Gyrokinetic particle simulations of reversed shear Alfvén eigenmode in nonuniform plasmas with equilibrium current

(author list pending)

Abstract

(abstract pending)

${ }_{4}$ I. INTRODUCTIONS

5 With the recent electromagnetic upgrade [1], the global gyrokinetic toroidal code (GTC) ${ }_{6}$ [2] has been successfully applied to the simulations of the toroidal Alfvén eigenmode (TAE), 7 the reversed shear Alfvén eigenmode (RSAE) [3], and the beta-induced Alfvén eigenmode 8 (BAE) [4]. In the previous formulation [1], the equilibrium current is not considered in the 9 electron continuity equation, and an s- α like (cyclone) magnetic field model is used, in which ${ }_{10}$ the equilibrium current effect $\nabla \times \boldsymbol{B}_{0}=0$, because in a lot of cases the equilibrium current ${ }_{11}$ effect is not important. We want to recover the $\nabla \times \boldsymbol{B}_{0}$ terms in the electron continuity ${ }_{12}$ equation and to build a field model with self-consistent finite $\nabla \times \boldsymbol{B}_{0}$ for completeness of the ${ }_{13}$ formulation and for the ability to study the cases where finite $\nabla \times \boldsymbol{B}_{0}$ effect is important. For ${ }_{14}$ example, the equilibrium current affects the existence condition for the RSAE [3]. Recovering 15 the equilibrium current will also enable us to simulate the internal kink mode [5]. In this ${ }_{16}$ work, only the linear effects are considered. The nonlinear effects will be discussed in a later ${ }_{17}$ work.
${ }_{18}$ We start with deriving the electron continuity equation with equilibrium current in Sec. II. ${ }_{19}$ To verify the correctness of the derivation, we show that the GTC formulation reduces to ${ }_{20}$ the ideal MHD theory in certain limits in Sec. III. For code implementation, the electron ${ }_{21}$ continuity equation with current is expressed in magnetic coordinates and normalized in ${ }_{22}$ Sec. IV. Then the field model with finite $\nabla \times \boldsymbol{B}_{0}$ is derived Sec. V. The equilibrium current ${ }_{23}$ effect on RSAE is discussed with analytic calculation and simulation results in Sec. VI. ${ }_{24}$ Finally, simulations of a real experiment, the DIII-D discharge \#142111 at 750 ms , are ${ }_{25}$ presented in Sec. VII.

${ }^{26}$ II. ELECTRON CONTINUITY EQUATION BY INTEGRATING DRIFT-KINETIC EQUATION

28 This section is to extend the electron contiuity equation Eq. (10) of Ref. [1] to include ${ }_{29}$ equilibrium current and finite $\nabla \times \boldsymbol{B}_{0}$. The drift-kinetic equation with quantities decomposed
${ }_{30}$ into equilibrium and perturbed components writes:

$$
\begin{gather*}
\left(\partial_{t}+\dot{\boldsymbol{X}} \cdot \nabla+\dot{v}_{\|} \partial_{v_{\|}}\right)\left[f_{0}\left(\boldsymbol{X}, \mu, v_{\|}\right)+\delta f\left(\boldsymbol{X}, \mu, v_{\|}, t\right)\right]=0, \tag{1}\\
\dot{\boldsymbol{X}}=v_{\|} \frac{\boldsymbol{B}_{0}+\delta \boldsymbol{B}}{B_{0}}+\underbrace{\frac{c \boldsymbol{b}_{0} \times \nabla \phi}{B_{0}}}_{\boldsymbol{v}_{E}}+\underbrace{\frac{v_{\|}^{2}}{\Omega} \nabla \times \boldsymbol{b}_{0}}_{\boldsymbol{v}_{c}}+\underbrace{\frac{\mu}{m \Omega} \boldsymbol{b}_{0} \times \nabla B_{0}}_{\boldsymbol{v}_{g}}, \tag{2}\\
\dot{v}_{\|}=-\frac{1}{m} \frac{\boldsymbol{B}_{0}+\frac{B_{0} v_{\|}}{\Omega} \nabla \times \boldsymbol{b}_{0}+\delta \boldsymbol{B}}{B_{0}} \cdot\left(\mu \nabla B_{0}+Z \nabla \phi\right)-\frac{Z}{m c} \partial_{t} A_{\|} . \tag{3}
\end{gather*}
$$

${ }_{31}$ Assuming no equilibrium electric field $\left(\phi_{0}=0\right)$, and the equilibrium magnetic field is time${ }_{32}$ independent $\left(\partial_{t} A_{\| 0}=0\right)$, we can make such substitutions:

$$
\begin{equation*}
\phi \rightarrow \delta \phi, \quad \partial_{t} A_{\|} \rightarrow \partial_{t} \delta A_{\|} \tag{4}
\end{equation*}
$$

${ }_{33}$ Integrating Eq. (1) over the guiding center velocity space:

$$
\begin{equation*}
\int_{\mathrm{GC}} \mathrm{~d} \boldsymbol{v}=\frac{2 \pi B_{0}}{m} \int \mathrm{~d} \mu \mathrm{~d} v_{\|} \tag{5}
\end{equation*}
$$

${ }_{34}$ we get an equilibrium equation:

$$
\begin{equation*}
\boldsymbol{B}_{0} \cdot \nabla\left(\frac{n_{0} u_{\| 0}}{B_{0}}\right)+\frac{c \nabla \times \boldsymbol{b}_{0}}{Z} \cdot \nabla\left(\frac{P_{\| 0}}{B_{0}}\right)+\frac{c \boldsymbol{b}_{0} \times \nabla B_{0}}{Z} \cdot \nabla\left(\frac{P_{\perp 0}}{B_{0}^{2}}\right)+\frac{c \nabla \times \boldsymbol{b}_{0} \cdot \nabla B_{0}}{Z B_{0}^{2}} P_{\perp 0}=0 \tag{6}
\end{equation*}
$$

${ }_{35}$ and an linear equation:

$$
\begin{align*}
0= & \partial_{t} \delta n+\delta \boldsymbol{B} \cdot \nabla\left(\frac{n_{0} u_{\| 0}}{B_{0}}\right)+B_{0} \boldsymbol{v}_{E} \cdot \nabla\left(\frac{n_{0}}{B_{0}}\right)+\boldsymbol{B}_{0} \cdot \nabla\left(\frac{n_{0} \delta u_{\|}}{B_{0}}\right) \\
& +\frac{c \nabla \times \boldsymbol{b}_{0}}{Z} \cdot \nabla\left(\frac{\delta P_{\|}}{B_{0}}\right)+\frac{c \boldsymbol{b}_{0} \times \nabla B_{0}}{Z} \cdot \nabla\left(\frac{\delta P_{\perp}}{B_{0}^{2}}\right)+\frac{c \nabla \times \boldsymbol{b}_{0} \cdot \nabla B_{0}}{Z B_{0}^{2}} \delta P_{\perp} \\
& +\frac{c \nabla \times \boldsymbol{b}_{0}}{B_{0}} \cdot n_{0} \nabla \delta \phi \tag{7}\\
= & \partial_{t} \delta n+\delta \boldsymbol{B} \cdot \nabla\left(\frac{n_{0} u_{\| 0}}{B_{0}}\right)+\boldsymbol{B}_{0} \cdot \nabla\left(\frac{n_{0} \delta u_{\|}}{B_{0}}\right)+B_{0} \boldsymbol{v}_{E} \cdot \nabla\left(\frac{n_{0}}{B_{0}}\right) \\
& -n_{0}\left(\delta \boldsymbol{v}_{*}+\boldsymbol{v}_{E}\right) \cdot \frac{\nabla B_{0}}{B_{0}}+\frac{c \nabla \times \boldsymbol{B}_{0}}{Z B_{0}^{2}} \cdot \nabla \delta P_{\|}+\frac{c \nabla \times \boldsymbol{B}_{0} \cdot \nabla B_{0}}{Z B_{0}^{3}}\left(\delta P_{\perp}-\delta P_{\|}\right) \\
& +n_{0} \frac{c \nabla \times \boldsymbol{B}_{0}}{B_{0}^{2}} \cdot \nabla \delta \phi, \tag{8}
\end{align*}
$$

36 where

$$
\begin{equation*}
\delta \boldsymbol{v}_{*}=\frac{c}{n_{0} Z B_{0}} \boldsymbol{b}_{0} \times \nabla\left(\delta P_{\perp}+\delta P_{\|}\right) \tag{9}
\end{equation*}
$$

${ }_{37}$ is the perturbed diamagnetic drift. Apply this equation to the electrons $\left(Z_{e}=-e\right)$:

$$
\begin{align*}
0= & \partial_{t} \delta n_{e}+\delta \boldsymbol{B} \cdot \nabla\left(\frac{n_{0 e} u_{\| 0 e}}{B_{0}}\right)+B_{0} \boldsymbol{v}_{E} \cdot \nabla\left(\frac{n_{0 e}}{B_{0}}\right)+\boldsymbol{B}_{0} \cdot \nabla\left(\frac{n_{0 e} \delta u_{\| e}}{B_{0}}\right) \\
& -\frac{c \nabla \times \boldsymbol{b}_{0}}{e} \cdot \nabla\left(\frac{\delta P_{\| e}}{B_{0}}\right)-\frac{c \boldsymbol{b}_{0} \times \nabla B_{0}}{e} \cdot \nabla\left(\frac{\delta P_{\perp e}}{B_{0}^{2}}\right)-\frac{c \nabla \times \boldsymbol{b}_{0} \cdot \nabla B_{0}}{e B_{0}^{2}} \delta P_{\perp e} \\
& +\frac{c \nabla \times \boldsymbol{b}_{0}}{B_{0}} \cdot n_{0 e} \nabla \delta \phi \tag{10}\\
= & \partial_{t} \delta n_{e}+\delta \boldsymbol{B} \cdot \nabla\left(\frac{n_{0 e} u_{\| 0 e}}{B_{0}}\right)+\boldsymbol{B}_{0} \cdot \nabla\left(\frac{n_{0 e} \delta u_{\| e}}{B_{0}}\right)+B_{0} \boldsymbol{v}_{E} \cdot \nabla\left(\frac{n_{0 e}}{B_{0}}\right) \\
& -n_{0 e}\left(\delta \boldsymbol{v}_{* e}+\boldsymbol{v}_{E}\right) \cdot \frac{\nabla B_{0}}{B_{0}} \\
& +\frac{c \nabla \times \boldsymbol{B}_{0}}{B_{0}^{2}} \cdot\left[-\frac{\nabla \delta P_{\| e}}{e}-\frac{\left(\delta P_{\perp e}-\delta P_{\| e}\right) \nabla B_{0}}{e B_{0}}+n_{0 e} \nabla \delta \phi\right] . \tag{11}
\end{align*}
$$

${ }_{38}$ The second and the last term in Eq. (8) are new terms introduced by the equilibrium current ${ }_{39}$ and finite $\nabla \times \boldsymbol{B}_{0}$. Other terms are identical to those in Eq. (10) of Ref. [1].
${ }_{40}$ III. REDUCTION OF GYROKINETIC FORMULATION TO IDEAL MHD
${ }_{41}$ In this section, we prove that with appropriate approximations, the gyrokinetic formula${ }_{42}$ tion [1] reduces to the ideal MHD theory [6].

