
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 2, No. 5, pp. 881-899

Commun. Comput. Phys.
October 2007

Parallel Algebraic Multigrid Methods in Gyrokinetic

Turbulence Simulations

M. F. Adams1 and Y. Nishimura2,∗

1 Columbia University, APAM, 500 W. 120th St. Rm 200, MC 4701, New York, NY
10027, USA.
2 Department of Physics and Astronomy, University of California, Irvine, CA
92697-4575, USA.

Received 13 September 2006; Accepted (in revised version) 20 January 2007

Communicated by Zhihong Lin

Available online 20 March 2007

Abstract. Parallel algebraic multigrid methods in gyrokinetic turbulence simulations
are presented. Discretized equations of the elliptic operator −∇2u+αu= f (with both
α = 0 and α 6= 0) are ubiquitous in magnetically confined fusion plasma applications.
When α is equal to zero a “pure” Laplacian or Poisson equation results and when α
is greater than zero a so called Helmholtz equation is produced. Taking a gyrokinetic
turbulence simulation model as a testbed, we investigate the performance characteris-
tics of basic classes of linear solvers (direct, one-level iterative, and multilevel iterative
methods) on 2D unstructured finite element method (FEM) problems for both the Pois-
son and the Helmholtz equations.

PACS (2006): 52.30.Gz, 52.35.Ra, 52.65.Rr

Key words: Algebraic multigrid, gyrokinetic Poisson equation, particle in cell simulation.

1 Introduction

The largest unknown in designing a tokamak reactor is the turbulent plasma transport.
Plasma particles and heat escape much faster than the time scale predicted by the classical
binary collision model. Turbulence in plasma inherently differs from those in neutral
fluids, in that the interaction of charged particles and the electromagnetic waves plays
an important role as the instability drive as well as the turbulence regulation (or the
dissipation) mechanism.

∗Corresponding author. Email addresses: adams@pppl.gov (M. F. Adams), nishimuy@uci.edu (Y. Nishimura)

http://www.global-sci.com/ 881 c©2007 Global-Science Press



882 M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899

One of the popular methods in simulating fully ionized plasmas is the particle in cell
(PIC) method [15]. The PIC codes evolve plasma dynamics self-consistently by alter-
nately pushing charged particles and solving the fields that are the set of Maxwell’s equa-
tions for the electromagnetic fields. The PIC method retains important kinetic effects
such as nonlinear wave-particle interactions (nonlinear Landau damping), which cannot
be captured by the fluid models [12,23]. While traditionally PIC methods were restricted
to local phenomena, the invention of the gyrokinetic simulation method [29] enabled us
to study plasma turbulence in global scales. The basic idea behind the gyrokinetic simu-
lation method is to time-average rapid precessing motions, and only to push the guiding
center motion for the particles. Instead, the finite Larmor radius effects enter the system
through the gyrokinetic Poisson equation [29,30]. The gyrokinetic Poisson equation is in an
integral form and is solved with a linear iterative method [34], under the condition when
the electrons are adiabatic [16]. Unfortunately, this iterative method fails in the presence
of electromagnetic effects or shear Alfven dynamics [6]. In the latter case the iteration
matrix is no longer diagonally dominant and a new linear solution method is required.

The particle in cell codes keep the numbers of particles per cell nearly constant [15].
Consequently global PIC code (GTC for example) in toroidal geometry employs a log-
ically non-rectangular grid with a number of poloidal grid points increasing in the ra-
dial direction. In this work, a finite element method (FEM) is employed for the ellip-
tic solver [37]. In general, the FEM is suitable for dealing with complicated geometries,
where unstructured meshes are employed. For example, for the International Thermonu-
clear Experimental Reactor (ITER) size plasma [27], where the minor radius is on the or-
der of one thousand ion Larmor radii, several million grid points per poloidal plane are
needed. For the practical application for the ITER size burning plasmas the time taken
by the field solver becomes significant if naive solvers are employed. Thus, time taken
for the field solver becomes an issue in plasma simulations (fluid or kinetic) with larger
the grid number [42]. Successful preconditioning of the linear solvers is a cornerstone of
the gyrokinetic turbulence simulations. In this paper we introduce algebraic multigrid
(AMG) methods and demonstrate its efficiency for the plasma physics application. We
would like to note that the FEM solver and AMG developed in this work is also applica-
ble for a general particle in cell code [15] as well as Vlasov type simulation method [13].

The field solve entails the solution of an elliptic operator of the form

−∇2u+αu= f , (1.1)

where α is equal to zero for “pure” Poisson problems and is greater than zero for the
so called Helmholtz problems. As we discuss below, in our gyrokinetic simulation, u
represents the field quantities such as Φ (electrostatic potential) and A‖ (vector potential),
while f represents the source terms such as the charge density and the current density.
This field solve is often discretized with an unstructured FEM, resulting in a symmetric
positive definite system of linear algebraic equations.

The earliest methods for solving the sparse linear systems of equations that arise in fi-
nite difference techniques and the finite element method, are of two types: direct methods



M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899 883

and simple iterative techniques. Direct methods, such as Gaussian elimination, compute
an exact answer (in exact arithmetic) in a finite number of operations. Iterative methods,
such as Gauss-Seidel and Jacobi’s method, start with an initial guess and incrementally
improve the answer until a desired level of accuracy is achieved. Note that since one
does not generally compute in exact arithmetic and that multigrid (discussed below) re-
duces the residual error by a constant fraction with a finite amount of work, one can thus
consider multigrid to be a direct solver in floating point arithmetic. Additionally, some
Krylov iterative methods (discussed below) satisfy this definition of an exact solver but
are very sensitive to roundoff error and are not practical as direct methods [26]. Both
Gauss-Seidel and Gaussian elimination were widely used to solve these systems before
electronic computers became available and were used almost exclusively well into the
1960s.

