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+ I. INTRODUCTIONS

s With the recent electromagnetic upgrade [1], the global gyrokinetic toroidal code (GTC)
s [2] has been successfully applied to the simulations of the toroidal Alfvén eigenmode (TAE),
7 the reversed shear Alfvén eigenmode (RSAE) [3], and the beta-induced Alfvén eigenmode
s (BAE) [4]. In the previous formulation [1], the equilibrium current is not considered in the
o electron continuity equation, and an s-« like (cyclone) magnetic field model is used, in which
10 the equilibrium current effect V x By = 0, because in a lot of cases the equilibrium current
u effect is not important. We want to recover the V x Bj terms in the electron continuity
12 equation and to build a field model with self-consistent finite V x B for completeness of the
13 formulation and for the ability to study the cases where finite V x B effect is important. For
11 example, the equilibrium current affects the existence condition for the RSAE [3]. Recovering
15 the equilibrium current will also enable us to simulate the internal kink mode [5]. In this
16 work, only the linear effects are considered. The nonlinear effects will be discussed in a later

17 work.

18 We start with deriving the electron continuity equation with equilibrium current in Sec. II.
19 'To verify the correctness of the derivation, we show that the GTC formulation reduces to
20 the ideal MHD theory in certain limits in Sec. III. For code implementation, the electron
21 continuity equation with current is expressed in magnetic coordinates and normalized in
2 Sec. IV. Then the field model with finite V x By is derived Sec. V. The equilibrium current
23 effect on RSAE is discussed with analytic calculation and simulation results in Sec. VI.
2 Finally, simulations of a real experiment, the DIII-D discharge #142111 at 750ms, are
25 presented in Sec. VII.

% II. ELECTRON CONTINUITY EQUATION BY INTEGRATING DRIFT-KINETIC
»» EQUATION

s This section is to extend the electron contiuity equation Eq. (10) of Ref. [1] to include

20 equilibrium current and finite V x B,. The drift-kinetic equation with quantities decomposed



3 into equilibrium and perturbed components writes:

(O + X -V + 000 ) [fo (X, vy) + 6 £( X, py v, )] = 0, (1)
. By+6B  cbyx Vo U [
X = U” BD —+ BO —I—EV X b(1+ mbo X VB(i , (2)
v e vy
Bov
. 1BQ+MVXbO+5B Z
o= o (WY By + ZV6) — 0,4y . (3)

a1 Assuming no equilibrium electric field (¢o = 0), and the equilibrium magnetic field is time-

» independent (9, Ao = 0), we can make such substitutions:
gb — 5¢ R 8,5AH — at 5AH , (4)

13 Integrating Eq. (1) over the guiding center velocity space:

2n B
/ dv = 20 / dpduy | (5)
GC m
s we get an equilibrium equation:
NoU|o cV x bo ]DHO Cb() X VBQ PLO cV X b() . VBO
B, Rva el : P, =
°V<B0 )+ 7 V(BO + ~ \% B2 + 75 o=20, (6)

55 and an linear equation:

o
0—8,5571—}-(53 V( 0 ”0)+Bo’UE ( )+B0 (no u)
BO 0 BO

cV X by [yl cbo X VBO 6PL cV x by - VB
+ 7 -V < By 7B 0P,
V x b
TA AL v (7)
By
noU|o N 0| no
= B - . . _
8t5n+5 V( BO )-'-B(] V( BO )+BQUE V(B(])
VBO cV x BO - cV x BQ : VBO
—ny(6v, +vp) - B, + 75 -V P + 75 (0P, —0P))
x B
+n0M Vo, (8)
B3
3 where
ov, = nOZBO by x V(6P 4+ 0P)) 9)



w is the perturbed diamagnetic drift. Apply this equation to the electrons (Z, = —e):

Noel|0e Noe Noe OU|e
0:8t5n6+6B-V( OB”0>+Bo’UE'V(BOO>+BO'V< OBO ”)

0

cV X bO 6P||e Cb() X VB() 5PJ_€ cV X bg . VBO
_ : _ : _ 5P,
e V( By e v B2 eB? +
b
TR (10)
By
N0el|[0e Noe OU|e Noe
- B. B. - —0e " Tlle Bav e - T0e
8t (5ne+5 \V4 < B() ) + 0 \Y ( B() > + boUE \V4 (BO>
VB
—1N0e(0V4e + V) - BOO
cV x By VéP. (0P.—0P)VDB
= - ) ol . 11
* Bg { e eBy 0.V 06 ( )