A. Reduction of the field equations

${ }_{44}$ Gyrokinetic Poisson's equation [7] with two ion species:

$$
\begin{equation*}
\frac{Z_{i}^{2} n_{i}}{T_{i}}\left(\delta \phi-\delta \tilde{\phi}_{i}\right)+\frac{Z_{f}^{2} n_{f}}{T_{f}}\left(\delta \phi-\delta \tilde{\phi}_{f}\right)=\sum_{\alpha=i, f, e} Z_{\alpha} \delta n_{\alpha} \tag{12}
\end{equation*}
$$

${ }_{45}$ where for the ion species $(\alpha=i, f)[8]$,

$$
\begin{align*}
& \delta \tilde{\phi}_{\alpha}(\boldsymbol{x}, t)=\frac{1}{n_{\alpha}} \int_{\boldsymbol{X} \rightarrow \boldsymbol{x}} \mathrm{d} \boldsymbol{v} f_{\alpha}\left(\boldsymbol{X}, \mu, v_{\|}, t\right)\langle\delta \phi\rangle(\boldsymbol{X}, t) \tag{13}\\
& \delta n_{\alpha}(\boldsymbol{x}, t)=\int_{\boldsymbol{X} \rightarrow \boldsymbol{x}} \mathrm{d} \boldsymbol{v} \delta f_{\alpha}\left(\boldsymbol{X}, \mu, v_{\|}, t\right) \tag{14}
\end{align*}
$$

${ }_{46}$ and the integral symbol here is short for the integral over the guiding center velocity space ${ }_{47}$ and the transformation between the guiding center and the particle coordinates:

$$
\begin{equation*}
\int_{\boldsymbol{X} \rightarrow \boldsymbol{x}} \mathrm{d} \boldsymbol{v} \equiv \int \frac{2 \pi B_{0}}{m} \mathrm{~d} \mu \mathrm{~d} v_{\|} \int \frac{\mathrm{d} \vartheta_{c}}{2 \pi} \mathrm{~d} \boldsymbol{X} \delta(\boldsymbol{X}+\boldsymbol{\rho}-\boldsymbol{x}), \tag{15}
\end{equation*}
$$

${ }_{48}$ and ϑ_{c} is the gyro-phase angle. From Eq. (15) it can be seen that the first part of the ${ }_{49}$ integral, which is over the guiding center velocity space, is the same as $\int_{G C} \mathrm{~d} \boldsymbol{v}$ defined in ${ }_{50}$ Eq. (5). The second part of the integral, which is the transformation between the guiding ${ }_{51}$ center coordinates and the particle coordinates, gives an operator $\mathfrak{J}_{0}\left(k_{\perp} \rho\right)$, where $\mathfrak{J}_{0}()$ is the ${ }_{52}$ Bessel function. In the GTC, this $\mathfrak{J}_{0}\left(k_{\perp} \rho\right)$ is reflected in the charge scattering from each ${ }_{53}$ particle's guiding center to its gyro-orbit when collecting charges from the particles. Note ${ }_{54}$ that the gyro-averaging on the perturbed field quantities also gives an operator $\mathfrak{J}_{0}\left(k_{\perp} \rho\right)$:

$$
\begin{equation*}
\langle\delta \phi\rangle=\mathfrak{J}_{0}\left(k_{\perp} \rho\right) \delta \phi . \tag{16}
\end{equation*}
$$

${ }_{55}$ In the case of $k_{\perp} \rho_{i, f}<1$, we can expand the \mathfrak{J}_{0}^{2} operator and keep terms up to $O\left(k_{\perp}^{2} \rho^{2}\right)$.

$$
\begin{align*}
\mathfrak{J}_{0}^{2}\left(k_{\perp} \rho_{\alpha}\right) & =\mathfrak{J}_{0}^{2}\left(k_{\perp} \frac{\sqrt{2 \mu B_{0} / m_{\alpha}}}{\Omega_{\alpha}}\right) \\
& \approx 1-\frac{\mu m_{\alpha} c^{2}}{Z_{\alpha}^{2} B_{0}} k_{\perp}^{2} \\
& =1+\frac{\mu m_{\alpha} c^{2}}{Z_{\alpha}^{2} B_{0}} \nabla_{\perp}^{2} \tag{17}
\end{align*}
$$

${ }_{56}$ Assume that the equilibrium distribution is a shifted Maxwellian for both ion species:

$$
\begin{equation*}
f_{0 \alpha}=\frac{n_{0 \alpha}}{\left(2 \pi v_{t h, \alpha}\right)^{3 / 2}} \exp \left[\frac{-\left(v_{\|}-u_{\| 0 \alpha}\right)^{2}-\frac{2 \mu B_{0}}{m_{\alpha}}}{2 v_{t h, \alpha}^{2}}\right] \quad \alpha=i, f, \tag{18}
\end{equation*}
$$

${ }_{57}$ where $v_{t h, \alpha}=\sqrt{T_{\alpha} / m_{\alpha}}$ is the ion thermal velocity. Then in the linear limit, $\delta \tilde{\phi}_{\alpha}$ becomes:

$$
\begin{align*}
\delta \tilde{\phi}_{\alpha} & =\frac{1}{n_{0 \alpha}} \int_{\mathrm{GC}} \mathrm{~d} \boldsymbol{v} \mathfrak{J}_{0}^{2}\left(k_{\perp} \rho_{\alpha}\right) \delta \phi f_{0 \alpha} \\
& \approx \frac{1}{n_{0 \alpha}} \int_{\mathrm{GC}} \mathrm{~d} \boldsymbol{v} f_{0 \alpha}\left(1+\frac{\mu m_{\alpha} c^{2}}{Z_{\alpha}^{2} B_{0}} \nabla_{\perp}^{2}\right) \delta \phi \\
& =\delta \phi+\frac{m_{\alpha} c^{2} T_{\alpha}}{Z_{i}^{2} B_{0}^{2}} \nabla_{\perp}^{2} \delta \phi \tag{19}
\end{align*}
$$

${ }_{58}$ Then Eq. (12) reduces to:

$$
\begin{align*}
& \sum_{\alpha=i, f, e} Z_{\alpha} \delta n_{\alpha} \\
= & \frac{Z_{i}^{2} n_{i}}{T_{i}}\left(\delta \phi-\delta \tilde{\phi}_{i}\right)+\frac{Z_{f}^{2} n_{f}}{T_{f}}\left(\delta \phi-\delta \tilde{\phi}_{f}\right) \\
\approx & -\frac{\left(n_{0 i} m_{i}+n_{0 f} m_{f}\right) c^{2}}{B_{0}^{2}} \nabla_{\perp}^{2} \delta \phi \\
= & -\frac{c^{2}}{4 \pi v_{A}^{2}} \nabla_{\perp}^{2} \delta \phi \tag{20}
\end{align*}
$$

59 where

$$
\begin{equation*}
v_{A}^{2}=\frac{B_{0}^{2}}{4 \pi\left(n_{i 0} m_{i}+n_{f 0} m_{f}\right)} . \tag{21}
\end{equation*}
$$

${ }_{60}$ Note that if the fast ion distribution is not a (shifted) Maxwellian and its density is compa${ }_{61}$ rable to the thermal ion density, this reduction may not be valid.

62 The parallel gyrokinetic Ampère's law writes:

$$
\begin{equation*}
\frac{c}{4 \pi} \boldsymbol{b}_{0} \cdot \nabla \times\left[\nabla \times\left(\delta A_{\|} \boldsymbol{b}_{0}\right)\right] \boldsymbol{b}_{0}=\sum_{\alpha=i, f, e} \delta \boldsymbol{J}_{\| \alpha} \tag{22}
\end{equation*}
$$

${ }_{63}$ where the vector potential has only the parallel component $\delta A_{\|}\left(\delta B_{\|}=0\right.$ limit $)$, and

$$
\begin{equation*}
\delta J_{\| \alpha}(\boldsymbol{x}, t)=\int_{\boldsymbol{X} \rightarrow \boldsymbol{x}} \mathrm{d} \boldsymbol{v} Z_{\alpha} v_{\|} \delta f_{\alpha}\left(\boldsymbol{X}, \mu, v_{\|}, t\right) \quad \alpha=i, f \tag{23}
\end{equation*}
$$

${ }_{64}$ For electrons, the particle position and the guiding center position are not distinguished ${ }_{65}$ because of their small gyro-radii $\left(k_{\perp} \rho_{e} \ll 1\right)$, so their density and current are simply just:

$$
\begin{align*}
\delta n_{e} & =\int_{\mathrm{GC}} \mathrm{~d} \boldsymbol{v} \delta f_{e} \tag{24}\\
\delta J_{\| e} & =-e \int_{\mathrm{GC}} \mathrm{~d} \boldsymbol{v} v_{\|} \delta f_{e} \tag{25}
\end{align*}
$$

${ }_{66}$ which are described by the electron continuity equation Eq. (11).
${ }_{67}$ In the ideal MHD limit, $\delta E_{\|}=0$, and as a result:

$$
\begin{equation*}
\partial_{t} \delta A_{\|}=-c \boldsymbol{b}_{0} \cdot \nabla \delta \phi \tag{26}
\end{equation*}
$$

${ }_{68}$ Combine Eq. (20), Eq. (22), and Eq. (26) and take the linear normal mode theory sub${ }_{69}$ stitution $\partial_{t} \rightarrow-i \omega$ and $\boldsymbol{b}_{0} \cdot \nabla \rightarrow i k_{\|}$to get the reduced field equation:

$$
\begin{array}{r}
\frac{\omega^{2}}{v_{A}^{2}} \nabla_{\perp}^{2} \delta \phi-i \boldsymbol{B}_{0} \cdot \nabla\left\{\frac{\boldsymbol{b}_{0} \cdot \nabla \times\left[\nabla \times\left(k_{\|} \delta \phi \boldsymbol{b}_{0}\right)\right]}{B_{0}}\right\} \\
+i \omega \frac{4 \pi}{c^{2}} \sum_{\alpha}\left(-i \omega Z_{\alpha} \delta n_{\alpha}+\nabla \cdot \delta \boldsymbol{J}_{\| \alpha}\right)=0 \tag{27}
\end{array}
$$

B. Reduction of the ion equation

${ }_{71}$ To obtain an equation describing δn_{α} and $\delta J_{\| \alpha}$ for both ion species $(\alpha=i, f)$, we operate ${ }^{72} \int_{\boldsymbol{X} \rightarrow \boldsymbol{x}} \mathrm{d} \boldsymbol{v}$ on the gyrokinetic equation, which is used to describe the ions in the GTC. The
${ }_{73}$ gyrokinetic equation is the same as the drift-kinetic equation Eq. (1), except that the field ${ }_{74}$ quantities are gyro-averaged in the gyrokinetic equation:

$$
\begin{gather*}
\left(\partial_{t}+\dot{\boldsymbol{X}} \cdot \nabla+\dot{v}_{\|} \partial_{v_{\|}}\right)\left[f_{0}\left(\boldsymbol{X}, \mu, v_{\|}\right)+\delta f\left(\boldsymbol{X}, \mu, v_{\|}, t\right)\right]=0 \tag{28}\\
\dot{\boldsymbol{X}}=v_{\|} \frac{\boldsymbol{B}_{0}+\langle\delta \boldsymbol{B}\rangle}{B_{0}}+\underbrace{\frac{c \boldsymbol{b}_{0} \times \nabla\langle\delta \phi\rangle}{B_{0}}}_{\left\langle\boldsymbol{v}_{E}\right\rangle}+\underbrace{\frac{v_{\|}^{2}}{\Omega} \nabla \times \boldsymbol{b}_{0}}_{\boldsymbol{v}_{c}}+\underbrace{\frac{\mu}{m \Omega} \boldsymbol{b}_{0} \times \nabla B_{0}}_{\boldsymbol{v}_{g}}, \tag{29}\\
\dot{v}_{\|}=-\frac{1}{m} \frac{\boldsymbol{B}_{0}+\frac{B_{0} v_{\|}}{\Omega} \nabla \times \boldsymbol{b}_{0}+\langle\delta \boldsymbol{B}\rangle}{B_{0}} \cdot\left(\mu \nabla B_{0}+Z \nabla\langle\delta \phi\rangle\right)-\frac{Z}{m c} \partial_{t}\left\langle\delta A_{\|}\right\rangle . \tag{30}
\end{gather*}
$$