A useful class of iterative methods—Krylov subspace methods—was introduced in
the 1950s [25]. The method of conjugate gradients (CG) was the first (and remains the
best) Krylov method for the symmetric positive definite systems in our application. CG
is inexpensive, with only a modest increase in cost per iteration over Gauss-Seidel, but
usually requires preconditioning to be effective.

Preconditioning is defined as transforming the system Ax=b with a non-singular ma-
trix M to M−1Ax= M−1b or a symmetric positive definite matrix M−1/2AM−1/2M1/2x=
M−1/2b. Jacobi preconditioning results from letting M equal the diagonal of A. The fun-
damental goal in designing a preconditioner is in finding an operator M such that M−1

is inexpensive to apply and results in a matrix M−1A that is well conditioned or more
precisely will converge quickly in the iterative solution process. Simple preconditioners,
like Jacobi, are not scalable because as the problem size (i.e., the number of unknowns N)
increases the condition number of the preconditioned system increases in proportion to
N1/2 for 2D problems leading to a method with an overall computational complexity of
O(N3/2). Most simple preconditioners are, however, memory scalable and scalable in the
parallel computing sense in that they can be easily parallelized and achieve high parallel
efficiencies. Direct methods have the advantage of being predictable, because their cost
does not depend on the spectral properties (e.g., condition number) of the system, but
have the disadvantage that they are not scalable in that their complexity is about O(N2)
for the factorization and O(N3/2) for each solve, depending on the individual problem
topology and node ordering method.

This paper investigates the most theoretically optimal class of methods: multigrid
(e.g., [10, 21, 43]). Multigrid methods are the most efficient iterative schemes for solving
the linear systems associated with elliptic PDEs. Multigrid methods are well known to
be theoretically optimal for H1-elliptic operators, both for scalar problems like Poisson’s
equation, and for systems of PDEs, such as displacement finite element discretization for
elasticity [8]. Multigrid is also efficient in terms of memory, especially on 3D problems,
when compared to direct methods. Multigrid has been applied to structured grid prob-
lems for decades [9]. In the past twenty years, algebraic multigrid (AMG) methods have
been developed for unstructured problems as well. See Briggs et al., and the references



884 M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899

therein, for an introduction to multigrid methods [10]. Multigrid methods, in theory and
frequently in practice, have a computational complexity of O(N) making them optimal.

In this paper we investigate the performance characteristics of the primary classes of
solution methods that are potentially useful for the 2D symmetric positive definite lin-
ear systems that arise in gyrokinetic simulations by: 1) CG preconditioned by Jacobi’s
method, 2) direct methods and 3) CG preconditioned by multigrid methods. This pa-
per proceeds as follows: Section 2 introduces gyrokinetic simulation methods; Section 3
describes algebraic multigrid in general and the two methods investigated here in partic-
ular; Section 4 investigates performance characteristics of these methods via numerical
experiments and we conclude in Section 5.

2 Gyrokinetic field equations in particle simulation model

In this section, we present a classification of the elliptic type electromagnetic field equa-
tions that appear in gyrokinetic particle simulations. The classification is given in terms
of α in Eq. (1.1).

First, we discuss the gyrokinetic Poisson equation which solves for the electrostatic
fluctuation Φ. The general form of the gyrokinetic Poisson equation is in an integral
form [30, 34] but reduces to the form of Eq. (1.1) in a short wave length limit. Following
Lee [30], the gyrokinetic Poisson equation is given by

−
τ

λ2
d

(

Φ−Φ̃
)

=−4πe
(

¯δni−δne

)

, (2.1)

where e is the unit charge, λd is the electron Debye length, δn̄i, δne are the fluctuation
part of the ion and the electron guiding center charge density, and τ = Te/Ti is the ratio
between the equilibrium electron temperature Te and the equilibrium ion temperature Ti.
Note the Debye shielding term [30,34] is neglected in Eq. (2.1). The¯sign operated on δni

represents the average over the gyro-phase. In Eq. (2.1), Φ̃ is the second gyro-phase av-
eraged potential [30]. To solve Eq. (2.1) numerically, an iterative double-gyro-averaging
scheme is employed [34]. However, as noted above, the iterative method (under the in-
tegral form) cannot be applied for the non-adiabatic kinetic electrons. In the presence of
non-adiabatic electrons, the inversion matrix of the iterative method cannot be diagonally
dominant [38]. By an expansion in the long wavelength limit, the left side of Eq. (2.1) be-
comes [30]

−τλ−2
d

(

Φ−Φ̃
)

∼τ(ωpi/Ωi)
2∇2
⊥Φ, (2.2)

where ωpi is the ion plasma frequency and Ωi is the ion cyclotron frequency. Instead, to
calculate the response of the short wave length mode correctly, Padé approximation [22]
is introduced on the right side of the gyrokinetic Poisson equation. Normalizing Eq. (2.1)
with ion gyro-radius for the length, the background density n0, and Te/e for the potential,
we obtain

∇2
⊥Φ=−

(

1−
1

τ
∇2
⊥

)

(

¯δni−δne

)

. (2.3)



M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899 885

Compared to Eq. (1.1), f =
(

1−τ−1∇2
⊥

)(

¯δni−δne

)

and α=0. The adiabatic electron limit
(δne =Φ) corresponds to α=1 in Eq. (1.1).

Second, Ampere’s law for the magnetic perturbation is solved for the magnetic fluc-
tuation. Remembering the magnetic field B is given by the curl of vector potential A, the
magnetic perturbation is given by the parallel vector potential A‖ [14]

∇2A=−J‖, (2.4)

where J‖ is the plasma current obtained from the particles. Here, the subscripts ‖ denote
the direction parallel to the equilibrium magnetic field. Equation (2.4) is also an elliptic
partial differential equation with α = 0 in Eq. (1.1). If we restrict ourselves to the short
wave length micro-instabilities (k2

⊥≫k2
‖), we can apply∇2∼∇2

⊥ and the equation reduces

to two dimensional as in the gyrokinetic Poisson equation.

