1 Gyrokinetic Poisson equation

The gyrokinetic Poisson equation

$$
\begin{equation*}
\phi-\tilde{\phi}=\frac{T_{i}}{n_{i} Z_{i}^{2}}\left(Z_{i} n_{i}-e n_{e}\right) \tag{1}
\end{equation*}
$$

Electrostatic potential and densities are decomposed into zonal and non-zonal parts

$$
\begin{aligned}
\phi & =\langle\phi\rangle+\delta \phi \\
n & =\langle n\rangle+\delta n
\end{aligned}
$$

with

$$
\langle\delta \phi\rangle=0, \quad\langle\delta n\rangle=0
$$

Decomposing potential and densities into zonal and non-zonal parts and subtracting flux-surface averaged Eq. (1) from the total one

$$
\begin{equation*}
\delta \phi-\widetilde{\delta \phi}+\langle\tilde{\phi}\rangle-\widetilde{\langle\phi\rangle}=\frac{T_{i}}{n_{i} Z_{i}^{2}}\left(Z_{i} \delta n_{i}-e \delta n_{e}\right) \tag{2}
\end{equation*}
$$

or in the long-wavelength limit

$$
\begin{equation*}
\delta \phi-\widetilde{\delta \phi}+\left(\left\langle k_{\perp}^{2} \rho_{i}^{2}\right\rangle-k_{\perp}^{2} \rho_{i}^{2}\right)\langle\phi\rangle+\left\langle k_{\perp}^{2} \rho_{i}^{2} \delta \phi\right\rangle=\frac{T_{i}}{n_{i} Z_{i}^{2}}\left(Z_{i} \delta n_{i}-e \delta n_{e}\right) \tag{3}
\end{equation*}
$$

Note, that the terms $\left(\left\langle k_{\perp}^{2} \rho_{i}^{2}\right\rangle-k_{\perp}^{2} \rho_{i}^{2}\right)\langle\phi\rangle$ and $\left\langle k_{\perp}^{2} \rho_{i}^{2} \delta \phi\right\rangle$ represent the coupling between magnetic field and $\phi_{n=0, m \neq 0}$ harmonics. Without these coupling Eq. (3) becomes

$$
\begin{equation*}
\delta \phi-\widetilde{\delta \phi}=\frac{T_{i}}{n_{i} Z_{i}^{2}}\left(Z_{i} \delta n_{i}-e \delta n_{e}\right) \tag{4}
\end{equation*}
$$

2 Zonal flow equation

The flux-surface averaged gyrokinetic Poisson equation using the Padé approximation,

$$
\begin{equation*}
\left\langle\nabla_{\perp}^{2} \phi\right\rangle=\left\langle\left[\frac{1}{\rho_{i}^{2}} \frac{T_{i}}{n_{i} Z_{i}^{2}}-\frac{T_{i}}{n_{i} Z_{i}^{2}} \nabla_{\perp}^{2}\right]\left(e n_{e}-Z_{i} n_{i}\right)\right\rangle \tag{5}
\end{equation*}
$$

The Laplacian

$$
\begin{equation*}
\nabla^{2}=\frac{1}{J} \partial_{\alpha} J g^{\alpha \beta} \partial_{\beta} \tag{6}
\end{equation*}
$$

The flux-surface averaging

$$
\begin{equation*}
\langle\phi\rangle \equiv \frac{\oint d \theta d \zeta J \phi}{\oint d \theta d \zeta J} \tag{7}
\end{equation*}
$$

Let $J(\psi)=\oint d \theta d \zeta J$, then the left-hand side of Eq. (5) becomes

$$
\begin{equation*}
\left\langle\nabla_{\perp}^{2} \phi\right\rangle=J(\psi)^{-1}\left(\partial_{\psi} J(\psi)\left\langle g^{\psi \psi}\right\rangle \partial_{\psi}\langle\phi\rangle+\partial_{\psi} J(\psi)\left\langle g^{\psi \psi} \partial_{\psi} \delta \phi\right\rangle+\partial_{\psi} J(\psi)\left\langle g^{\psi \theta} \partial_{\theta} \delta \phi\right\rangle\right) \tag{8}
\end{equation*}
$$

The ratio of the second to the first term is $\epsilon \delta \phi_{m=1} /\langle\phi\rangle \ll 1$, where ϵ is the inverse aspect ratio of the tokamak. The third term is even smaller than the second one by the factor $g^{\psi \theta} / g^{\psi \psi} \ll 1$, which is the measure of nonorthogonality of the magnetic coordinates. Thus the second and the third terms in Eq. (8) can be neglected.

