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Derive the formula for 1D Quadratic Spline with periodic boundary conditions

I. THE SPLINE PROBLEM

Suppose we have an unknown function f(x) ∈ C∞ defined on a domain [a, b] satisfying the periodic condition, i.e.

f(a) = f(b),

f [k](a) = f [k](b) (k ∈ N ),
(1)

where f [k](x) is the k-th order derivative respect to x.
And we have N samples of this function on [a, b], evenly spaced. That is, we have known the values of f(x) at N
points, f(xi) (i = 1, . . . , N), and xi+1 − xi = ∆, x1 = a, xN = b.

The C1 spline problem can be stated as:
Find a set of polynomials, Pi(x)(i = 1, . . . , N − 1) defined on sections {[xi, xi+1]}, such that within each section,

Pi(xi) = f(xi), (2)

Pi(xi+1) = f(xi+1), (3)

and the first derivatives are continuous on the connecting points,

P ′i (xi+1) = P ′i+1(xi+1), (i = 1, . . . , N − 2) (4)

with the periodic boundary condition

P ′N−1(xN ) = P ′1(x1). (5)

Note that the periodicity in the function values has already been enforced in Eq. 2 and 3 by having f(xN ) = f(x1)
as input.

It can be easily seen that Eq 2, 3, 4, and 5 pose a total 3N − 3 constraints on the set of N − 1 polynomials Pi(x).
So, they uniquely determine a set of N − 1 quadratic polynomials in the form

Pi(x) = ai + bi(x− xi) + ci(x− xi)2. (6)

For a given set of values {f(xi)}, i = 1, . . . , N , we can calculate the set of coefficients {(ai, bi, ci)}, i = 1, . . . , N − 1
based on the above stated constraints. This is our periodic quadratic spline problem.

II. GENERAL SOLUTION

Eq. 2, 3, 4, and 5 can be generally expressed as a set of linear equations for the coefficients {(ai, bi, ci)}. In fact,
the equations obtained from Eq 2 is simply

ai = fi. (7)

We’ve use the notation fi ≡ f(xi). Then, Eq 3 becomes

bi∆ + ci∆
2 = (fi+1 − fi), i ∈ {1, . . . , N − 1}, (8)

where ∆ ≡ xi+1 − xi is the step size in x.
Eq 4 can also be written out as

bi + 2ci∆ = bi+1, i ∈ {1, . . . , N − 2}, (9)

and the boundary condition Eq 5 as

bN−1 + 2cN−1∆ = b1. (10)
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We can first express ci in terms of bi’s using Eq 9 and 10, that is

ci =
bi+1 − bi

2∆
, i ∈ {1, . . . , N − 2},

cN−1 =
b1 − bN−1

2∆
.

(11)

Substitute Eq 11 into Eq 8, we finally have the equations for bi,

bi + bi+1 =
2(fi+1 − fi)

∆
, i ∈ {1, . . . , N − 2}

bN−1 + b1 =
2(fN − fN−1)

∆
.

(12)

Define

yi ≡ 2(fi+1 − fi)/∆, i ∈ {1, . . . , N − 1}, (13)

we can write Eq 12 in vector form

A
↔
·~b = ~y, (14)

where

A
↔

=


1 1 0 0 . . . 0
0 1 1 0 . . . 0
...

. . .
...

0 . . . 0 0 1 1
1 0 . . . 0 0 1

 , (15)

is a (N − 1)× (N − 1) matrix.

In general, we can invert matrix A
↔

and write

~b = A
↔−1 · ~y, (16)

given that A
↔

is invertible, i.e. det(A
↔

) 6= 0. However, in this particular case, A
↔

can be non-invertible when N is odd,

N = 2n+ 1. One can check this by seeing that the vector ~v = (1,−1, 1,−1, . . . , 1,−1)T is an eigenvector of A
↔

with 0
eigenvalue.

So, here, we’ll discuss the solution to Eq 14 using a technique that is tailored to the specific form of A
↔

, Eq 15.
To start, we sum over all the equations, and obtain
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N−1∑
i=1

bi =

N−1∑
i=1

yi. (17)

Using the definition of yi, Eq 13, and the periodicity condition on f , we can easily show that
N−1∑
i=1

yi = 0. So we have

N−1∑
i=1

bi = 0. (18)

Now, we need to differentiate the two cases, when N is odd or even.

A. N=2n+1

As discussed above, when N = 2n + 1 is odd, we can not invert A
↔

to find the solution. In fact, in this case, the
solubility condition places an additional requirement on ~y.



3

In this case, A
↔

is a 2n× 2n matrix. Sum over all the odd numbered equations gives us

2n∑
i=1

bi =

n∑
k=1

y2k−1. (19)

Using Eq 18, we have the condition

n∑
k=1

y2k−1 = 0. (20)

This is equivalent to the condition on fi,

n∑
k=1

f2k−1 =

n∑
k=1

f2k, (21)

which means the sum of function values on all odd indices must equal to the sum of those on the even indices, in
order to have a solution for bi’s. When this condition is met, there is one degree of freedom to pick, for example, b1.
A good choice of b1 can be f ′(x1) estimated using f1, f2 and f3 (See Appendix A for more details).