Third, Ohm’s law
(

∇2
⊥−β

mi

me

)

∂Φ

∂t
=S, (2.5)

is employed in the electromagnetic split-weight scheme [31]. Here, β is the ratio between
the plasma pressure and the magnetic pressure, me/mi is the mass ratio between electrons
and the ions, and S on the right is the source term calculated from third order moment
of the particle velocity. For this latter case, we have 0< α = β(mi/me) in Eq. (1.1). The α
value can be either smaller or larger than unity depending on the β values.

The global gyrokinetic simulation code (GTC, [33]) employs a unique mesh structure,
the so-called global field aligned mesh, which rotates together with the magnetic field
line pitch. The field aligning is an important technique for global simulations (otherwise
one needs to use approximately 100 finer mesh in the toroidal direction). At first glance
the GTC grid seems as a conventional FEM grid (on each poloidal plane). However, the
grid rotates in the poloidal direction with different speed at each radius and the grid
structures are different at different toroidal angles [see Fig. 1(b)]. As a consequence, the
elements are distorted. To retain the accuracy of the finite element method, the labeling
of the vertices are changed depending on the poloidal planes. Note that the solver is not
restricted to large aspect ratio devices but can still be applied to spherical tori [National
Spherical Torus Experiment (NSTX), [39] for example] by casting Eq. (2.3) to the original
integral form Eq. (2.1) (averaging over the projection of the gyro-orbit on a non-circular
poloidal plane).

3 Multigrid introduction

Multigrid is motivated first by the fact that inexpensive iterative methods, such as Gauss-
Seidel, are effective at reducing high frequency, or high energy, error. These solvers are
called smoothers because they render the error geometrically smooth by reducing its high
frequency content. Smoothers are, however, ineffectual at reducing low frequency or low



886 M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899

−1 −0.5 0 0.5 1
x

−1

−0.5

0

0.5

1

y

(a)

−1 −0.5 0 0.5 1
x

−1

−0.5

0

0.5

1

y

(b)

Figure 1: Adaptation of the FEM generator to the GTC grid. Here, very small numbers of grid points are
taken to emphasize the GTC grid topology. (a) A conceptual plot of the logically non-rectangular GTC grid.
Triangular finite elements with a linear shape functions are adapted. The poloidal plane is divided into quadrants
(this is for the purpose of second domain decomposition). The number of the grid points increases by a constant
factor of four in the radial direction. (b) A schematic diagram that suggests the field alignment. The red blocks
illustrate the grid points at one toroidal angle, while the blue blocks illustrate those on the other side of the
torus. Note each radius has a different rotation speed (not a rigid rotation) depending on the magnetic field
line pitch.

energy error. The second observation that motivates multigrid methods is that low en-
ergy error can be represented effectively with a coarse version of the problem and that
this coarse problem can be “solved” recursively in a multigrid process. That is, the so-
lution can be projected to a smaller space to provide a coarse grid correction, in much
the same way that the finite element method computes an approximate solution by pro-
jecting the infinite dimensional solution onto a finite dimensional subspace. Multigrid is
practical because this projection can be prepared and applied with reasonable and scal-
able cost. Like the finite element method, the design of the spaces that one uses in the
projection is critical in defining a particular method.

The discrete form of these coarse grid spaces is represented in the columns of the
prolongation operator P. The prolongation operator is used to map corrections to the so-
lution from the coarse grid to the fine grid. Residuals are mapped from the fine grid to
the coarse grid with the restriction operator R; R is generally equal to PT. The coarse grid
matrix may be formed in one of two ways, either algebraically to form a Galerkin (or
variational) coarse grid operator (Acoarse←RA f ineP) or by creating a new finite element
problem on each coarse grid (if an explicit mesh is available) thereby allowing the finite
element implementation to construct the matrix. The smoothers and coarse grid correc-
tions may be applied in almost any order, either additively or multiplicatively — here we
use the standard multiplicative V-cycle [41], described in Algorithm 3.1, using a smoother
x←S(A,b) along with the P and R matrices, on each level.



M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899 887

Algorithm 3.1: Multigrid V-cycle Algorithm.

function MGV(Ai,bi)
if there is a coarser grid i+1

xi←Sν1(Ai,bi) – ν1 iterations of (pre) smoother
ri←bi−Axi – residual calculation
ri+1←Ri+1(ri) – restriction of residual
xi+1←MGV(Ri+1AiPi+1,ri+1) – recursive call
xi← xi+Pi+1(xi+1) – prolongate coarse grid correction
ri←bi−Aixi

xi← xi+Sν2(Ai,ri) – ν2 iterations of (post) smoother
else

xi←A−1
i ri – direct solve of coarsest grid

return xi

Multigrid is often used as a preconditioner for a (Krylov) iterative method; for the
numerical experiments described in this paper, one multigrid V-cycle is used as the pre-
conditioner. Moreover, our matrices are symmetric positive definite and the conjugate
gradients (CG) Krylov algorithm is used; CG requires that the preconditioner be symmet-
ric. Symmetry is achieved by setting R = PT and by using “pre” and “post” smoothing.
For instance, if symmetry is not required, then the first two lines of the V-cycle, in Algo-
rithm 3.1, can be removed, resulting in post smoothing only. Additionally, if Gauss-Seidel
is used as the smoother it must be symmetrized [5].

For structured grid problems, the coarse grids are predefined as some geometric sub-
set of the fine grids (e.g., dropping every second grid-point in each direction to form the
coarse grid) and the operators R, P, and Acoarse are defined with simple geometric in-
terpolation. Only two operators are required to define a multigrid method: 1) P, whose
columns define the coarse grid space and with RT = P, determining the coarse matrix
Acoarse=RA f ineP, and 2) the smoother S(A,b). When these operators can be defined auto-
matically, using little or no knowledge of the geometry of the problem or the underlying
PDE, the resulting process is known as algebraic multigrid, or AMG.