${ }_{75}$ Similar to Eq. (16), the gyro-averaging gives a $\mathfrak{J}_{0}\left(k_{\perp} \rho\right)$ operator:

$$
\begin{align*}
\langle\delta \boldsymbol{B}\rangle & =\mathfrak{J}_{0}\left(k_{\perp} \rho\right) \delta \boldsymbol{B} \tag{31}\\
\left\langle\delta A_{\|}\right\rangle & =\mathfrak{J}_{0}\left(k_{\perp} \rho\right) \delta A_{\|} \tag{32}
\end{align*}
$$

${ }_{76}$ Integrating the gyrokinetic equation in the linear limit gives:

$$
\begin{align*}
0= & \int_{\boldsymbol{X} \rightarrow \boldsymbol{x}} \mathrm{d} \boldsymbol{v}\left(\partial_{t}+\dot{\boldsymbol{X}} \cdot \nabla+\dot{v}_{\|} \partial_{v_{\|}}\right)\left(f_{0 \alpha}+\delta f_{\alpha}\right) \\
= & \boldsymbol{B}_{0} \cdot \nabla\left(\frac{n_{0 \alpha} u_{\| 0 \alpha}}{B_{0}}\right)+\frac{c \nabla \times \boldsymbol{b}_{0}}{Z_{\alpha}} \cdot \nabla\left(\frac{P_{\| 0 \alpha}}{B_{0}}\right)+\frac{c \boldsymbol{b}_{0} \times \nabla B_{0}}{Z_{\alpha}} \cdot \nabla\left(\frac{P_{\perp 0 \alpha}}{B_{0}^{2}}\right)+\frac{c \nabla \times \boldsymbol{b}_{0} \cdot \nabla B_{0}}{Z_{\alpha} B_{0}^{2}} P_{\perp 0 \alpha} \\
& +\partial_{t} \delta n_{\alpha}+\delta \boldsymbol{B} \cdot \nabla\left(\frac{n_{0 \alpha} u_{\| 0 \alpha}}{B_{0}}\right)+B_{0} \boldsymbol{v}_{E} \cdot \nabla\left(\frac{n_{0 \alpha}}{B_{0}}\right)+\boldsymbol{B}_{0} \cdot \nabla\left(\frac{n_{0 \alpha} \delta u_{\| \alpha}}{B_{0}}\right) \\
& +\frac{c \nabla \times \boldsymbol{b}_{0}}{Z_{\alpha}} \cdot \nabla\left(\frac{\delta P_{\| \alpha}}{B_{0}}\right)+\frac{c \boldsymbol{b}_{0} \times \nabla B_{0}}{Z_{\alpha}} \cdot \nabla\left(\frac{\delta P_{\perp \alpha}}{B_{0}^{2}}\right)+\frac{c \nabla \times \boldsymbol{b}_{0} \cdot \nabla B_{0}}{Z_{\alpha} B_{0}^{2}} \delta P_{\perp \alpha} \\
& +\frac{c \nabla \times \boldsymbol{b}_{0}}{B_{0}} \cdot n_{0 \alpha} \nabla \delta \phi+\frac{m_{\alpha} c^{2}}{Z_{\alpha}^{2} B_{0}}\left(\nabla_{\perp}^{2} \delta \boldsymbol{B}\right) \cdot \nabla\left(\frac{P_{0 \alpha} u_{\| 0 \alpha}}{B_{0}^{2}}\right)-\frac{m_{\alpha} c^{3} \boldsymbol{b}_{0} \times \nabla P_{0 \alpha}}{Z_{\alpha}^{2} B_{0}^{2}} \cdot \nabla \frac{\nabla_{\perp}^{2} \delta \phi}{B_{0}} \\
& +\frac{m_{\alpha} c^{3} P_{0 \alpha}\left(3 \boldsymbol{b}_{0} \times \nabla B_{0}+\nabla \times \boldsymbol{B}_{0}\right)}{Z_{\alpha}^{2} B_{0}^{3}} \cdot \nabla \frac{\nabla_{\perp}^{2} \delta \phi}{B_{0}} . \tag{33}
\end{align*}
$$

${ }_{77}$ This equation can be separated into the equilibrium equation:

$$
\begin{equation*}
\boldsymbol{B}_{0} \cdot \nabla\left(\frac{n_{0 \alpha} u_{\| 0 \alpha}}{B_{0}}\right)+\frac{c \nabla \times \boldsymbol{b}_{0}}{Z_{\alpha}} \cdot \nabla\left(\frac{P_{\| 0 \alpha}}{B_{0}}\right)+\frac{c \boldsymbol{b}_{0} \times \nabla B_{0}}{Z_{\alpha}} \cdot \nabla\left(\frac{P_{\perp 0 \alpha}}{B_{0}^{2}}\right)+\frac{c \nabla \times \boldsymbol{b}_{0} \cdot \nabla B_{0}}{Z_{\alpha} B_{0}^{2}} P_{\perp 0 \alpha}=0 \tag{34}
\end{equation*}
$$

78 and the linear equation:

$$
\begin{align*}
0= & \partial_{t} \delta n_{\alpha}+\delta \boldsymbol{B} \cdot \nabla\left(\frac{n_{0 \alpha} u_{\| 0 \alpha}}{B_{0}}\right)+B_{0} \boldsymbol{v}_{E} \cdot \nabla\left(\frac{n_{0 \alpha}}{B_{0}}\right)+\boldsymbol{B}_{0} \cdot \nabla\left(\frac{n_{0 \alpha} \delta u_{\| \alpha}}{B_{0}}\right) \\
& +\frac{c \nabla \times \boldsymbol{b}_{0}}{Z_{\alpha}} \cdot \nabla\left(\frac{\delta P_{\| \alpha}}{B_{0}}\right)+\frac{c \boldsymbol{b}_{0} \times \nabla B_{0}}{Z_{\alpha}} \cdot \nabla\left(\frac{\delta P_{\perp \alpha}}{B_{0}^{2}}\right)+\frac{c \nabla \times \boldsymbol{b}_{0} \cdot \nabla B_{0}}{Z_{\alpha} B_{0}^{2}} \delta P_{\perp \alpha} \\
& +\frac{c \nabla \times \boldsymbol{b}_{0}}{B_{0}} \cdot n_{0 \alpha} \nabla \delta \phi+\underbrace{\frac{m_{\alpha} c^{2}}{Z_{\alpha}^{2} B_{0}}\left(\nabla_{\perp}^{2} \delta \boldsymbol{B}\right) \cdot \nabla\left(\frac{P_{0 \alpha} u_{\| 0 \alpha}}{B_{0}^{2}}\right)}_{\{i\}} \underbrace{-\frac{m_{\alpha} c^{3} \boldsymbol{b}_{0} \times \nabla P_{0 \alpha}}{Z_{\alpha}^{2} B_{0}^{2}} \cdot \nabla \frac{\nabla_{\perp}^{2} \delta \phi}{B_{0}}}_{\{i i i\}} \\
& \underbrace{\frac{m_{\alpha} c^{3} P_{0 \alpha}\left(3 \boldsymbol{b}_{0} \times \nabla B_{0}+\nabla \times \boldsymbol{B}_{0}\right)}{Z_{\alpha}^{2} B_{0}^{3}} \cdot \nabla \frac{\nabla_{\perp}^{2} \delta \phi}{B_{0}}}_{\{3} . \tag{35}
\end{align*}
$$

${ }_{79}$ These two equations are the same as those of the electrons Eqs. (6) and (8) except for the ${ }_{80}$ last three terms in Eq. (35), which are introduced by the ion finite Larmor radius (FLR) ${ }_{81}$ effects. In the $k_{\perp} L_{B_{0}} \sim k_{\perp} R_{0} \gg 1$ limit, the term $\{i i\}$ becomes:

$$
\begin{align*}
\{i i\} & \approx-\frac{m_{\alpha} c^{2} n_{0 \alpha}}{Z_{\alpha} B_{0}^{2}} \frac{c \boldsymbol{b}_{0} \times \nabla P_{0 \alpha}}{Z_{\alpha} B_{0} n_{0 \alpha}} \cdot \nabla \nabla_{\perp}^{2} \delta \phi \\
& =-\frac{m_{\alpha} c^{2} n_{0 \alpha}}{Z_{\alpha} B_{0}^{2}} \boldsymbol{v}_{* \alpha} \cdot \nabla \nabla_{\perp}^{2} \delta \phi, \tag{36}
\end{align*}
$$

${ }_{82}$ where

$$
\begin{equation*}
\boldsymbol{v}_{* \alpha}=\frac{c \boldsymbol{b}_{0} \times \nabla P_{0 \alpha}}{Z_{\alpha} B_{0} n_{0 \alpha}} \tag{37}
\end{equation*}
$$

${ }_{83}$ For the thermal ion species, this term is responsible for producing the kinetic ballooning ${ }_{84}$ mode [9]. We compare the ordering of this term with the other two FLR terms:

$$
\begin{align*}
O\left(\frac{\{i i i\}}{\{i i\}}\right) & \sim \frac{L_{P_{0 \alpha}}}{L_{B_{0}}} \tag{38}\\
O\left(\frac{\{i\}}{\{i i\}}\right) & \sim \frac{k_{\|} u_{\| 0 \alpha}}{\omega}\left(1+\frac{L_{P_{0 \alpha}}}{L_{u_{\| 0 \alpha}}}-2 \frac{L_{P_{0_{0}}}}{L_{B_{0}}}\right) . \tag{39}
\end{align*}
$$

${ }_{85}$ In the case of $L_{P_{0 \alpha}}<L_{B_{0}}, L_{P_{0 \alpha}} \lesssim L_{u_{\| 0 \alpha}}$, and $k_{\| \|} u_{\| 0 \alpha} \ll \omega$, the terms $\{i\}$ and $\{i i i\}$ are not ${ }_{86}$ important and can be dropped. Keeping term $\{i i\}$ as the only FLR effect, the ion continuity
${ }_{87}$ equation reforms to be:

$$
\begin{align*}
& Z_{\alpha} \partial_{t} \delta n_{\alpha}+\boldsymbol{B}_{0} \cdot \nabla\left(\frac{Z_{\alpha} n_{0 \alpha} \delta u_{\| \alpha}}{B_{0}}\right) \\
= & -i \omega Z_{\alpha} \delta n_{\alpha}+\nabla \cdot \delta \boldsymbol{J}_{\| \alpha} \\
\approx & -\delta \boldsymbol{B} \cdot \nabla\left(\frac{J_{\| 0 \alpha}}{B_{0}}\right)-B_{0} \boldsymbol{v}_{E} \cdot \nabla\left(\frac{Z_{\alpha} n_{0 \alpha}}{B_{0}}\right)+\frac{m_{\alpha} c^{2} n_{0 \alpha}}{B_{0}^{2}} \boldsymbol{v}_{* \alpha} \cdot \nabla \nabla_{\perp}^{2} \delta \phi \\
& -c \nabla \times \boldsymbol{b}_{0} \cdot \nabla\left(\frac{\delta P_{\| \alpha}}{B_{0}}\right)-c \boldsymbol{b}_{0} \times \nabla B_{0} \cdot \nabla\left(\frac{\delta P_{\perp \alpha}}{B_{0}^{2}}\right)-\frac{c \nabla \times \boldsymbol{b}_{0} \cdot \nabla B_{0}}{B_{0}^{2}} \delta P_{\perp \alpha} \\
& -\frac{c \nabla \times \boldsymbol{b}_{0}}{B_{0}} \cdot Z_{\alpha} n_{0 \alpha} \nabla \delta \phi . \tag{40}
\end{align*}
$$