38 The second and the last term in Eq. (8) are new terms introduced by the equilibrium current

» and finite V x By. Other terms are identical to those in Eq. (10) of Ref. [1].

w0 III. REDUCTION OF GYROKINETIC FORMULATION TO IDEAL MHD

s In this section, we prove that with appropriate approximations, the gyrokinetic formula-

« tion [1] reduces to the ideal MHD theory [6].

a3 A. Reduction of the field equations

1 Gyrokinetic Poisson’s equation [7] with two ion species:

@@(p —66;) + Zin = Y Zadna (12)

a=ti,f,e

s where for the ion species (o =1, f) [8],
~ 1
oz, t) = — /X do fo(X, v, t) (00) (X, 1) , (13)

e (x,t) :/ dv 6 fo (X, vy, 1) (14)
X—x

s and the integral symbol here is short for the integral over the guiding center velocity space

s and the transformation between the guiding center and the particle coordinates:

27 B v,
/ dv z/ T Odudv|/—dX(5(X+p—a:), (15)
X—x 27
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i and ¥, is the gyro-phase angle. From Eq. (15) it can be seen that the first part of the
s integral, which is over the guiding center velocity space, is the same as fGC dv defined in
so £q. (5). The second part of the integral, which is the transformation between the guiding
s center coordinates and the particle coordinates, gives an operator Jo(kLp), where Jo() is the
s2 Bessel function. In the GTC, this Jo(k,p) is reflected in the charge scattering from each
s3 particle’s guiding center to its gyro-orbit when collecting charges from the particles. Note

s¢ that the gyro-averaging on the perturbed field quantities also gives an operator Jo(k, p):

(0¢) = Jo(k1p) ¢ . (16)
ss In the case of k1 p; s < 1, we can expand the J2 operator and keep terms up to O(k? p?).
~ ~ 21By/mg,
Bkion) = % (k—WQ/ )
e
Z230

[ e
72 B,

~1—

k1

=1+ v2 (17)

s Assume that the equilibrium distribution is a shifted Maxwellian for both ion species:

21.Bo

(o — 2 _
fou = L)wexp [ (v uuc;a) T ] o—if. (18)

(277'1),5}1704 2Uth,oz

s7 where vy o = /Ta/Mq is the ion thermal velocity. Then in the linear limit, (5&1 becomes:

~ 1
5¢a i dv 3(2)(klpa) 6¢f0a
Noa JGC

1 2
~— | dv fo (1 y KM€ vi) 5

Noa JGC ZC%BO

= 0 4 o e V2 5¢ (19)

2232
ss Then Eq. (12) reduces to:

Z Lo 0Ny,

a=i,fe
Z2nl Z]%nf ~
(00 — 0) + (66 — 0¢y)
T, T; d
ng;M; + NogsrmMm c?
c? 9
= _MVL 49, (20)



s0 where
B?
2 0
= . 21
4 At (njom; + npomy) (21)

o Note that if the fast ion distribution is not a (shifted) Maxwellian and its density is compa-
e1 rable to the thermal ion density, this reduction may not be valid.

s2  The parallel gyrokinetic Ampere’s law writes:

C
Ebo -V x [V x (5A||bo)]b0 = Z 0J ja (22)

a=i,f,e

s where the vector potential has only the parallel component dA; (6B = 0 limit), and

5]Ha(w, t) = / dv ZaU” 5fa(X, MU, t) o = i, f . (23)
X—x

s« For electrons, the particle position and the guiding center position are not distinguished

ss because of their small gyro-radii (k;p. < 1), so their density and current are simply just:
on,. = / dvdf. , (24)
GC
5J||e = —6/ dv ) (5fe s (25)
GC

s which are described by the electron continuity equation Eq. (11).
&7 In the ideal MHD limit, 0 £ = 0, and as a result:

8,5 (5A|| = —Cbo : V(qu . (26)

¢  Combine Eq. (20), Eq. (22), and Eq. (26) and take the linear normal mode theory sub-

e stitution 0, — —iw and by - V — ikj to get the reduced field equation:

%Vi 6 —iBgy -V {bO -V x [V x (K 5¢bo)]}

By

_Am :
~|—zw§ Z(—sza Mg +V-0J)s) =0. (27)