AMG methods are, by the broadest definition, methods that select the coarse grids
and construct the coarse grid operators “algebraically,” usually via a Galerkin process.
The coarse grid spaces and operators are typically constructed from the stiffness matrix
alone, with little or no extra data required from the application. Two such methods are
investigated here: 1) classical algebraic multigrid [24] (Appendix A), and 2) smoothed
aggregation [44] (Appendix B).

4 Numerical results

Here we briefly discuss the background of the physics problem and the numerical
simulation before investigating the effectiveness of the preconditioners. The Gyroki-
netic Toroidal Code (GTC) we employed is designed to study short wave length micro-



888 M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899

instabilities. GTC is an advanced gyrokinetic simulation codes, and can cover the entire
tokamak geometry with a practical velocity space resolution. Parameters for the ion tem-
perature gradient (ITG) mode are used in this study. Two cases are considered here: 1)
adiabatic electrons [δne =u is applied in Eq. (2.1) giving rise to a Helmholtz operating on
u] and, 2) non-adiabatic electrons; these two cases result in the operator −∇2u+αu = f ,
with α=1 or α=0 respectively.

After scattering Monte-Carlo particle samples into the configuration space and the
velocity space at t = 0 (by a random number generator), the particle simulation method
advance as follows: (1) particles are pushed by solving the guiding center equations, (2)
particle charges are gathered on the grid points, (3) the gyrokinetic Poisson equation is
solved to obtain u, (4) the electric field calculated through the relation E=−∇u, and the E
values are used for the push in the first step. The processes (1) to (4) is repeated to evolve
the system self-consistently, for up to tens of thousands of time steps (for typical produc-
tion runs). In this work we solve the first 20 steps. Since we employ the random number
generator at t=0, the particle distribution throughout these 20 steps has a similar profile
to that of the turbulence state. Note in the particle simulations, the charge densities f
change with time and thus the right side of Eq. (1.1) needed to be calculated inside the
particle code each time, while the geometrical information contained in A stays the same
throughout the simulation.

As a reference, the typical relevant parameters used for the plasma are: toroidal mag-
netic field 1.91T, equilibrium ion and electron temperature Ti =Te =2500eV, equilibrium
ion and electron density 4.6×1019m−3. As in realistic tokamak discharges, the safety
factor varies within the range of 1.53≤ q≤ 3.58 . The device size is given by a major ra-
dius of 0.93m and a minor radius of 0.33m. Annular simulating domains are taken with
0.165≤r≤0.33m. The geometry we employ is toroidal, with a circular cross section. Sev-
eral cases are generated by doubling grid resolution in both the radial and the poloidal
directions (thus the number of grid points N per plane increases by a factor of four).
Grids of size 38K, 120K, and 640K are formed in this manner and a grid with N=1.2M is
generated with 0.0825≤ r≤0.4125.

Four methods of solution are investigated, a direct solver and CG with three differ-
ent preconditioners: 1) diagonal (Jacobi), 2) classical AMG, and 3) smoothed aggregation
AMG. The direct solver is the SuperLU package from Lawrence Berkeley National Labo-
ratory [32]. The classical algebraic multigrid method is implemented in the HYPRE solver
package from Lawrence Livermore National Laboratory [24]. The smoothed aggregation
preconditioner is implemented in the package Prometheus from Columbia University [1].
Prometheus is built on the parallel numerical package PETSc [7], and the mesh partitioner
Parmetis [28]. The Jacobi method (diagonal preconditioning) is a built-in preconditioner
in PETSc, and all other solvers have a PETSc interface that allows them to be used as
a PETSc PC object. These tests are run on the IBM SP Power3 (Seaborg) at NERSC. All
four packages employed are supported by the Terascale Optimal PDE Simulators (TOPS,
http://www.tops-scidac.org) of the U.S. DOE SciDAC initiative.



M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899 889

4.1 Multigrid smoothers

An important aspect of the performance of a multigrid solver, after the coarse grid spaces
have been selected, is the smoother algorithm and implementation. A few words are
in order to understand the details of the multigrid solvers used in this study. Gauss-
Seidel is an example of what is called a multiplicative method while Jacobi is an additive
method. Multiplicative methods are ideal as multigrid smoothers; additive methods re-
quire damping to be theoretically valid [2]. The matrices investigated here are M-matrices
(linear finite element discretization of Poisson’s equation) and in practice, because of de-
tails of their spectral properties, they are not very sensitive to block additive smoothers
if the blocks are of sufficient size, which they are in test problems used in this study. The
smoothers (discussed below), while not identical, for each AMG method, provide similar
smoothing properties. Hence, the convergence rates reported here accurately reflect the
properties of the two AMG methods.

The default HYPRE smoother is a processor block additive Schwarz (or block Jacobi)
method with one application of symmetric Gauss-Seidel as the (processor) subdomain
solver. This amounts to two iterations of Gauss-Seidel as the pre and post smoother
(see Algorithm 3.1) locally on each processor. The default smoother in Prometheus is
a Jacobi preconditioned Chebyshev smoother—the Chebyshev polynomial essentially
provides the damping that is required of an additive method when used as a multi-
grid smoother [4]. A second order Chebyshev polynomial is used for both pre and
post smoothing in Prometheus. Thus, the computational complexity of the HYPRE and
Prometheus smoothers are about equal and the iteration counts are a good relative mea-
sure of the mathematical effectiveness of the respective AMG methods.