However, for some arbitrarily given {fi}, Eq 21 may not be satisfied. In this case, there won’t be a self-consistent
solution for bi, which means if we start with b1 = f ′(x1), and solve for all the other coefficients, using all but the
last equations in Eq 12, and Eq 11, we won’t be able to guarantee PN−1(xN ) = f(N). In general, we will either
have a discontinuity in the value, or in the first derivative of f at one node, depending on which equation we have
abandoned.

One technique that may be useful is to smoothly rescale the values at either the even nodes or the odd nodes, so
that the solubility condition, Eq 21 is satisfied.

B. N=2n

When N is even, the linear equations for bi are independent, an unique solution can be obtained.
We still sum over the odd numbered equations, but now, since the total number of equations is 2n − 1, the last

equation is included, and instead of having the summation of bi, we have an extra b1. We have

b1 =

n∑
k=1

y2k−1. (22)

Write it in terms of fi, we have

b1 =
2

∆

(
n−1∑
k=1

f2k −
n−1∑
k=1

f2k+1

)
, (23)

Starting from b1, we can obtain bi one by one using Eq 12.
One interesting question is how big the difference can be between the b1 we calculated this way and the b1 we

estimated using f1, f2 and f3. Appendix B is dedicated to answer this question.

Appendix A: Estimation of f ′(x1) using f1, f2, and f3

Since we have assumed infinite smoothness of f(x), we can Taylor expand f(x) near x1, and get:

f(x) = f1 + f ′(x1)(x− x1) +
1

2
f ′′(x1)(x− x1)2 + o

(
(x− x1)3

)
. (A1)

Evaluate it at x2, and x3, we have

f2 = f1 + f ′(x1)∆ +
1

2
f ′′(x1)∆2 + o(∆3),

f3 = f1 + 2f ′(x1)∆ + 2f ′′(x1)∆2 + o(∆3),
(A2)
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where we have used x2 = x1 + ∆, and x3 = x1 + 2∆.
In order to get f ′(x1) with second order accuracy in ∆, we need to cancel the f ′′(x1) terms. This can be easily

done by taking 4f2 − f3, i.e.

4f2 − f3 = 3f1 + 2f ′(x1)∆ + o(∆3). (A3)

So, we have

f ′(x1) =
4f2 − f3 − 3f1

2∆
+ o(∆2). (A4)

Appendix B: Difference between b1 calculated and b1 estimated

In this part, we take f(x) = exp(j2πMx) on [0, 1], where M is an integer, j ≡
√
−1 is the unit of imaginary number.

It is clear that f(x) is a periodic function on [0, 1] with infinitely smooth derivatives.
Taking N = 2n samples on [0, 1] including the two end points, is actually cutting the range into 2n− 1 sections, i.e.

xi = (i− 1)∆, i ∈ {1, 2, . . . , 2n}, (B1)

with ∆ = 1/(2n− 1).
So, the {fi} values are

fi = exp

(
j2M(i− 1)π

2n− 1

)
. (B2)

Substitute into our solution for b1, Eq 23, we have

b1 = (4n− 2)

n−1∑
k=1

[
exp

(
j2(2k − 1)Mπ

2n− 1

)
− exp

(
j4kMπ

2n− 1

)]
. (B3)

Noting that exp (j2Mπ) = 1, we have

n−1∑
k=1

exp

(
j2(2k − 1)Mπ

2n− 1

)
= − 1

1+exp(j2Mπ/(2n−1)) , (B4)

n−1∑
k=1

exp

(
j4kMπ

n

)
= − exp(j2Mπ/(2n−1))

1+exp(j2Mπ/(2n−1)) . (B5)

So, finally, we have

b1 = (4n− 2)
−1 + ej2Mπ/(2n−1)

1 + ej2Mπ/(2n−1) = j(4n− 2) tan (Mπ/(2n− 1)) . (B6)

When δ ≡Mπ/(2n− 1)� 1, we can expand the tan function, and obtain the approximated form

b1 = j2πM

(
1 +

δ2

3
+ o(δ4)

)
. (B7)

The b1 calculated using the estimation formula Eq A4 will be

be1 = (2n− 1)(4ej2δ − ej4δ − 3)/2 = j2πM

(
1 +

4δ2

3
+ o(δ3)

)
. (B8)

Both of the results agree with the analytic derivative in the leading term, but differ in the order of δ2.
We can conclude that using the estimated b1 formula, Eq B8, will result in a discontinuity in the derivative of

f at the periodic boundary with the order of magnitude δ2. In the cases that the mode number M is very small
compared to the grid points (N = 2n), the two methods should be very similar, but when some high M modes become
important, the error from the second method can be significant.