C. Combine the reduced equations

89 The electron continuity equation Eq. (10) reforms to be:

$$
\begin{align*}
& -e \partial_{t} \delta n_{e}-\boldsymbol{B}_{0} \cdot \nabla\left(\frac{e n_{\alpha 0} \delta u_{\alpha \|}}{B_{0}}\right) \\
= & i \omega e \delta n_{e}+\nabla \cdot \delta \boldsymbol{J}_{\| e} \\
= & -\delta \boldsymbol{B} \cdot \nabla\left(\frac{J_{\| 0 e}}{B_{0}}\right)+B_{0} \boldsymbol{v}_{E} \cdot \nabla\left(\frac{e n_{0 e}}{B_{0}}\right) \\
& -c \nabla \times \boldsymbol{b}_{0} \cdot \nabla\left(\frac{\delta P_{\| e}}{B_{0}}\right)-c \boldsymbol{b}_{0} \times \nabla B_{0} \cdot \nabla\left(\frac{\delta P_{\perp e}}{B_{0}^{2}}\right)-\frac{c \nabla \times \boldsymbol{b}_{0} \cdot \nabla B_{0}}{B_{0}^{2}} \delta P_{\perp e} \\
& +\frac{c \nabla \times \boldsymbol{b}_{0}}{B_{0}} \cdot e n_{0 e} \nabla \delta \phi . \tag{41}
\end{align*}
$$

${ }_{90}$ Plug Eqs. (41) and (40) into Eq. (27), and consider Eq. (21), quasi-neutrality $\sum_{\alpha} Z_{\alpha} n_{\alpha 0}=0$ ${ }_{91}$ and Ampère's law for equilibrium $\sum_{\alpha} J_{\alpha \| 0}=\frac{c}{4 \pi} \boldsymbol{b}_{0} \cdot \nabla \times \boldsymbol{B}_{0}$, we get:

$$
\begin{align*}
0= & \frac{\omega\left(\omega-\omega_{* P}\right)}{v_{A}^{2}} \nabla_{\perp}^{2} \delta \phi-i \boldsymbol{B}_{0} \cdot \nabla\left\{\frac{\boldsymbol{b}_{0} \cdot \nabla \times\left[\nabla \times\left(k_{\|} \delta \phi \boldsymbol{b}_{0}\right)\right]}{B_{0}}\right\} \\
& -\frac{i \omega}{c} \delta \boldsymbol{B} \cdot \nabla\left(\frac{\boldsymbol{b}_{0} \cdot \nabla \times \boldsymbol{B}_{0}}{B_{0}}\right) \\
& -i \omega \frac{4 \pi}{c}\left[\nabla \times \boldsymbol{b}_{0} \cdot \nabla\left(\frac{\delta P_{\|}}{B_{0}}\right)+\boldsymbol{b}_{0} \times \nabla B_{0} \cdot \nabla\left(\frac{\delta P_{\perp}}{B_{0}^{2}}\right)+\frac{\nabla \times \boldsymbol{b}_{0} \cdot \nabla B_{0}}{B_{0}^{2}} \delta P_{\perp}\right], \tag{42}
\end{align*}
$$

${ }_{92}$ where $\delta P_{\|}=\sum_{\alpha} \delta P_{\alpha \|}, \delta P_{\perp}=\sum_{\alpha} \delta P_{\alpha \perp}$, and

$$
\begin{align*}
\omega_{* P} & =-i \boldsymbol{v}_{*} \cdot \nabla, \tag{43}\\
\boldsymbol{v}_{*} & =\frac{n_{0 i} m_{i} \boldsymbol{v}_{* i}+n_{0 f} m_{f} \boldsymbol{v}_{* f}}{n_{0 i} m_{i}+n_{0 f} m_{f}} . \tag{44}
\end{align*}
$$

${ }_{93}$ Now the first three terms of Eq. (42) match those of the MHD equation [6]. The last 94 term, i.e., the pressure term, needs more analysis.

D. The pressure term mismatch is negligible

${ }_{96}$ For comparison convenience, we write down the pressure terms (with the $-i \omega 4 \pi / c$ coef${ }_{97}$ ficients removed) from the two different approaches:

$$
\begin{align*}
\mathrm{PT}_{\mathrm{MHD}}= & \nabla \cdot\left(\frac{\boldsymbol{b}_{0}}{B_{0}} \times \nabla \cdot \delta \mathbb{P}\right), \tag{45}\\
\mathrm{PT}_{\mathrm{GK}}= & \nabla \times \boldsymbol{b}_{0} \cdot \nabla\left(\frac{\delta P_{\|}}{B_{0}}\right)+\boldsymbol{b}_{0} \times \nabla B_{0} \cdot \nabla\left(\frac{\delta P_{\perp}}{B_{0}^{2}}\right)+\frac{\nabla \times \boldsymbol{b}_{0} \cdot \nabla B_{0}}{B_{0}^{2}} \delta P_{\perp} \\
= & \frac{\boldsymbol{b}_{0} \times \nabla B_{0}}{B_{0}^{2}} \cdot \nabla\left(\delta P_{\perp}+\delta P_{\|}\right)+\frac{\nabla \times \boldsymbol{B}_{0}}{B_{0}^{2}} \cdot \nabla \delta P_{\|} \\
& +\frac{\nabla \times \boldsymbol{B}_{0} \cdot \nabla B_{0}}{B_{0}^{3}}\left(\delta P_{\perp}-\delta P_{\|}\right) . \tag{46}
\end{align*}
$$

${ }_{98}$ Assume $\delta \mathbb{P}$ is diagonal:

$$
\begin{align*}
\delta \mathbb{P} & =\delta P_{\|} \boldsymbol{b}_{0} \boldsymbol{b}_{0}+\delta P_{\perp}\left(\mathbb{I}-\boldsymbol{b}_{0} \boldsymbol{b}_{0}\right) \\
& =\delta P_{\perp} \mathbb{I}+\left(\delta P_{\|}-\delta P_{\perp}\right) \boldsymbol{b}_{0} \boldsymbol{b}_{0} . \tag{47}
\end{align*}
$$

${ }_{99}$ Then we have:

$$
\begin{align*}
\mathrm{PT}_{\mathrm{MHD}}= & \frac{\nabla \times \boldsymbol{B}_{0}+\boldsymbol{b}_{0} \times \nabla B_{0}}{B_{0}^{2}} \cdot \nabla \delta P_{\perp}+\frac{\boldsymbol{b}_{0} \times \nabla B_{0}}{B_{0}^{2}} \cdot \nabla \delta P_{\|}+\frac{\left(\nabla \times \boldsymbol{B}_{0}\right)_{\perp}}{B_{0}} \cdot \nabla\left(\frac{\delta P_{\|}-\delta P_{\perp}}{B_{0}}\right) \\
& +\frac{\delta P_{\|}-\delta P_{\perp}}{B_{0}}\left\{\nabla \cdot\left[\frac{\left(\nabla \times \boldsymbol{B}_{0}\right)_{\perp}}{B_{0}}\right]-\frac{\nabla \times \boldsymbol{B}_{0} \cdot \nabla B_{0}}{B_{0}^{2}}\right\} . \tag{48}
\end{align*}
$$

${ }_{100}$ For a first glance, Eq. (48) seems to differ from Eq. (46). We calculate the mismatch:

$$
\begin{align*}
& \mathrm{PT}_{\mathrm{MHD}}-\mathrm{PT}_{\mathrm{GK}} \\
= & \nabla \cdot\left(\frac{\boldsymbol{b}_{0}}{B_{0}} \times \nabla \cdot \delta \mathbb{P}\right) \\
& -[\underbrace{\frac{\boldsymbol{b}_{0} \times \nabla B_{0}}{B_{0}^{2}} \cdot \nabla\left(\delta P_{\perp}+\delta P_{\|}\right.}_{\{1\}}) \underbrace{\frac{\nabla \times \boldsymbol{B}_{0}}{B_{0}^{2}} \cdot \nabla \delta P_{\|}}_{\{2\}} \underbrace{\frac{\nabla \times \boldsymbol{B}_{0} \cdot \nabla B_{0}}{B_{0}^{3}}\left(\delta P_{\perp}-\delta P_{\|}\right)}_{\{3\}}] \\
= & \frac{\nabla \times \boldsymbol{B}_{0}}{B_{0}^{2}} \cdot \nabla \delta P_{\perp}-\frac{\left(\nabla \times \boldsymbol{B}_{0}\right)_{\|}}{B_{0}} \cdot \nabla \underbrace{\left(\frac{\delta P_{\|}}{B_{0}}\right)-\frac{\left(\nabla \times \boldsymbol{B}_{0}\right)_{\perp}}{B_{0}} \cdot \nabla\left(\frac{\delta P_{\perp}}{B_{0}}\right)}_{\{3\}} \\
& +\underbrace{\frac{\delta P_{\|}}{B_{0}}\left\{\nabla \cdot\left[\frac{\left(\nabla \times \boldsymbol{B}_{0}\right)_{\perp}}{B_{0}}\right]-\frac{\nabla \times \boldsymbol{B}_{0} \cdot \nabla B_{0}}{B_{0}^{2}}\right\}-\frac{\delta P_{\perp}}{B_{0}} \nabla \cdot \frac{\left(\nabla \times \boldsymbol{B}_{0}\right)_{\perp}}{B_{0}}}_{\left\{5 P_{\|}\right.} \\
& \underbrace{B_{0}^{2}}_{\left\{6 \times \boldsymbol{B}_{0}\right)_{\|}} \cdot \nabla\left(\delta P_{\perp}-\delta P_{\|}\right) \\
+2 \frac{\left(\nabla \times \boldsymbol{B}_{0}\right)_{\perp} \cdot \nabla B_{0}}{B_{0}^{3}}\left(\delta P_{\perp}-\delta P_{\|}\right) & \underbrace{\frac{\nabla \cdot\left[\left(\nabla \times \boldsymbol{B}_{0}\right)_{\perp}\right]}{B_{0}^{2}}\left(\delta P_{\|}-\delta P_{\perp}\right)}_{\{6\}}, \tag{49}
\end{align*}
$$

${ }_{101}$ It can be immediately seen that if $\delta P_{\perp}=\delta P_{\|}$, the mismatch vanishes. In the case $\delta P_{\perp} \neq \delta P_{\|}$, 102 assuming $O\left(\delta P_{\perp}\right) \sim O\left(\delta P_{\|}\right) \sim O\left(\delta P_{\perp} \pm \delta P_{\|}\right)$, the mismatch is shown to be small compared 103 to the pressure term as follows.

104 Here we use the scalings of $k_{\|} \ll k_{\perp}, k_{\perp} R_{0} \gg 1, O\left(\beta R_{0} / L_{P_{0}}\right) \sim 1$, and $O((2-s) / q) \sim 1$. ${ }_{105}$ We first estimate the order of the terms $\{1\},\{2\},\{3\}$ to find out the leading order of the 106 pressure term.

$$
\begin{align*}
O(\{1\}) & \sim \frac{k_{\perp}}{R_{0}} \frac{\delta P_{\|, \perp}}{B_{0}}, \tag{50}\\
O(\{2\}) & \sim\left(\frac{\beta k_{\perp}}{2 L_{P_{0}}}+\frac{2-s}{q} \frac{k_{\|}}{R_{0}}\right) \frac{\delta P_{\|, \perp}}{B_{0}}, \tag{51}\\
O(\{3\}) & \sim \frac{\beta}{2 L_{P_{0}} R_{0}} \frac{\delta P_{\|, \perp}}{B_{0}}, \tag{52}\\
O\left(\frac{\{2\}}{\{1\}}\right) & \sim \frac{\beta R_{0}}{2 L_{P_{0}}}+\frac{2-s}{q} \frac{k_{\|}}{k_{\perp}} \sim 1 \tag{53}\\
O\left(\frac{\{3\}}{\{1\}}\right) & \sim \frac{\beta R_{0}}{2 L_{P_{0}}} \frac{1}{k_{\perp} R_{0}} \ll 1 . \tag{54}
\end{align*}
$$

${ }_{107}$ The term $\{1\}$ and $\{2\}$ are the leading order terms. Next we only need to compare the 108 mismatch with the term $\{1\}$, which is one of the leading order terms. Using Eqs. (A5) and 109 (A6), we get:

$$
\begin{align*}
O(\{4\}) & \sim \frac{2-s}{q B_{0} R_{0}} k_{\|} \delta P_{\|, \perp}, \tag{55}\\
O(\{5\}) \sim O(\{6\}) & \sim \frac{\beta}{L_{P_{0}} R_{0}} \frac{\delta P_{\|, \perp}}{B_{0}} \tag{56}\\
O\left(\frac{\{4\}}{\{1\}}\right) & \sim \frac{2-s}{q} \frac{k_{\|}}{k_{\perp}} \ll 1, \tag{57}\\
O\left(\frac{\{5\}}{\{1\}}\right) \sim O\left(\frac{\{6\}}{\{1\}}\right) & \sim \frac{\beta R_{0} / L_{P_{0}}}{k_{\perp} R_{0}} \ll 1 . \tag{58}
\end{align*}
$$

110 Therefore, the mismatch is not important and the gyrokinetic model reduces to the ideal ${ }_{111}$ MHD model with appropriate approximations made.