4.2 Scaled speedup study

Scalability is investigated with a scaled speedup study using several versions of a GTC
cross section. Scaled speedup, or weak speedup, measures performance for several dis-
cretizations of a particular problem using a number of processors for each case to keep
approximately the same number of equation per processor. This study uses enough pro-
cessors (from 1 to 32) to keep about 38,000 (38K) equations per processor. To conserve
computer resources, these problems were run for 20 time steps, which is about a factor of
100 times fewer that would be run for a full simulation, and with only 8 poloidal planes
instead of the usual 64. There is no significant difference expected in terms of challenges
for the linear solvers between these performance runs and production physics runs. For
each time step, one system of the type under investigation (i.e., Helmholtz or Poisson)
is solved to a relative residual tolerance of 1.0−6, that is, convergence is declared when
the two norm of the residual r (r≡ b−Ax̂) is less than 1.0−6‖b‖2. Note that the direct
solvers provide a much smaller tolerance, about 1.0−14‖b‖2, due to their exact nature.
The number of time steps is large enough to amortize the setup phase in the precondi-
tioners which is trivial for the Jacobi preconditioner, significant but scalable for the two



890 M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899

10
2

10
3

10
0

10
1

10
2

10
3

P
oi

ss
on

 S
ol

ve
 T

im
e 

(2
0 

tim
e 

st
ep

s)

Number of equations (x1000)

Poisson Solve Times

Jacobi
SuperLU
HYPRE
Prometheus

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

P
oi

ss
on

 It
er

at
io

ns

Number of equations (x1000)

Poisson Iterations

Jacobi
SuperLU
HYPRE
Prometheus

Figure 2: Pure Poisson (α=0).

multigrid methods and about O(N2) for the direct solver. These setup costs are not in-
vestigated carefully because they are not important in this application due to the larger
number of time steps in a typical GTC run.

4.3 Pure Poisson problem

This section investigates the performance of linear solvers on the pure Poisson problem,
that is with α=0 in Eq. (1.1). Fig. 2 (top) shows the solution times for four cases, ranging
in size from 38K equation to 1.2M equations. Fig. 2 (bottom) show the iteration count
vs. number of equations. This data shows that the iteration count for the direct solver is



M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899 891

always one and the iteration counts for the two multigrid methods are roughly constant.
This is to be expected because multigrid methods are optimal in that the condition num-
ber of the preconditioned system in independent of the scale of the problem. The solve
times are going up only slightly for the two multigrid methods which show that they
are not demonstrating any significant parallel inefficiency (on Seaborg) for this problem.
The solve times for the direct solver increase, as is expected, with a complexity of about
O(N3/2). The iteration counts, and hence the solve times, for the Jacobi method should,
according to theory, go up like O(N3/2). We do indeed see growth of this approximate
order.

4.4 Helmholtz problem

This section investigates the performance of methods on the Helmholtz problem, that is
with α=1.0 in Eq. (1.1). Fig. 3 (top) shows the solve times for four cases going from 38K
equation to 1.2M equations, and Fig. 2 (bottom) show the iteration count vs. number of
equations. This data shows that, as expected the iteration counts for all solution methods
is roughly constant, and though the Jacobi method is rising there is some evidence of it
asymptotically approaching a constant. For analysis of this phenomenon on an idealized
geometry amenable to Fourier decomposition, see [18]. This is as expected because these
problems are spectrally equivalent to the identity and thus simple preconditioners work
well. Once again we observe the solve times rising only slightly for the two multigrid
methods, showing that they do not suffer significant parallel inefficiency. Again, the
solve times for the direct solver are increasing as is expected with a complexity of about
O(N3/2).

4.5 Total times

This section investigates the total times for all parts of the time evolution in GTC using
the pure Poisson field solve. This data does not include the initial setup times for the
problem because these times are amortized to the point of insignificance in a typical GTC
run with tens of thousands of time steps. These GTC runs used four particles per grid
point or about 38 million particles for the largest problem. Five computational phases are
measured:

1. Smooth: Filter high frequencies (not parallelized).

2. Field: Compute the gradient of the potential for the electric field (not parallelized).

3. Charge: Deposit charge onto the finite element mesh.

4. Solve: Solve for the potential - the focus of this paper.

5. Push: Push the particles in the electric field.



892 M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899

10
2

10
3

10
0

10
1

10
2

H
el

m
ho

ltz
 S

ol
ve

 T
im

e 
(2

0 
tim

e 
st

ep
s)

Number of equations (x1000)

Helmholtz Solve Times

Jacobi
SuperLU
HYPRE
Prometheus

10
2

10
3

10
−1

10
0

10
1

10
2

H
el

m
ho

ltz
 It

er
at

io
ns

Number of equations (x1000)

Helmholtz Iterations

Jacobi
SuperLU
HYPRE
Prometheus

Figure 3: Helmholtz (α=1.0).

The Field and Smooth phases are not parallelized within each poloidal plane and be-
cause the number of processors increases by a factor of 32 one would expect the times
for these two sections to increase by a factor of about 32. The Charge phase has some
non-parallelized work which results in poor scalability.

Fig. 4 shows the solve times for the pure Poisson case going from 38K equation to
1.2M equations. This data show that the Charge phase is not scaling well, with a parallel
efficiency of about 12%.

The Smooth phase exhibits erratic times. Of the eight runs used in this study, the
fastest time in the Smooth phase was 3.7 seconds — this is a factor of six times smaller
than the time in the run used in Fig. 4. The SP does exhibit nonrepeatable performance



M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899 893

5 10 15 20 25 30
0

50

100

150

200

250

300

Processors per plane − IBM SP Power3

T
im

e 
(s

ec
)

Total time (rtol=10−6), ~38K dof per processor

Smooth
Field
Charge
Solve (HYPRE)
Push

Figure 4: Total times.

and there could be some load imbalance in other parts of the code that accumulated in
the synchronization points in the Smooth phase, but this data is not well understood.
The Smooth and Field phases, which are not parallelized within each poloidal plane, are
scaling about as expected (i.e., about 3% parallel efficiency, if the fastest measured Smooth
phase time on the smallest problem is used as the base case). The push and solve phase
are scaling with a parallel efficiency of about 50% from one to 32 processors.

