicability of the
current FTL model to unstructured data or irregular geometries, as it is currently designed for structured
data with regular geometry. We note that FTL can be extended by replacing the convolutional kernels with
graph convolutions in graph neural network in order to process irregular data represented as graphs. For
specific physics-constrained problems, the loss functions can be formulated with the residual component
with respect to the first-principled PDEs, as demonstrated in the physics-informed neural networks [50, 51].
Additionally, we envision a hybrid approach that integrates FTL with other surrogate models, e.g. SGTC, to
develop data-driven embedding methodologies for inferring plasma dynamics. The collaborative framework
aims to accurately predict mode structures and their growth rate from constrained encoding, facilitating a
deeper understanding and more precise forecasting of disruptions in large-scale plasma systems.

Ultimately, we look to extend FTL and develop predictive models to plasma transitions for active plasma
control through data assimilation. The anticipated future work involves model predictive control [52, 53]
built on FTL and its application in real tokamak experiments, wherein the ongoing study of bifurcation
prediction in complex systems necessitates comprehending how system behavior evolves with varying
parameters. As bifurcations mark significant shifts in system dynamics, accurate prediction entails a
thorough exploration of parameter space to pinpoint transitional regimes. This endeavor will reveal critical
conditions triggering bifurcations, providing a comprehensive understanding into the complex systems and
guiding strategies for control or mitigation.
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[54].
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Appendix. Supplementary results

A.1. Benchmarking results using PCA
As a benchmark, we perform principal component analysis (PCA) [55] on the kink modes, and determine
the rank r threshold based on the convergence of energy over an increasing number of PCA modes [56, 57].
In figure A1(a), the singular values indicate the energy of each component. We keep r= 3 principle
components, which contain 97% of the total variances of the kink mode data. In contrast to autoencoders,
which capture mode variances by imposing constraints on the latent space through nonlinear mapping using
NNs, PCA projects the data onto a basis formed by the dominant eigenvectors of its covariance matrix.
Figure A1(b) shows the relative L2 error of the PCA and FTL reconstructions over the entire time window as
in figure 6. We observe that FTL demonstrates greater performance stability than PCA, especially in the
nonlinear regime following the phase transition, where it effectively reduces the relative L2 error from 0.3 to
0.1. With an equivalent number of latent variables, FTL exhibits a superior capacity in capturing the
variances of mode structures when compared to linear projection-based method such as PCA while
identifying the bifurcation point.

A.2. Reconstruction of AEs
We extend the FTL model to reconstruct AEs collected from GTC simulation. AEs are a kind of
electromagnetic oscillations commonly seen in neutral beam injection (NBI) heating plasmas. The AE
instability can be driven by the wave-particle resonance of fast ions (alpha particles or NBI generated ions).
The dataset was originally collected from experiments to predict the excitation of different AE types [58].
These experimental shots have been simulated by GTC to study the instability drive and fast ion transport.
The AE mode structures exhibit significant differences from kink mode structures. The radial mode location
does not depend on the local q value. Additionally, the poloidal mode numberm is generally about 10 for
DIII-D tokamak. Except for the beta-induced AEs and reversed-shear AEs , most of the modes in the dataset
exhibit strong ballooning structures (coupling between differentm numbers). The extension to AEs
demonstrates the generalization capabilities of our model.

Specifically, we apply the model to a total of 533 AE equilibrium cases, which are randomly divided into
426 training samples and 107 test samples. Due to the presence of more complex structures on the poloidal
plane characterized by dense concentrations near the edge, we lift the latent dimension to d= 55, guided by
the accumulated energy retained in the system as determined through PCA. Figure A2 illustrates the GTC
simulated AEs, reconstructed AEs, and the residuals from the reconstruction using our model. Notably, the
multi-scaled structures are captured in the low-dimensional embeddings and then decompressed through
the decoder network. Overall, the FTL model demonstrates good reconstruction performance for most AE
cases, particularly on the low field side (right half of the poloidal plane), where the large eddies are prevalent.
We notice that the high relative error in the high field side (left half of the poloidal plane) can be attributed to
the presence of finer mode structures. Physically, these fine structures are caused by the phase shift of
differentm harmonics at varying radial locations. However, the limited size of the dataset may not provide
sufficient features for the model to fully capture the variances and effectively learn these small-scale
structures in AEs. We also propose that incorporating mathematical expressions of the mode structures into
the loss function may enhance the FTL reconstruction of the fine structures. Further improvement of the AE
reconstruction involves physics-informed terms for regularization, and will be studied in future work.
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Figure A1. Principal component analysis (PCA) performed on the kink instabilities. (a) singular values and cumulative variance
ratio vs. the principal components. (b) relative L2 error vs. time for the reconstruction accuracy comparision between PCA and
our apporach FTL.

b.

Figure A2. Original, reconstructed Alfvén eigenmodes and the corresponding residuals using our approach FTL: (a) training set,
(b) test set. The fourth case in panel (b) is an anomalous sample identified based on the residual detected following algorithm 1.

A.3. Relaxation of KL divergence in VAEs
We present the results of beta-VAEs (β-VAEs) [59, 60], exploring the effects of varying the weights of the KL
divergence term. As a generative model, VAE aims to approximate a complex posterior distribution, the
distribution of the latent variables z with a distribution of q(z|v), typically as a multivariate Gaussian with
parameters, i.e. mean µ(v) and variance σ(v), which are modeled and predicted by the encoder Φ. In
addition to the reconstruction loss, KL (Kullback-Leibler) divergence is included in the loss function to
approximate the learned latent distribution q(z|v) to be close to the prior distribution p(z) of a standard
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normal distributionN (0, I),

DKL (qΦ (z|v) ||p(z)) = β · 1
2

d∑
i=1

(
σ2i +µ2i − logσ2i − 1

)
, (A.1)

and

lβ-VAE = EqΦ(z|v) [− logpΨ (v|z)]+DKL (qΦ (z|v) ||p(z)) . (A.2)

Here, qΦ denotes the approximate posterior distribution through the encoder, pΨ is the likelihood function
of the decoder, and qΦ(z|v)||p(z) represents the relative entropy between the posterior and prior
distributions. This penalty imposes constraints between the learned and target distributions, and that the
generated samples resemble those from the prior distribution. Due to the KL divergence term, there is a
trade-off between minimizing the reconstruction loss and staying close to the prior. We investigate the effect
of KL divergence β through annealing by gradually increasing its weight β. As shown in figure A3, although a
larger β = 10−3 has a potentially faster decay within the first 60 epochs, a smaller β achieves a lower MSE
loss on both the training and test datasets. This implies relaxing KL regularization allows the encoder and
decoder to focus more on minimizing the reconstruction error and ensuring p(v|z) captures the data well
rather than strictly regularizing the latent space distribution. It may be attributed to the sharp transitions and
significant variability in the mode structures, which pose challenges for the VAE in generating new samples
that align with the prior distribution. Consequently, incorporating regularization as in equation (11) with an
early stopping criterion in the baseline model of our architecture shows improved training and
generalization performance, as seen in figure A3.

Figure A3.Mean squared error (MSE) vs. the number of epochs: (a) training set and (b) test set using VAEs with varied
β = 10−3,10−4,10−5, and 10−6 for regularization with KL divergence.
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