E. Discussions about the fast ions in different simulation models

${ }_{113}$ There are two major simulation approaches to study the fast ion physics: the pure gyroki114 netic approach [3, 4, 10-16] and the hybrid MHD-gyrokinetic approach [17-20]. A typical ${ }_{115}$ model for the pure gyrokinetic approach is based on the gyrokinetic equation Eq. (28) and 133 is not a (shifted) Maxwellian, Eq. (20) needs to be corrected, causing another difference ${ }_{34}$ between the two models. Although most of these effects should be small when the fast ion ${ }_{35}$ density is much smaller than the thermal ion density, they may still be noticeable in the 36 simulations.

IV. IMPLEMENTATION OF THE ELECTRON CONTINUITY EQUATION WITH CURRENT

Using the Ampère's law:

$$
\begin{equation*}
\frac{c}{4 \pi} \boldsymbol{b}_{0} \cdot \nabla \times \boldsymbol{B}_{0}=\sum_{\alpha \neq e} Z_{\alpha} n_{0 \alpha} u_{\| 0 \alpha}-e n_{0 e} u_{\| 0 e} \tag{59}
\end{equation*}
$$

${ }_{140}$ Eq. (11) for electron becomes:

$$
\begin{align*}
0= & \partial_{t} \delta n_{e}+\delta \boldsymbol{B} \cdot \nabla\left(\sum_{\alpha \neq e} \frac{Z_{\alpha} n_{0 \alpha} u_{\| 0 \alpha}}{e B_{0}}-\frac{c}{4 \pi e B_{0}} \boldsymbol{b}_{0} \cdot \nabla \times \boldsymbol{B}_{0}\right)+\boldsymbol{B}_{0} \cdot \nabla\left(\frac{n_{0 e} \delta u_{\| e}}{B_{0}}\right) \\
& +B_{0} \boldsymbol{v}_{E} \cdot \nabla\left(\frac{n_{0 e}}{B_{0}}\right)-n_{0 e}\left(\delta \boldsymbol{v}_{* e}+\boldsymbol{v}_{E}\right) \cdot \frac{\nabla B_{0}}{B_{0}} \\
& +\frac{c \nabla \times \boldsymbol{B}_{0}}{B_{0}^{2}} \cdot[\underbrace{-\frac{\nabla \delta P_{\| e}}{e}}_{\{I\}} \underbrace{-\frac{\left(\delta P_{\perp e}-\delta P_{\| e}\right) \nabla B_{0}}{e B_{0}}}_{\{I I\}}+n_{0 e} \nabla \delta \phi] . \tag{60}
\end{align*}
$$

${ }_{141}$ The term $\{I I\}$ comparing to the term $\{I\}$ is of order $1 /\left(k_{\perp} R_{0}\right) \ll 1$, so it can be dropped.

A. Current terms in magnetic coordinates

${ }_{143}$ The magnetic coordinates [1, 21] are used in the GTC, so the equilibrium magnetic field 144 is expressed as:

$$
\begin{align*}
\boldsymbol{B}_{0} & =g(\psi) \nabla \zeta+I(\psi) \nabla \theta+\delta(\psi, \theta) \nabla \psi \tag{61}\\
& =q \nabla \psi \times \nabla \theta-\nabla \psi \times \nabla \zeta \tag{62}
\end{align*}
$$

${ }_{145}$ The Jacobian is:

$$
\begin{equation*}
\mathcal{J}^{-1}=\nabla \psi \cdot \nabla \theta \times \nabla \zeta=\frac{B_{0}^{2}}{g q+I} \tag{63}
\end{equation*}
$$

146 The curvature of the magnetic field then writes:

$$
\begin{equation*}
\nabla \times \boldsymbol{B}_{0}=g^{\prime} \nabla \psi \times \nabla \zeta+\left(I^{\prime}-\partial_{\theta} \delta\right) \nabla \psi \times \nabla \theta \tag{64}
\end{equation*}
$$

${ }_{147}$ where the prime symbol (${ }^{\prime}$) denotes the derivative with respect to ψ. The parallel component 148 writes:

$$
\begin{equation*}
\boldsymbol{b}_{0} \cdot \nabla \times \boldsymbol{B}_{0}=B_{0} \frac{g\left(I^{\prime}-\partial_{\theta} \delta\right)-I g^{\prime}}{g q+I} \tag{65}
\end{equation*}
$$

The second term in Eq. (60) can be expanded into two components:

$$
\begin{align*}
& \frac{Z_{\alpha}}{e} \delta \boldsymbol{B} \cdot \nabla\left(\frac{n_{0 \alpha} u_{\| 0 \alpha}}{B_{0}}\right) \\
\approx & \frac{Z_{\alpha}}{e} \nabla \delta A_{\|} \times \boldsymbol{b}_{0} \cdot \nabla\left(\frac{n_{0 \alpha} u_{\| 0 \alpha}}{B_{0}}\right) \\
= & \frac{\mathcal{J}^{-1}}{B_{0}}\left[\left(g \partial_{\theta} \delta A_{\|}-I \partial_{\zeta} \delta A_{\|}\right) \partial_{\psi}\left(\frac{n_{0 \alpha} u_{\| 0 \alpha}}{B_{0}}\right)+\left(\delta \partial_{\zeta} \delta A_{\|}-g \partial_{\psi} \delta A_{\|}\right) \partial_{\theta}\left(\frac{n_{0 \alpha} u_{\| 0 \alpha}}{B_{0}}\right)\right. \\
& \left.+\left(I \partial_{\psi} \delta A_{\|}-\delta \partial_{\theta} \delta A_{\|}\right) \partial_{\zeta}\left(\frac{n_{0 \alpha} u_{\| 0 \alpha}}{B_{0}}\right)\right] . \tag{66}
\end{align*}
$$

150

$$
\begin{align*}
& -\frac{c}{4 \pi e} \delta \boldsymbol{B} \cdot \nabla\left(\frac{\boldsymbol{b}_{0} \cdot \nabla \times \boldsymbol{B}_{0}}{B_{0}}\right) \\
\approx & -\frac{c}{4 \pi e} \nabla \delta A_{\|} \times \boldsymbol{b}_{0} \cdot \nabla\left[\frac{g\left(I^{\prime}-\partial_{\theta} \delta\right)-I g^{\prime}}{g q+I}\right] \\
= & \frac{c}{4 \pi e} \frac{\mathcal{J}^{-1}}{B_{0}}\left[-g\left(\partial_{\psi} S\right)\left(\partial_{\theta} \delta A_{\|}\right)+\left(I \partial_{\psi} S+\frac{g \delta \partial_{\theta}^{2} \delta}{g q+I}\right)\left(\partial_{\zeta} \delta A_{\|}\right)-\frac{g^{2} \partial_{\theta}^{2} \delta}{g q+I}\left(\partial_{\psi} \delta A_{\|}\right)\right], \tag{67}
\end{align*}
$$

151 where

$$
\begin{align*}
\partial_{\psi} S & =\partial_{\psi}\left[\frac{g\left(I^{\prime}-\partial_{\theta} \delta\right)-I g^{\prime}}{g q+I}\right] \\
& =\frac{g\left(I^{\prime \prime}-\partial_{\psi} \partial_{\theta} \delta\right)-g^{\prime} \partial_{\theta} \delta-I g^{\prime \prime}}{g q+I}-\frac{\left[g\left(I^{\prime}-\partial_{\theta} \delta\right)-I g^{\prime}\right]\left(g^{\prime} q+g q^{\prime}+I^{\prime}\right)}{(g q+I)^{2}} \tag{68}
\end{align*}
$$

The last term in Eq. (60) becomes the summation of these two terms:

$$
\begin{equation*}
-\frac{c \nabla \times \boldsymbol{B}_{0}}{e B_{0}^{2}} \cdot \nabla \delta P_{e \|}=-\frac{c}{e(g q+I)}\left[-g^{\prime} \partial_{\theta} \delta P_{e \|}+\left(I^{\prime}-\partial_{\theta} \delta\right) \partial_{\zeta} \delta P_{e \|}\right] . \tag{69}
\end{equation*}
$$

153

$$
\begin{equation*}
n_{e 0} \frac{c \nabla \times \boldsymbol{B}_{0}}{B_{0}^{2}} \cdot \nabla \delta \phi=\frac{n_{e 0} c}{g q+I}\left[-g^{\prime} \partial_{\theta} \delta \phi+\left(I^{\prime}-\partial_{\theta} \delta\right) \partial_{\zeta} \delta \phi\right] . \tag{70}
\end{equation*}
$$

B. Normalization of the current terms

155 Follow the normalization units and symbols in Ref. [1]. Normalize Eq. (60) to be:

$$
\begin{align*}
0= & \partial_{t} \delta n_{e}+\sum_{\alpha \neq e} Z_{\alpha} \delta \boldsymbol{B} \cdot \nabla\left(\frac{n_{0 \alpha} u_{\| 0 \alpha}}{B_{0}}\right)-\frac{2}{\beta_{a}} \frac{\rho_{a}^{2}}{R_{0}^{2}} \delta \boldsymbol{B} \cdot \nabla\left(\frac{\boldsymbol{b}_{0} \cdot \nabla \times \boldsymbol{B}_{0}}{B_{0}}\right) \\
& +\boldsymbol{B}_{0} \cdot \nabla\left(\frac{n_{e 0} \delta u_{e \|}}{B_{0}}\right)+B_{0} \boldsymbol{v}_{E} \cdot \nabla\left(\frac{n_{e 0}}{B_{0}}\right)-n_{e 0}\left(\boldsymbol{v}_{e *}+\boldsymbol{v}_{E}\right) \cdot \frac{\nabla B_{0}}{B_{0}} \\
& +\frac{\nabla \times \boldsymbol{B}_{0}}{B_{0}^{2}} \cdot\left[-\nabla \delta P_{e \|}-\frac{\left(\delta P_{\perp e}-\delta P_{\| e}\right) \nabla B_{0}}{B_{0}}+n_{e 0} \cdot \nabla \delta \phi\right] \tag{71}
\end{align*}
$$

156 where

$$
\begin{align*}
\beta_{a} & =\frac{8 \pi n_{a} T_{a}}{B_{a}^{2}}, \tag{72}\\
\rho_{a}^{2} & =\frac{T_{a}}{m_{p} \Omega_{p}^{2}}, \tag{73}
\end{align*}
$$