The solve phase inefficiencies are due to several factors. First, we do observe a slight
rise in iteration count. Also, there is some all-to-all communication (to communicate the
solution to all processors in a plane) outside of the linear solver. This is required because
the entire GTC process is not parallelized and each processor requires the entire solution.
The number of equations per processor is very small (about 38K) – this requires less than
3 Mb of storage for the stiffness matrix on a machine with 1Gb of memory per processor.
In our experience multigrid solver can achieve over 90% efficiency on the IBM SP Power
3 machines [3] when a significant amount of memory per processor is used.

5 Conclusion

We have solved gyrokinetic turbulence simulations of burning plasmas with up to 1.2M
grid points per plane, which is enough to resolve the ion Larmor radius scale in the
core of the ITER size tokamak. Scalability has been demonstrated with a wide range
of processors number (from one to 32). Applications to shaped plasma (NSTX, [39] for
example) is straightforward with the unstructured grid finite element method approach.
Partitioning of the matrix (corresponds to a 2nd domain decomposition in the poloidal



894 M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899

plane) is done for the linear potential solve phase but remains to be done for the Smooth
and Field phases.

Acknowledgments

The authors would like to thank Dr. Wei-Li Lee, Dr. Zhihong Lin, Dr. Stephane Ethier for
their work in developing the GTC application. This work was partially funded through
the Department of Energy under contract FG02-04ER25652, Cooperative Agreement No.
DE-FC02-04ER54796 and in part by SciDAC Center for Gyrokinetic Particle Simulation
of Turbulent Transport in Burning Plasmas.

A Classical algebraic multigrid

What is known as “classical algebraic multigrid” was introduced in the 1980s [40], and
methods of this type are available in the HYPRE linear solver library and are used in
the numerical experiments in this study [24]. Classical AMG fits into the standard AMG
framework described in Section 3 and as such only the interpolation operator P need
be described to define the method. The smoothers Sν1(A,b) are fairly standard and are
described in the numerical experiments in Section 4. This discussion follows that of Hen-
son [24].

Coarse-grid space construction in classical AMG proceeds by partitioning the node
set Ω of the graph of the matrix on any given grid into two sets: F-points and C-points.
Heuristic rules are used to chose the C-points, which will be used to define one coarse
grid function, so that all F-points are interpolated by a set of C-points. These C-points, or
coarse-grid points, associated with an unknown ui are used to represent, or interpolate,
a nearby unknown uj. A point i is said to depend on a point j if the value of the unknown
uj is “important” in determining the value of ui. In this case it is said that j influences i.
This set Si is the set of points on which a point i depends. The definition used in classical
AMG is:

Si≡

{

j 6= i :−aij≥αmax
k 6=i

(−aik)

}

, (A.1)

with α typically set to α=0.25, where aij is the jth element of the ith row of the matrix A.

Also define the set ST
i ≡{j : i∈Sj}, that is the set of j points that are influenced by i. Two

heuristics are employed to increase the quality of the coarse-grid spaces:
C1: For each i∈F, each j∈Si is either in C or Sj∩Ci 6=∅

C2: C should be a maximal subset with the property that no point in C depends on
another point in C

C1 is intended to insure that the value of uj is represented in the interpolation formula
for ui if i strongly depends on j, even when j is not a C point. C2 is intended to limit the
size of the coarse grid and hence to maintain reasonable computational complexity for



M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899 895

the coarse grids. It is not possible, in general, to satisfy C1 and C2 simultaneously; the
HYPRE library enforces C1 exactly at the expense of C2 when necessary.

Given a set of F-points the classical AMG algorithm constructs the prolongation op-
erator as follows. First the prolongation operator for the C-points is simply the identity
matrix, that is,

Pij =

{

1.0 if i= j
0.0 otherwise

(A.2)

if the C-points are ordered first. This defines the rows of P that are associated with the C-
points. The rows of P that are associated with the F-point are computed by first defining
a partitioning of the nodes that an F-point i is connected to in the graph of the matrix
into three disjoint set: 1) Ci as defined above, 2) Ds

i , the points that influence i but are not
coarse interpolation points and 3) Dw

i , the rest of the neighbors of i (i.e., nodes that do
not influence i). The basic definition of the classical AMG interpolation operator is for all
i∈F-points:

Pij =−
1

aij+∑k∈Dw
i

aik

(

aij + ∑
k∈Ds

i

aikakj

∑m∈Ci
akm

)

and for all i∈C-points use Eq. (A.2). This defines the classical AMG method along with
the smoother discussed in Section 4. This algorithm is on firm mathematical ground only
for M-matrices, which we have because M3D uses linear finite element spaces.

B Smoothed aggregation multigrid

Aggregation multigrid methods require the null space or kernel of the operator (without
Dirichlet boundary conditions applied). For the Poisson operators considered here this
is simply the constant vector (e.g., a vector of all ones). Many plane aggregation methods
have been developed [11, 19, 20]. Aggregation methods, as the name implies, aggregate
nodes and then inject the kernel vectors onto these nodes sets resulting in piecewise con-
stant coarse grid space functions. These aggregates are constructed so that the nodes
within an aggregate are “strongly connected” (see below and [44]).

An important improvement in plane aggregation methods is the addition of smooth-
ing which provides significant improvement to the convergence bounds of these meth-
ods [35, 44], and is especially effective in practice on more challenging problems [2].