70 B. Reduction of the ion equation

7 To obtain an equation describing én, and 0., for both ion species (o = i, f), we operate

2 [ x . dv on the gyrokinetic equation, which is used to describe the ions in the GTC. The
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73 gyrokinetic equation is the same as the drift-kinetic equation Eq. (1), except that the field

72 quantities are gyro-averaged in the gyrokinetic equation:

(at + X -V + i)”avu)[f(](X?/’La /UH) + 5f<X7,u7U||at>] =0, (28)
. By+(6B) cbyx V{ig) v 1
X = Y| By + By —I—EV X b(1+j71_9b0 X VBOJ , (29)
(vg) v ;;
Bov
_ 1 By + =51V x by + (§B) Z
o=t VIO (g1 v 60 - Zaoay) . 60

75 Similar to Eq. (16), the gyro-averaging gives a Jo(kLp) operator:

(6B) =Jo(kLp) 0B , (31)
(841) = Jo(k1Lp) 6A) . (32)

7 Integrating the gyrokinetic equation in the linear limit gives:

0:/' dv (3 + X -V + 6yy,) (fou + 0fa)
X —x

N0aU||0c cV x b() P||Oa Cb() X VBO PlOoc cV X bo . VB()
= B, - . . o
0V ( By ) Tz Y < 5, )"z V\m)t Tz 0
N0 U||0c Moo Noa é‘uHa
Sng + 6B -V (2020} | gy v (22 4B, v (el
—I—@tn—i— V( BO )+ oVE V(BO>+ ()V( BO )
¢V xby _ 0P\ cbox VBy _ [(6Pia\ ¢V xby-VBy
I . oP
+ Za V ( BO + Za vV Bg + ZaBg la
cV X b[) mac2 2 P0au||0a ma03b0 X Vpoa Vi 5¢
) at B). _ .
B NoaV 00 + 72B, (ViéB)-V ( B 725 \Y B
mac3P0a(3b0 X VB() + V x Bo) Vi (5(]5
+ 7758 Ve (33)
77 This equation can be separated into the equilibrium equation:
NoaU||0c cV x b() PHOQ Cbg X VB() PLOO( cV X bo . VB()
B . : : P a — O )
0V < Bo )—l— Z \Y% ( B + Z \Y% B2 + Z.B? 10
(34)



7 and the linear equation:

a0 a oz(sa
0:@&M+M}V(%;O)+BWEV(%J+Bwv(% w)

0 0 BO
cV X b() (SIDHQ Cb() X VB() 5PL04 cV X bo : VBO
: — . 5P,
+ Z. V< B + 7. \V4 B2 + 7.5 L
cV X b() My > POQU”OQ m, Cgbo X VP() VQ 5§b
NV 00 +—— (V2 6B) -V - = v
By eV 00+ (VL0B) < B2 722 B,
{i} (i1}
ma63P0a(3b0 X VB() + V x Bo) VQL (5¢
+ 750 Vo (35)
{ii}

79 These two equations are the same as those of the electrons Eqs. (6) and (8) except for the
s last three terms in Eq. (35), which are introduced by the ion finite Larmor radius (FLR)
a effects. In the k) L, ~ ki Ry > 1 limit, the term {ii} becomes:

M CNoa by X V Poy

ik ZoB§  ZaBonoa VVio9
MaC* N0y,
= "0 VV 60, (36)
b
&2 where
- Cb() X VPOa
Yo = ZaBOn()oc . (37>

g3 For the thermal ion species, this term is responsible for producing the kinetic ballooning

se mode [9]. We compare the ordering of this term with the other two FLR terms:

o () ~ 7= &

I\ kpugen (L L L
0 (é%) ~ e <1+ e —252&) . (39)
Ujoa 0

s In the case of Lp,, < Lp,, Lpy, S Luy,, and kjujoa < w, the terms {i} and {iii} are not

ss important and can be dropped. Keeping term {ii} as the only FLR effect, the ion continuity
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&7 equation reforms to be:

Za 065 (07
7.0,6n, + By -V (M)

By
= —iwZ,on, +V - 5J|‘a

Jj0a Z o Moa MaC*Noa 9
~—6B.v (%) _ By, v + VYV
0 (BO) 0vr ( By ) B " 109

6P||a (SPJ_Q cV X bo . VBO
—CVXbo'V(?())—Cb()XVBo'V(Bg)— Bg (5PJ_a
b
NV X0 0V 66 (40)
By

88 C. Combine the reduced equations

g9 The electron continuity equation Eq. (10) reforms to be:

enao 5ua||)

—edyon, — By -V < B

= 1weone + V- 0J .