${ }_{157}$ with T_{a} being the electron on-axis temperature. Normalizing Eqs. (66)-(70):

$$
\begin{align*}
& Z_{\alpha} \delta \boldsymbol{B} \cdot \nabla\left(\frac{n_{0 \alpha} u_{\| 0 \alpha}}{B_{0}}\right) \\
= & \frac{\mathcal{J}^{-1}}{B_{0}}\left[\left(g \partial_{\theta} \delta A_{\|}-I \partial_{\zeta} \delta A_{\|}\right) \partial_{\psi}\left(\frac{n_{0 \alpha} u_{\| 0 \alpha}}{B_{0}}\right)+\left(\delta \partial_{\zeta} \delta A_{\|}-g \partial_{\psi} \delta A_{\|}\right) \partial_{\theta}\left(\frac{n_{0 \alpha} u_{\| 0 \alpha}}{B_{0}}\right)\right. \\
& \left.+\left(I \partial_{\psi} \delta A_{\|}-\delta \partial_{\theta} \delta A_{\|}\right) \partial_{\zeta}\left(\frac{n_{0 \alpha} u_{\| 0 \alpha}}{B_{0}}\right)\right], \tag{74}
\end{align*}
$$

$$
\begin{align*}
& -\frac{2}{\beta_{a}} \frac{\rho_{a}^{2}}{R_{0}^{2}} \delta \boldsymbol{B} \cdot \nabla\left(\frac{\boldsymbol{b}_{0} \cdot \nabla \times \boldsymbol{B}_{0}}{B_{0}}\right) \\
= & \frac{2}{\beta_{a}} \frac{\rho_{a}^{2}}{R_{0}^{2}} \frac{\mathcal{J}^{-1}}{B_{0}}\left[-g\left(\partial_{\psi} S\right)\left(\partial_{\theta} \delta A_{\|}\right)+\left(I \partial_{\psi} S+\frac{g \delta \partial_{\theta}^{2} \delta}{g q+I}\right)\left(\partial_{\zeta} \delta A_{\|}\right)-\frac{g^{2} \partial_{\theta}^{2} \delta}{g q+I}\left(\partial_{\psi} \delta A_{\|}\right)\right], \tag{75}
\end{align*}
$$

$$
\begin{align*}
\partial_{\psi} S & =\partial_{\psi}\left[\frac{g\left(I^{\prime}-\partial_{\theta} \delta\right)-I g^{\prime}}{g q+I}\right] \\
& =\frac{g\left(I^{\prime \prime}-\partial_{\psi} \partial_{\theta} \delta\right)-g^{\prime} \partial_{\theta} \delta-I g^{\prime \prime}}{g q+I}-\frac{\left[g\left(I^{\prime}-\partial_{\theta} \delta\right)-I g^{\prime}\right]\left(g^{\prime} q+g q^{\prime}+I^{\prime}\right)}{(g q+I)^{2}}, \tag{76}
\end{align*}
$$

$$
\begin{equation*}
-\frac{\nabla \times \boldsymbol{B}_{0}}{B_{0}^{2}} \cdot \nabla \delta P_{e \|}=-\frac{1}{g q+I}\left[-g^{\prime} \partial_{\theta} \delta P_{e \|}+\left(I^{\prime}-\partial_{\theta} \delta\right) \partial_{\zeta} \delta P_{e \|}\right], \tag{77}
\end{equation*}
$$

In this section we keep using the normalized quantities. All quantities in this section 164 are equilibrium quantities, so the equilibrium subscript 0 for the magnetic field is omitted.
${ }_{165}$ Previously in the GTC, an s- α like (cyclone) magnetic field model (citation?) is used:

$$
\begin{align*}
B & =1-\epsilon \cos \theta+O\left(\epsilon^{2}\right) \tag{79}\\
I & =0+O\left(\epsilon^{2}\right) \tag{80}\\
g & =1+O\left(\epsilon^{2}\right) \tag{81}\\
\delta & =0+O(\epsilon) \tag{82}\\
\theta & =\theta_{0}+O(\epsilon) \tag{83}\\
\zeta & =\zeta_{0}+O(\epsilon) \tag{84}
\end{align*}
$$

${ }_{166}$ where $\epsilon=r / R_{0}$ is the normalized radial coordinate, θ_{0} and ζ_{0} are the geometric poloidal and ${ }_{167}$ toroidal angles, and θ and ζ are the corresponding magnetic coordinates. Such a field model ${ }_{168}$ makes all the derivatives of g and I zero, and thus leading to zero equilibrium current terms. ${ }_{169}$ Here we extend this field model to a higher-order one to recover the equilibrium current.
${ }_{170}$ Assume concentric circular magnetic surfaces.

$$
\begin{equation*}
\prime=\frac{\mathrm{d}}{\mathrm{~d} \psi}=\frac{\mathrm{d} \epsilon}{\mathrm{~d} \psi} \frac{\mathrm{~d}}{\mathrm{~d} \epsilon}=\frac{q}{\epsilon} \frac{\mathrm{~d}}{\mathrm{~d} \epsilon}, \tag{85}
\end{equation*}
$$

${ }_{171}$ In the large-aspect-ratio limit, we expand the field related quantities with respect to ϵ :

$$
\begin{align*}
B & =1-\epsilon \cos \theta_{0}+\epsilon^{2} B_{2}+\epsilon^{3} B_{3}+\cdots \tag{86}\\
I & =\epsilon^{2} I_{2}+\epsilon^{3} I_{3}+\cdots \tag{87}\\
g & =1+\epsilon^{2} g_{2}+\epsilon^{3} g_{3}+\cdots \tag{88}\\
\theta & =\theta_{0}+\epsilon \theta_{1}+\epsilon^{2} \theta_{2}+\cdots \tag{89}\\
\zeta & =\zeta_{0}+\epsilon \zeta_{1}+\epsilon^{2} \zeta_{2}+\cdots \tag{90}
\end{align*}
$$

${ }^{172}$ where g_{i} and $I_{i}(i=2,3, \cdots)$ are functions of the safety factor q; and B_{i}, θ_{i}, and $\zeta_{i}(i=$ $\left.{ }_{173} 1,2, \cdots\right)$ are periodic functions of θ_{0}.

174 We want the field model to satisfy these conditions:

- The Jacobian satisfies $\mathcal{J}^{-1}=\nabla \psi \cdot \nabla \theta \times \nabla \zeta=B^{2} /(g q+I)$ so that I is a function of only ψ (equivalently ϵ, because of concentric circular flux surfaces).
- The radial component of the field is zero because of concentric circular flux surfaces: $B_{\epsilon}=\epsilon \delta / q+I \partial_{\epsilon} \theta+g \partial_{\epsilon} \zeta=0$.
- The field magnitude expression is consistent with the covariant representation: $B=$ $|\delta \nabla \psi+I \nabla \theta+g \nabla \zeta|$.
- The field line is straight in the (θ, ζ) space, so $\boldsymbol{B} \cdot \nabla \zeta /(\boldsymbol{B} \cdot \nabla \theta)=q(\psi)$ with q being the safety factor which is independent of θ and ζ.
${ }_{183}$ Plug the expansions Eqs. (86)-(90) into the above conditions, and solving them up to the
${ }_{184} O(\epsilon)$ order gives:

$$
\begin{align*}
B & =1-\epsilon \cos \theta_{0}+O\left(\epsilon^{2}\right), \tag{91}\\
\delta & =\epsilon \sin \theta_{0}+O\left(\epsilon^{2}\right)=\epsilon \sin \theta+O\left(\epsilon^{2}\right), \tag{92}\\
I & =\frac{\epsilon^{2}}{q}+O\left(\epsilon^{4}\right), \tag{93}\\
I^{\prime} & =2-s+O\left(\epsilon^{2}\right), \tag{94}\\
g & =1+O\left(\epsilon^{2}\right), \tag{95}\\
g^{\prime} & =O\left(\epsilon^{0}\right), \tag{96}\\
\theta & =\theta_{0}-\epsilon \sin \theta_{0}+O\left(\epsilon^{2}\right), \tag{97}\\
\theta_{0} & =\theta+\epsilon \sin \theta+O\left(\epsilon^{2}\right), \tag{98}\\
\zeta & =\zeta_{0}+O\left(\epsilon^{4}\right), \tag{99}\\
\nabla \times \boldsymbol{B}_{0} & =O\left(\epsilon^{0}\right) \nabla \psi \times \nabla \zeta+\left[(2-s)-\epsilon \cos \theta+O\left(\epsilon^{2}\right)\right] \nabla \psi \times \nabla \theta, \tag{100}\\
\boldsymbol{b}_{0} \cdot \nabla \times \boldsymbol{B}_{0} & =\frac{\mathcal{J}^{-1}}{B_{0}}\left[(2-s)-\epsilon \cos \theta_{0}+O(\epsilon)\right] . \tag{101}
\end{align*}
$$

185 Although it is straightforward to solve the equations up to the $O\left(\epsilon^{2}\right)$ order, such a model 186 would not be very useful because other effects come into play at the order of $O\left(\epsilon^{2}\right)$ or even ${ }_{187}$ lower, such as the Shafranov shift, and the finite pressure gradient effect. The field model of 188 order $O(\epsilon)$, i.e., Eqs. (91)-(99), is good enough to recover the parallel current and is therefore ${ }_{189}$ implemented. It is straightforward to show that in Eqs. (74)-(78) the terms containing the ${ }_{190}$ nonorthogonality factor δ are one order smaller than the leading order and thus are dropped 191 in the implementation for simplicity.

192 VI. EQUILIBRIUM CURRENT EFFECT ON THE RSAE

A. Analytic calculation

194 In a simple geometry with concentric-circular flux surfaces, in the uniform plasma and 195 zero- β limit, considering only one n and m harmonic $\delta \phi(r, \theta, \zeta)=\delta \hat{\phi}(r) \exp [i(n \zeta-m \theta)]$, ${ }_{196}$ Eq. (42) near the $q_{\text {min }}$ surface becomes [3]:

$$
\begin{equation*}
\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \Lambda \frac{\mathrm{~d}}{\mathrm{~d} r} \delta \hat{\phi}\right)-\frac{m^{2}}{r^{2}} \Lambda \delta \hat{\phi}-\frac{D}{r} \delta \hat{\phi}=0 \tag{102}
\end{equation*}
$$

197 where

$$
\begin{equation*}
\Lambda=\frac{\omega^{2}}{v_{A}^{2}}-k_{\|}^{2}, \tag{103}
\end{equation*}
$$

${ }_{198} D$ represents contributions from fast ion pressure, background plasma pressure gradient, 199 toroidal coupling, magnetic shear, etc. The first two terms of Eq. (102) give the Alfvén con200 tinuum. The last term determines whether an eigenmode exists near the Alfvén continuum 201 extremum. Here we only consider the magnetic shear effect. When the equilibrium current 2 is ignored,

$$
\begin{equation*}
D=k_{\|} k_{\|}^{\prime}+r k_{\|} k_{\|}^{\prime \prime} \tag{104}
\end{equation*}
$$

${ }_{203}$ At the $q_{\text {min }}$ surface, noting that $k_{\|}^{\prime}=0$ and $k_{\|}^{\prime \prime} \neq 0, D$ is non-zero and an RSAE exists as 204 can be shown by numerically solving Eq. (102). With the equilibrium current recovered,

$$
\begin{equation*}
D=-2 k_{\|} k_{\|}^{\prime} \tag{105}
\end{equation*}
$$

205 which is zero at the $q_{\text {min }}$ surface and thus eigenmode does not exist. Note that other effects 206 contributing to D mentioned above may bring back the eigenmode.

B. Verification in simulation

To verify the implementation of the current, we simulate a case in a simple geometry which should recover what the analytic calculation shows. The parameters are taken from Ref. [3]. ${ }_{10}$ The q-profile is shown in Fig. 1(a), whose corresponding Alfvén continua of $n=4, m=6$ and $1 n=4, m=7$ without coupling are shown in Fig. 1(b). The $n=4, m=6$ mode is studied 2 here to avoid distraction by the toroidal coupling effect, because the toroidal coupling effect cannot make an RSAE below the continuum minimum [22]. In the ideal MHD limit, the RSAE exists when the equilibrium current is not taken into account.

The differences between the simulations without and with equilibrium current can mainly 7 be seen in the contour plots of $\delta \phi$ in the radial-time space in Fig. 2. In Fig. 2(a), which is 18 corresponding to the case without equilibrium current, as an eigenmode exists, the mode 219 structures are horizontal, indicating that $\delta \phi$ at every radial location oscillates at the same 20 eigenmode frequency. For the case with equilibrium current shown in Fig. 2(b), since no 21 eigenmode exists, $\delta \phi$ at every radial location oscillates at the local continuum frequency, 222 leading to the bending of the mode structures or the so-called phase-mixing. The quick ${ }_{223}$ damping of the mode amplitude in Fig. 2(b) also indicates that there is no eigenmode in 224 this case. Therefore, the simulation results are consistent with the analytic calculation in 225 Sec. VI A

FIG. 1. (a) Safety factor q-profile. (b) Alfvén continua of $n=4, m=6$ and $n=4, m=7$ in ideal MHD limit and without linear coupling.