The smoothed aggregation algorithm proceeds as follows: starting on fine grid i = 1
with provided kernel vectors in the matrix B1 (an n by 1 matrix corresponding to the
constant vector):

1. Construct aggregates (a nodal partitioning) on the current (fine) grid i, as described
below.

2. For each aggregate J extract the submatrix BJ
i of Bi associated with the nodes in

aggregate J.



896 M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899

3. On each aggregate J construct the initial prolongator P̄J
i with a QR factorization:

BJ
i→ P̄J

i BJ
i+1.

4. BJ
i+1 is a 1 by 1 matrix for scalar operators, and is used as the rows of the kernel

matrix associated with the coarse grid node J on the next grid i+1 — this provides
the mechanism to apply the method recursively.

5. The initial prolongator P̄i for grid i is a (tall skinny) block diagonal matrix and is

formed by “injecting” P̄J
i into the columns associated with node J, that is P̄J

i is the
Jth diagonal block of P̄i.

6. Each column of P̄i is “smoothed” with one iteration of an iterative method to pro-
vide the prolongator Pi for grid i: Pi← (I−τD−1

i Ai)P̄i.

7. The next grid operator is constructed algebraically: Ai+1←PT
i AiPi.

This algorithm provides all of the operators: Pi, Ri = PT
i , and Ai. Di above can be any

symmetric positive definite preconditioner matrix. The nodal block diagonal of Ai (i.e., 1
by 1 diagonal blocks of A) is used in this paper and τ =1.5/λi where λi is an estimate of
the highest eigenvalue of D−1

i Ai (see [35] for details). The construction of the aggregates
in step 1 above is the last item in the algorithm that remains to be specified.

Construction of aggregates

The construction of the aggregates in smoothed aggregation is an important aspect of the
implementation because the choice of aggregates can significantly effect the convergence
rate and the memory complexity of the coarse grids which significantly effects the com-
plexity of each iteration and the setup cost (i.e., coarse grid construction). We employ
a maximal independent set (MIS) with post-processing similar to the original algorithm
proposed by Vaněk et al. [44]. Vaněk recommends that aggregates should be “connected
by a path of strong coupling” as a means of automatically achieving semi-coarsening
(semi-coarsening is an effective method for anisotropic problems such as some fluid flow
problems [17, 21, 36]). Our experience indicates that the selection of strongly connected
aggregates is effective for solid mechanics problems with large jumps in material coeffi-
cients as well.

Our algorithm proceeds as follows: given a norm ‖·‖, edge weights wij between two

nodes i and j are computed with wij =
∥

∥aij

∥

∥/
√

‖aii‖
∥

∥ajj

∥

∥, where aij is the d by d sub-

matrix of the stiffness matrix that is associated with the degrees of freedom of nodes i
and node j (here d is the number of degrees of freedom per node on the grid, i.e., 1 for
our test problems). Note that for symmetric positive definite problems wij ≤ 1.0 if the
two–norm

∥

∥aij

∥

∥

2
is used; here for computational simplicity we use an average of the one

and infinity norms
∥

∥aij

∥

∥=(
∥

∥aij

∥

∥

1
+
∥

∥aij

∥

∥

∞
)/2. The MIS is computed with a graph that has

been modified by dropping edges that have weights that fall below a certain threshold ǫ;
we use ǫ=0.08·21−l , where l is the grid number as suggested by Vaněk [44].



M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899 897

Common “greedy” MIS algorithms naturally construct a nodal partitioning; these
partitions, however, tend to be too large on 3D problems (i.e., the aggregates are too
small) for smoothed aggregation because the complexity of the coarse grids tend to
be larger than that which is optimal for the overall complexity of the solver. A post-
processing step is thus advisable to increase the size of the aggregates. We iterate over
the aggregates and coalesce the nodes in the smallest aggregates with nearby aggregates
with which each node has the largest sum of edge weights, constrained by requiring that
the resulting aggregate size be less than two times the minimum degree of the nodes in
the original aggregate. This heuristic is used to limit the size of aggregates because large
aggregates would create a “bottleneck” in the convergence of the solver in that the error
is relatively poorly resolved by the coarse grid correction on large aggregates. The min-
imum degree term is meant to reflect the lower rate of coarsening that the MIS provides
in 2D problems and that is desirable for the convergence rate of the solver.

References

[1] M. F. Adams, Prometheus, www.columbia.edu/∼ma2325.
[2] M. F. Adams, Evaluation of three unstructured multigrid methods on 3D finite element prob-

lems in solid mechanics, Int. J. Numer. Meth. Engrg., 55 (2002), 519-534.
[3] M. F. Adams, H. Bayraktar, T. Keaveny and P. Papadopoulos, Ultrascalable implicit fi-

nite element analyses in solid mechanics with over a half a billion degrees of freedom, in:
ACM/IEEE Proceedings of SC2004: High Performance Networking and Computing, 2004.
Gordon Bell prize winner, special category.

[4] M. F. Adams, M. Brezina, J. J. Hu and R. S. Tuminaro, Parallel multigrid smoothing: polyno-
mial versus Gauss–Seidel, J. Comput. Phys., 188 (2003), 593-610.

[5] M. F. Adams, Distributed memory unstructured Gauss–Seidel slgorithm for multigrid
smoothers, in: ACM/IEEE Proceedings of SC2001: High Performance Networking and
Computing, 2001.

[6] H. Alfven, Existence of electromagnetic-hydrodynamic waves, Nature 150 (1942), 405.
[7] S. Balay, W. D. Gropp, L. C. McInnes and B. F. Smith, PETSc 2.0 users manual, tech. rep.,

Argonne National Laboratory, 1996.
[8] D. Braess, On the combination of the multigrid method and conjugate gradients, in:

W. Hackbusch and U. Trottenberg (Eds.), Multigrid Methods II, Springer-Verlag, Berlin,
1986, pp. 52-64.

[9] A. Brandt, Multi-level adaptive solutions to boundary value problems, Math. Comput., 31
(1977), 333-390.