Thus, the gyrokinetic Poisson equation for the zonal component of the electrostatic potential reads

$$
\begin{align*}
\partial_{\psi} J(\psi)\left\langle g^{\psi \psi}\right\rangle \partial_{\psi}\langle\phi\rangle= & {\left[\begin{array}{c}
-J(\psi)\left\langle\frac{1}{\rho_{i}^{2}}\right\rangle \frac{T_{i}}{n_{i} Z_{i}^{2}} \\
+\frac{T_{i}}{n_{i} Z_{i}^{2}} \partial_{\psi} J(\psi)\left\langle g^{\psi \psi}\right\rangle \partial_{\psi}
\end{array}\right]\left(Z_{i}\left\langle n_{i}\right\rangle-e\left\langle n_{e}\right\rangle\right) } \tag{9}\\
& +\frac{T_{i}}{n_{i} Z_{i}^{2}} J(\psi) \partial_{\psi}\left\langle g^{\psi \psi} \partial_{\psi}\left(Z_{i}\left\langle n_{i}\right\rangle-e\left\langle n_{e}\right\rangle\right)\right. \tag{10}
\end{align*}
$$

Neglecting the coupling between magnetic field and $n_{n=0, m \neq 0}$ harmonics

$$
\partial_{\psi} J(\psi)\left\langle g^{\psi \psi}\right\rangle \partial_{\psi}\langle\phi\rangle=\left[\begin{array}{c}
-J(\psi)\left\langle\frac{1}{\rho_{i}^{2}}\right\rangle \frac{T_{i}}{n_{i} Z_{i}^{2}}+ \tag{11}\\
\frac{T_{i}}{n_{i} Z_{i}^{2}} \partial_{\psi} J(\psi)\left\langle g^{\psi \psi}\right\rangle \partial_{\psi}
\end{array}\right]\left(Z_{i}\left\langle n_{i}\right\rangle-e\left\langle n_{e}\right\rangle\right) .
$$

The metric tensor element $g^{\psi \psi}=g_{\psi \psi}^{-1}$ can be found from

$$
g_{\psi \psi}=\left(\partial_{\psi} X\right)^{2}+\left(\partial_{\psi} Z\right)^{2}
$$

using the spline functions X and Z. The Eq. 11 can be further integrated as

$$
\begin{align*}
\partial_{\psi}\langle\phi\rangle= & \frac{T_{i}}{n_{i} Z_{i}^{2}} \partial_{\psi}\left(e\left\langle n_{e}\right\rangle-Z_{i}\left\langle n_{i}\right\rangle\right)-\frac{1}{J(\psi)\left\langle g^{\psi \psi \psi}\right\rangle} \tag{12}\\
& \int_{0}^{\psi} d \psi \frac{T_{i}}{n_{i} Z_{i}^{2}}\left[\begin{array}{c}
J(\psi)\left\langle\frac{1}{\rho_{i}^{2}}\right\rangle\left(Z_{i}\left\langle n_{i}\right\rangle-e\left\langle n_{e}\right\rangle\right) \\
+J(\psi)\left\langle g^{\psi \psi}\right\rangle \frac{\operatorname{dn}\left(T_{i} / n_{i}\right)}{d \psi} \partial_{\psi}\left(Z_{i}\left\langle n_{i}\right\rangle-e\left\langle n_{e}\right\rangle\right)
\end{array}\right] \tag{13}
\end{align*}
$$