FIG. 2. Contour plots of $\delta \phi$ in the radial-time space in RSAE simulations (a) without equilibrium current; (b) with equilibrium current. The time is normalized to $R_{0} / v_{A p}$, where $v_{A p}$ is defined as $v_{A p}=B_{a} / \sqrt{4 \pi n_{a} m_{p}}$

${ }_{227}$ VII. SIMULATIONS OF DIII-D DISCHARGE \#142111 AT 750ms

228
One of the most significant energetic-particle-driven modes in the DIII-D discharge ${ }_{229}^{\# 142111}$ at the time of 750 ms is the RSAE. The magnetic field, including the flux surface 230 structure, field magnitude, and the q-profile, the density and the temperature profiles of all ${ }_{231}$ three species, i.e., the electron, the background ion, and the fast ion, are loaded from the ${ }_{232}$ experimental data into the GTC. The equilibrium profiles are shown in Fig. 3. The $q_{\text {min }}$ ${ }_{233}$ surfaces is at $\rho=0.33$ where ρ is the square root of the normalized toroidal flux. $q_{\text {min }}$ takes

FIG. 3. Equilibrium profiles in DIII-D discharge \#142111 at 750ms: (a) q-profile, (b) background plasma density, (c) fast ion density, (d) background plasma temperature, (f) fast ion temperature.
${ }^{235}$ the value 3.1828 . Both ion species are deuterium nuclei.
${ }^{236}$ The $n=3$ and $n=4$ modes have been successfully simulated, respectively. For the ${ }_{237} n=3$ mode, before adding in the fast ions, the background plasma pressure effects are ${ }_{238}$ tested. When fast ions are not loaded, the thermal ion density is loaded to be the same as ${ }^{239}$ the electron density so as to retain neutrality. In the zero temperature ideal MHD limit, ${ }_{240}$ giving an initial perturbation near the $q_{\text {min }}$ surface produces an RSAE-like mode shown in ${ }_{241}$ Fig. 4(a) and (b). The mode frequency is listed as the case (I) in Table I and marked on 242 the Alfvén continuum plot in Fig. 5(a). To study the finite- β effect, various simulation cases ${ }_{243}$ are done as listed in Table I and their frequencies are marked on the corresponding Alfvén

FIG. 4. Mode structures for $n=3$ mode: (a)(c) poloidal contour plots of $\delta \phi$ for case (I) and case (VI), respectively, (b)(d) m-harmonic decomposed $\delta \phi$ for case (I) and case (VI), respectively.
${ }_{244}$ continuum plots in Fig. 5. The Alfvén continua are calculated using the m-spectral method ${ }_{245}$ in the slow sound approximation described in Appendix B with the kinetic consideration ${ }_{246}$ [23]: $\gamma_{s} P_{0}=P_{0 e}+7 P_{0 i} / 4$. Adding in the finite electron temperature from case (I) to ${ }_{247}$ case (II) raises the Alfvén continua and the mode frequency due to the electron geodesic ${ }_{248}$ compressibility. From case (II) to case (III) the ion geodesic compressibility is recovered to ${ }_{249}$ raise the continua and mode frequencies even more. In case (III) due to the presence of the ${ }_{250}$ ion pressure gradient, the ion kinetic damping cannot be seen, so in case (IV) the pressure ${ }_{251}$ gradient drive is artificially suppressed to show the damping effect. Moving the ion pressure 252 effect to be carried by electrons and getting the same mode frequency, case (V) shows that ${ }^{253}$ other than the $7 / 4$ coefficient for ion, the ion pressure and the electron pressure contribute ${ }_{255}$ to the mode frequency in a very similar way.
${ }^{258}$ When the fast ions are added, which is the case (VI) in Table I, the mode frequency is

FIG. 5. Alfvén continua with slow sound approximation for $n=3$: (a) zero- β limit, (b) only include electron β, (c) complete background plasma β. The horizontal lines are the frequencies obtained in various simulation cases described in Table I. The width of each horizontal line represents the FWHM of the mode structure.
${ }_{259}$ further raised. The non-perturbative mode structure modification by fast ions can be seen in ${ }_{260}$ the poloidal mode structure in Fig. 4(c). In the m-harmonic decomposition plot in Fig. 4(d), 261 it can be seen that besides the dominant $m=10$ harmonic, there is a sub-dominant $m=9$ 262 harmonic. This is because the time 750 ms is during the mode transition from RSAE to ${ }_{263}$ TAE [22]. The mode seen in simulation is something between an RSAE and a TAE. In one 264 situation it may be more RSAE-like, such as the cases (I)-(V). In another situation it could 265 be more TAE-like, such as the fast ion driven case (VI).

TABLE I. Various simulation cases and resulted frequencies to test the finite $-\beta$ effect on the $n=3$

Case	Description	$\left(\omega_{r}, \gamma\right) /\left(v_{A p} / R_{0}\right)$	$\left(\omega_{r}, \gamma\right) /(2 \pi) / \mathrm{kHz}$	γ / ω_{r}	
(I)	Zero temperature ideal MHD	0.103	73.8		
(II)	Finite $\delta E_{\\|}$, adiabatic e^{-}with real T_{e} profile and kinetic ions with only 2% of real T_{i}	(0.113, -0.00208)	(80.9, -1.49)	-0.0185	
(III)	Same as case (II) except for real T_{i} profile recovered	0.118	84.7		
(IV)	Same as case (III) except that kinetic ion gradient drive is artificially suppressed	(pending measure)			
(V)	Same as case (II) except that electrons carry the total pressure $\left(T_{e} \leftarrow T_{e}+7 T_{i} / 4\right)$	(0.118, -0.00273)	(84.6, -1.96)	-0.0231	
(VI)	Same as case (IV) except that fast ions are added in	(0.130, 0.00919)	(92.9, 6.59)	0.0710	

Appendix A: Estimation of some magnetic field parameters in a tokamak

${ }_{268}$ Noticing the safety factor $q \approx r B_{\zeta} /\left(R_{0} B_{\theta}\right)=\epsilon B_{\zeta} / B_{\theta}$, the equilibrium magnetic field 269 writes:

$$
\begin{aligned}
\boldsymbol{B}_{0} & =B_{\theta} \hat{\boldsymbol{\theta}}+B_{\zeta} \hat{\boldsymbol{\zeta}} \\
& =B_{\zeta}\left(\frac{\epsilon}{q} \hat{\boldsymbol{\theta}}+\hat{\boldsymbol{\zeta}}\right) .
\end{aligned}
$$

${ }_{270}$ where B_{θ} and B_{ζ} are the poloidal and the toroidal component, respectively, while $\hat{\boldsymbol{\theta}}$ and $\hat{\boldsymbol{\zeta}}$ 271 are the unit vectors in the poloidal and the toroidal direction, respectively. The toroidal 272 vacuum field writes:

$$
\begin{equation*}
B_{\zeta}=\frac{B_{a} R_{0}}{R}=\frac{B_{a}}{1+\epsilon \cos \theta} . \tag{A1}
\end{equation*}
$$

${ }_{273}$ This can be used to estimate the parallel component of $\nabla \times \boldsymbol{B}_{0}$:

$$
\begin{align*}
\left(\nabla \times \boldsymbol{B}_{0}\right)_{\|} & \approx \frac{\hat{\boldsymbol{\zeta}}}{r}\left[\partial_{r}\left(r \frac{\epsilon}{q} B_{\zeta}\right)\right] \\
& \approx \hat{\boldsymbol{\zeta}} \frac{B_{0}}{q R_{0}}(2-s), \tag{A2}
\end{align*}
$$

24 where

$$
\begin{equation*}
s=\frac{r}{q} \frac{\mathrm{~d} q}{\mathrm{~d} r} \tag{A3}
\end{equation*}
$$

${ }_{275}$ is the magnetic shear. For the perpendicular component of $\nabla \times \boldsymbol{B}_{0}$, the force balance 276 equation is used:

$$
\begin{align*}
\nabla P_{0} & =\frac{1}{c} \boldsymbol{J}_{0} \times \boldsymbol{B}_{0} \\
& =\frac{1}{4 \pi}\left(\nabla \times \boldsymbol{B}_{0}\right) \times \boldsymbol{B}_{0} . \tag{A4}
\end{align*}
$$

${ }_{277}$ Take $\boldsymbol{b}_{0} \times$ Eq. (A4) to get:

$$
\begin{equation*}
\left(\nabla \times \boldsymbol{B}_{0}\right)_{\perp}=\frac{4 \pi}{B_{0}} \boldsymbol{b}_{0} \times \nabla P_{0} \tag{A5}
\end{equation*}
$$

278 Meanwhile,

$$
\begin{align*}
& \nabla \cdot\left[\left(\nabla \times \boldsymbol{B}_{0}\right)_{\perp}\right] \\
= & 4 \pi \nabla \cdot\left(\frac{\boldsymbol{b}_{0}}{B_{0}} \times \nabla P_{0}\right) \\
= & \frac{4 \pi}{B_{0}^{2}}\left(\nabla \times \boldsymbol{B}_{0}+2 \boldsymbol{b}_{0} \times \nabla B_{0}\right) \cdot \nabla P_{0} . \tag{A6}
\end{align*}
$$

${ }_{279}$ We also have:

$$
\begin{equation*}
\nabla B_{0} \approx-\frac{B_{a} R_{0}}{R^{2}} \hat{\boldsymbol{R}} \approx-\frac{B_{0}}{R_{0}}(\hat{\boldsymbol{r}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta) \tag{A7}
\end{equation*}
$$

280

$$
\begin{equation*}
\boldsymbol{b}_{0} \times \nabla B_{0} \approx \frac{B_{0}}{R_{0}}\left[-\hat{\boldsymbol{r}} \sin \theta-\hat{\boldsymbol{\theta}} \cos \theta+\hat{\boldsymbol{\zeta}}_{\frac{\epsilon}{q}}^{\cos \theta}\right] \tag{A8}
\end{equation*}
$$

Appendix B: Alfvén continuum calculation

282 In realistic situations, simple estimation of the Alfvén continuum like $\omega_{A} \approx(n q-$ $\left.{ }_{283} m\right) v_{A} /\left(q R_{0}\right)$ is not good enough. Such an estimation would introduce fairly large inac${ }_{284}$ curacy by geometric effects, finite- β effect, etc. In this section an m-spectral method is ${ }_{285}$ used to solve the ideal MHD Alfvén continuum equation [24] in the slow sound (low- β) 286 approximation [25].
287 The Alfvén continuum equation writes [24]:

$$
\left(\begin{array}{ll}
\mathbb{E}_{11} & \mathbb{E}_{12} \tag{B1}\\
\mathbb{E}_{21} & \mathbb{E}_{22}
\end{array}\right)\binom{\xi_{s}}{\nabla \cdot \boldsymbol{\xi}}=0
$$

88 where

$$
\begin{align*}
& \mathbb{E}_{11}=\frac{4 \pi \rho_{M} \omega^{2}|\nabla \psi|^{2}}{B_{0}^{2}}+\boldsymbol{B}_{0} \cdot \nabla\left(\frac{|\nabla \psi|^{2} \boldsymbol{B}_{0} \cdot \nabla}{B_{0}^{2}}\right), \tag{B2}\\
& \mathbb{E}_{12}=4 \pi \gamma_{s} P_{0} \kappa_{s} \tag{B3}\\
& \mathbb{E}_{21}=\kappa_{s} \tag{B4}\\
& \mathbb{E}_{22}=\frac{4 \pi \gamma_{s} P_{0}+B_{0}^{2}}{B_{0}^{2}}+\frac{\gamma_{s} P_{0}}{\rho_{M} \omega^{2}} \boldsymbol{B}_{0} \cdot \nabla\left(\frac{\boldsymbol{B}_{0} \cdot \nabla}{B_{0}^{2}}\right) \tag{B5}
\end{align*}
$$