[10] W. L. Briggs, V. E. Henson and S. F. McCormick, Multigrid Tutorial, 2nd ed., SIAM, Philadel-
phia, 2000.

[11] V. E. Bulgakov and G. Kuhn, High-performance multilevel iterative aggregation solver for
large finite-element structural analysis problems, Int. J. Numer. Meth. Engrg., 38 (1995),
3529-3544.

[12] Z. Chang and J. D. Callen, Unified fluid kinetic description of plasma microinstabilities. 1.
basic equations in a sheared slab geometry, Phys. Fluids B, 5 (1992), 1167-1181.

[13] C. Z. Cheng and G. Knorr, Integration of Vlasov equation in configuration space, J. Comput.
Phys., 22 (1976), 330-351.



898 M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899

[14] C. G. Darwin, The dynamical motion of charged particles, Philos. Mag. 39 (1920), 537.
[15] J. Dawson, One dimensional plasma model, Phys. Fluids, 5 (1962), 445-459.
[16] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, Plenum Press, New York,

1983, pp. 218.
[17] J. Dendy, M. Ida and J. Rutledge, A semicoarsening multigrid algorithm for SIMD machines,

SIAM J. Sci. Stat. Comput., 13 (1992), 1460-1469.
[18] A. Ern, V. Giovangigli, D. E. Keyes and M. D. Smooke, Towards polyalgorithmic linear sys-

tem solvers for nonlinear elliptic systems, SIAM J. Sci. Comput. , 15 (1994), 681-703.
[19] C. Farhat and F.-X. Roux, A method of finite element tearing and interconnecting and its

parallel solution algorithm, Int. J. Numer. Meth. Engrg., 32 (1991), 1205-1227.
[20] J. Fish and V. Belsky, Generalized aggregation multilevel solver, Int. J. Numer. Meth. Engrg.,

40 (1997), 4341-4361.
[21] W. Hackbusch, Multi-grid Methods and Applications, Springer-Verlag, Berlin, 1985.
[22] T. S. Hahm and L. Chen, Theory of semicollisional kinetic Alfven modes in sheared

magnetic-fields, Phys. Fluids, 28 (1985), 3061.
[23] G. W. Hammett and F. W. Perkins, Fluid moment models for Landau damping with appli-

cation to the ion-temperature-gradient instability, Phys. Rev. Lett., 66 (1990), 3019-3022.
[24] V. Henson and U. Yang, BoomerAMG: A parallel algebraic multigrid solver and precondi-

tioner, Tech. Rep. UCRL-JC-141495, Lawrence Livermore National Laboratory, 2000.
[25] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J.

Res. Natl. Bur. Stand., 49 (1952), 409-436.
[26] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia,

2002.
[27] ITER, www.iter.org.
[28] G. Karypis and V. Kumar, Parallel multilevel k-way partitioning scheme for irregular graphs,

in: ACM/IEEE Proceedings of SC1996: High Performance Networking and Computing,
1996.

[29] W. W. Lee, Gyrokinetic approach in particle simulation, Phys. Fluids, 26 (1983), 556-562.
[30] W. W. Lee, Gyrokinetic particle simulation-model, J. Comput. Phys., 72 (1987), 243-269.
[31] W. W. Lee, J. L. V. Lewandwoski, T. S. Hahm and Z. Lin, Shear-Alfven waves in gyrokinetic

plasmas, Phys. Plasmas, 8 (2001), 4435-4400.
[32] X. S. Li and J. W. Demmel, SuperLU DIST: A scalable distributed-memory sparse direct

solver for unsymmetric linear systems, ACM T. Math. Software, 29 (2003), 110-140.
[33] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang and R. B. White, Turbulent transport reduction by

zonal flows: Massively parallel simulations, Science, 281 (1998), 1835-1837.
[34] Z. Lin and W. W. Lee, Method for solving the gyrokinetic Poisson equation in general geom-

etry, Phys. Rev. E, 52 (1995), 5646-5652.
[35] J. Mandel, M. Brezina and P. Vaněk, Energy optimization of algebraic multigrid bases, Tech.

Rep. 125, UCD/CCM, February 1998.
[36] D. Mavriplis, Directional agglomeration multigrid techniques for high-Reynolds number

viscous flows, AIAA J., 37 (1999), 1222-1230.
[37] Y. Nishmura, Z. Lin, J. Lewandowski and S. Ethier, A finite element Poisson solver for gy-

rokinetic particle simulations in a global field aligned mesh, J. Comput. Phys., 214 (2006),
657-671.

[38] Y. Nishmura and Z. Lin, A finite element mesh in a tokamak edge, Contrib. Plasm. Phys., 46
(2006), 551-556.

[39] Y. K. M. Peng, The physics of spherical torus plasmas, Phys. Plasmas, 7 (2000), 1681-1692.



M. F. Adams and Y. Nishimura / Commun. Comput. Phys., 2 (2007), pp. 881-899 899

[40] J. W. Ruge and K. Stüben, Efficient solution of finite difference and finite element equations
by algebraic multigrid (AMG), in: D. J. Paddon and H. Holstein (Eds.), Multigrid Methods
for Integral and Differential Equations, The Institute of Mathematics and its Applications
Conference Series, Clarendon Press, Oxford, 1985, pp. 169-212.

[41] B. Smith, P. Bjorstad and W. Gropp, Domain Decomposition, Cambridge University Press,
1996.

[42] C. R. Sovinec, Private communications, 2004.
[43] U. Trottenberg, C. Oosterlee and A. Schüller, Multigrid, Academic Press, London, 2001.
[44] P. Vaněk, J. Mandel and M. Brezina, Algebraic multigrid by smoothed aggregation for sec-

ond and fourth order elliptic problems, in: 7th Copper Mountain Conference on Multigrid
Methods, 1995.