289

$$
\begin{align*}
\kappa_{s} & =2 \boldsymbol{\kappa} \cdot \frac{\boldsymbol{B}_{0} \times \nabla \psi}{B_{0}^{2}}, \tag{B6}\\
\boldsymbol{\kappa} & =\boldsymbol{b}_{0} \cdot \nabla \boldsymbol{b}_{0}=\left(\nabla \times \boldsymbol{b}_{0}\right) \times \boldsymbol{b}_{0} . \tag{B7}
\end{align*}
$$

290 Using the magnetic coordinates mentioned in Sec. IV A, some vector expressions can be 291 simplified:

$$
\begin{align*}
\boldsymbol{B}_{0} \cdot \nabla & =\mathcal{J}^{-1}\left(\partial_{\theta}+q \partial_{\zeta}\right), \tag{B8}\\
\kappa_{s} & =-\frac{2 \mathcal{J}^{-1}}{B_{0}} g\left(\partial_{\theta} \frac{1}{B_{0}}\right)=\frac{2 \mathcal{J}^{-1} g}{B_{0}^{3}} \partial_{\theta} B_{0} . \tag{B9}
\end{align*}
$$

292 In the GTC, $|\nabla \psi|^{2}$ can be calculated using the splines of the poloidal Cartesian coordinates ${ }_{293}(X, Z)$:

$$
\begin{equation*}
|\nabla \psi|^{2}=\left(\partial_{X} \psi\right)^{2}+\left(\partial_{Z} \psi\right)^{2}=\left(\frac{1}{\partial_{\psi} X-\partial_{\theta} X \frac{\partial_{\psi} Z}{\partial_{\theta} Z}}\right)^{2}+\left(\frac{1}{\partial_{\psi} Z-\partial_{\theta} Z \frac{\partial_{\psi} X}{\partial_{\theta} X}}\right)^{2} \tag{B10}
\end{equation*}
$$

294 Equation (B1) is an eigenvalue equation with ω^{2} being the eigenvalue. The second term ${ }_{295}$ of \mathbb{E}_{22} is ω-dependent, which complicates the problem. However, comparing to the first term 296 gives:

$$
\begin{equation*}
\frac{\frac{\gamma_{s} P_{0}}{\rho_{M} \omega^{2}} \boldsymbol{B}_{0} \cdot \nabla\left(\frac{B_{0} \cdot \nabla}{B_{0}^{2}}\right)}{\frac{4 \pi \gamma_{s} P_{0}+B_{0}^{2}}{B_{0}^{2}}}=\frac{-4 \pi \gamma_{s} P_{0} k_{\|}^{2} /\left(4 \pi \rho_{M} \omega^{2}\right)}{\left(4 \pi \gamma_{s} P_{0}+B_{0}^{2}\right) / B_{0}^{2}} \approx \frac{-4 \pi \gamma_{s} P_{0} / B_{0}^{2}}{\left(4 \pi \gamma_{s} P_{0}+B_{0}^{2}\right) / B_{0}^{2}} \sim O\left(\frac{\beta}{\beta+1}\right) \tag{B11}
\end{equation*}
$$

${ }_{297}$ This shows the second term of \mathbb{E}_{22} can be dropped in the low- β limit, which is the slow ${ }_{298}$ sound approximation in Ref. [25]. In this approximation, Eq. (B1) becomes:

$$
\begin{equation*}
\left[4 \pi \rho_{M} \omega^{2} \frac{|\nabla \psi|^{2}}{\mathcal{J}^{-1} B_{0}^{2}}+\frac{\boldsymbol{B}_{0} \cdot \nabla}{\mathcal{J}^{-1}}\left(\frac{|\nabla \psi|^{2} \boldsymbol{B}_{0} \cdot \nabla}{B_{0}^{2}}\right)-\frac{4 \pi \gamma_{s} P_{0} \kappa_{s}^{2} B_{0}^{2}}{\mathcal{J}^{-1}\left(4 \pi \gamma_{s} P_{0}+B_{0}^{2}\right)}\right] \xi_{s}=0 \tag{B12}
\end{equation*}
$$

299 Expanding θ-dependent quantities as summations of m-harmonics:

$$
\left.\begin{array}{c}
\xi_{s}=e^{i n \zeta} \sum_{m}\left(\xi_{s}\right)_{m} e^{-i m \theta} \\
\left(\begin{array}{c}
\frac{|\nabla \psi|^{2} \mathcal{J}^{-1}}{B_{0}^{2}} \\
\frac{|\nabla \psi|^{2}}{B_{0}^{2} \mathcal{J}^{-1}} \\
\frac{4 \pi \gamma_{s} P_{0} \kappa_{s}^{2} B_{0}^{2}}{\mathcal{J}^{-1}\left(4 \pi \gamma_{s} P_{0}+B_{0}^{2}\right)}
\end{array}\right)
\end{array}\right)=\sum_{m}\left(\begin{array}{c}
\left(\frac{|\nabla \psi|^{2} \mathcal{J}^{-1}}{B_{0}^{2}}\right)_{m} \tag{B14}\\
\left(\frac{|\nabla \psi|^{2}}{B_{0}^{2} \mathcal{J}^{-1}}\right)_{m} \\
\left(\frac{4 \pi \gamma_{s} P_{0} \kappa_{B}^{2} D_{0}^{2}}{\mathcal{J}^{-1}\left(4 \pi \gamma_{s} P_{0}+B_{0}^{2}\right)}\right)_{m}
\end{array}\right) e^{i m \theta} .
$$

${ }_{300}$ Using $\left\{e^{-i m \theta}\right\}$ as basis, Eq. (B12) can be written in this matrix form:

$$
\begin{equation*}
\left(\mathbb{G}^{\dagger} \mathbb{H} \mathbb{G}+\mathbb{N}\right) \xi_{s}=4 \pi \rho_{M} \omega^{2} J \xi_{s} \tag{B15}
\end{equation*}
$$

${ }_{301}$ which is a generalized eigenvalue problem, with $4 \pi \rho_{M} \omega^{2}$ being the eigenvalue,

$$
\begin{equation*}
\xi_{s}=\left(\cdots,\left(\xi_{s}\right)_{m-1},\left(\xi_{s}\right)_{m},\left(\xi_{s}\right)_{m+1}, \cdots\right)^{T} \tag{B16}
\end{equation*}
$$

302 being the eigenvector. The operator matrices and their elements are:

$$
\begin{align*}
\mathbb{G}=-i \frac{\boldsymbol{B}_{0} \cdot \nabla}{\mathcal{J}^{-1}} & \mathbb{G}_{m, m^{\prime}}=(n q-m) \delta_{m, m^{\prime}} \tag{B17}\\
\mathbb{H}=\frac{|\nabla \psi|^{2} \mathcal{J}^{-1}}{B_{0}^{2}} & \mathbb{H}_{m, m^{\prime}}=\left(\frac{|\nabla \psi|^{2} \mathcal{J}^{-1}}{B_{0}^{2}}\right)_{m^{\prime}-m} \tag{B18}\\
\mathbb{J}=\frac{|\nabla \psi|^{2}}{B_{0}^{2} \mathcal{J}^{-1}} & \mathbb{J}_{m, m^{\prime}}=\left(\frac{|\nabla \psi|^{2}}{B_{0}^{2} \mathcal{J}^{-1}}\right)_{m^{\prime}-m} \tag{B19}\\
\mathbb{N}=\frac{4 \pi \gamma_{s} P_{0} \kappa_{s}^{2} B_{0}^{2}}{\mathcal{J}^{-1}\left(4 \pi \gamma_{s} P_{0}+B_{0}^{2}\right)} & \mathbb{N}_{m, m^{\prime}}=\left(\frac{4 \pi \gamma_{s} P_{0} \kappa_{s}^{2} B_{0}^{2}}{\mathcal{J}^{-1}\left(4 \pi \gamma_{s} P_{0}+B_{0}^{2}\right)}\right)_{m^{\prime}-m} \tag{B20}
\end{align*}
$$

303
Alfvén continuum plots in Sec. VII.
[1] I. Holod, W. L. Zhang, Y. Xiao, and Z. Lin, Physics of Plasmas 16, 122307 (2009).
[2] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Science 281, 1835 (1998).
[3] W. Deng, Z. Lin, I. Holod, X. Wang, Y. Xiao, and W. Zhang, Physics of Plasmas 17, 112504 (2010).
[4] H. S. Zhang, Z. Lin, I. Holod, X. Wang, Y. Xiao, and W. L. Zhang, Physics of Plasmas 17, 112505 (2010).
[5] M. N. Bussac, R. Pellat, D. Edery, and J. L. Soule, Phys. Rev. Lett. 35, 1638 (1975).
[6] W. Park, S. Parker, H. Biglari, M. Chance, L. Chen, C. Z. Cheng, T. S. Hahm, W. W. Lee, R. Kulsrud, D. Monticello, L. Sugiyama, and R. White, Physics of Fluids B: Plasma Physics 4, 2033 (1992).
[7] W. Lee, Journal of Computational Physics 72, 243 (1987).
[8] Z. Lin and W. W. Lee, Phys. Rev. E 52, 5646 (1995).
[9] H. Biglari and L. Chen, Phys. Rev. Lett. 67, 3681 (1991).
[10] P. Lauber, S. Gunter, and S. D. Pinches, Physics of Plasmas 12, 122501 (2005).
[11] Y. Nishimura, Z. Lin, and W. X. Wang, Physics of Plasmas 14, 042503 (2007).
[12] W. Zhang, Z. Lin, and L. Chen, Phys. Rev. Lett. 101, 095001 (2008).
[13] Y. Nishimura, Physics of Plasmas 16, 030702 (2009).
[14] A. Mishchenko, A. Konies, and R. Hatzky, Physics of Plasmas 16, 082105 (2009).
[15] J. Lang, Y. Chen, S. E. Parker, and G.-Y. Fu, Physics of Plasmas 16, 102101 (2009).
[16] E. M. Bass and R. E. Waltz, Physics of Plasmas 17, 112319 (2010).
[17] G. Vlad, S. Briguglio, G. Fogaccia, F. Zonca, and M. Schneider, Nuclear Fusion 46, 1 (2006).
[18] G. Vlad, S. Briguglio, G. Fogaccia, F. Zonca, C. D. Troia, W. Heidbrink, M. V. Zeeland, A. Bierwage, and X. Wang, Nuclear Fusion 49, 075024 (10pp) (2009).
[19] X. Wang, F. Zonca, and L. Chen, Plasma Physics and Controlled Fusion 52, 115005 (2010).
[20] B. J. Tobias, I. G. J. Classen, C. W. Domier, W. W. Heidbrink, N. C. Luhmann, R. Nazikian, H. K. Park, D. A. Spong, and M. A. Van Zeeland, Phys. Rev. Lett. 106, 075003 (2011).
[21] R. B. White, Physics of Fluids B: Plasma Physics 2, 845 (1990).
[22] B. N. Breizman, H. L. Berk, M. S. Pekker, S. D. Pinches, and S. E. Sharapov, Phys. Plasmas 10, 3649 (2003).
[23] F. Zonca and L. Chen, Physics of Plasmas 3, 323 (1996).
[24] C. Z. Cheng and M. S. Chance, Phys. Fluids 29, 3695 (1986).
[25] M. S. Chu, J. M. Greene, L. L. Lao, A. D. Turnbull, and M. S. Chance, Physics of Fluids B: Plasma Physics 4, 3713 (1992).
[26] V. Hernandez, J. E. Roman, and V. Vidal, ACM Transactions on Mathematical Software 31, 351 (2005).