B Jjoe enoe

0Pe

5PJ_€ cV X bo : VB()
—chbo-V(Bo)—cboxVBg-V<Bg)— B2 0P,
b
—|—Cv 20 - engeV 0o . (41)
By

o Plug Eqgs. (41) and (40) into Eq. (27), and consider Eq. (21), quasi-neutrality > Zonao =0

oo and Ampere’s law for equilibrium ) Jqjo = 2bo - V X By, we get:

— Wy by - Ky 6¢pb
OZW_;UMV35¢_Z-BO_V{ 0~V x [V x (ky d)o)]}
) By
c By
4w 5P|| (SPL VXbO'VBO
—ZLL)? [VXbOV(F@>+bOXVBOV(Bg + Bg 6PJ_ , (42)

2 where 6P| = 0Py, 0P =) 0FP,., and

Wyp = —z"v* -V s (43)
N M; Vyi + NofM Uy s
MM + Normy

v, = (44)

i3 Now the first three terms of Eq. (42) match those of the MHD equation [6]. The last

u term, i.e., the pressure term, needs more analysis.

9



s D. The pressure term mismatch is negligible

o6  For comparison convenience, we write down the pressure terms (with the —iwdm/c coef-

o ficients removed) from the two different approaches:

b
By
53‘ 6PL V X bg . VB()
PTGKZVXbOv(FO)_‘_bOXVBOV(Bg) Bg 5PJ_
by x VB V x By
:T-V(éPL—HSPH)—l— i -VOP,
0 0
V x By-VB
e (6PL = 0P)) . (46)
By
¢ Assume 0P is diagonal:
(S]P == 5P||b[)b0 —+ 6PJ_<]I - bobo)
= 6P, T+ (3P — 6P )boby . (47)
o Then we have:
VXBO+b0><VBO boXVBO (VXB())L 5PH—(SPJ_
PT = -VoP, + ——— - VoP + ——— _
MHD B2 VoP, + B2 VP + B \Y% B
5P||_5PJ_ (VXB())L VXB()'VBO
=ty - . 4
+ B {V { B, B (48)
o For a first glance, Eq. (48) seems to differ from Eq. (46). We calculate the mismatch:
PTyup — PTak
bo
pu— . — . ]P
\Y (Bo x V-0 )
boXVBO VXBO VXB[)‘VBO
- T-V(dPleéP“)—l— 7 -VoP + 53 (0P, —0FP))
R 0 N 0 . 0 B
{1} {2} {3}
V x BO (V X BQ)” 5F)|| (V X BO)J_ (SPJ_
— VP, — VN _ .
B2 Vob By VG By V5
6P|| (V X BO)J_ V X BO . VB(] 5PJ_ (V X BO)J_
+—<V- — 5 — V-
By B, B2 B, B
V x B
= P gp - om)
B;
1)
V x By), - VB V- (VxB
12 V2B Vo sp, oy VAV Bl (49)
B N B3 y
) 6}
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101 It can be immediately seen that if 0P, = 6P, the mismatch vanishes. In the case 0P, # 6,
w2 assuming O(6P,) ~ O(6P)) ~ O(6P, £+ §F)), the mismatch is shown to be small compared
103 to the pressure term as follows.

s Here we use the scalings of by < ki, ki Ry > 1, O(BRy/Lp,) ~ 1, and O((2 —s)/q) ~ 1.
10s We first estimate the order of the terms {1}, {2}, {3} to find out the leading order of the

106 pressure term.

oy ~ L2 50
oteh~ (e + 150 5) B o
O({3)) ~ %‘”;L , 52)
O(%)Nzﬁﬁ*ts%”v (53)
¢ (%) b 2%;@130 <l (54)

w7 The term {1} and {2} are the leading order terms. Next we only need to compare the
10s mismatch with the term {1}, which is one of the leading order terms. Using Eqgs. (A5) and
109 (A6), we get:

O({4}) ~ qu;;Okn 0P (55)
O({3}) ~ O} ~ o 2 (5)

0({4})~2_3ﬂ<<1 (57)

{1} q ki
o()~o(() - o <.

1o Therefore, the mismatch is not important and the gyrokinetic model reduces to the ideal

i MHD model with appropriate approximations made.

112 E. Discussions about the fast ions in different simulation models

us  There are two major simulation approaches to study the fast ion physics: the pure gyroki-
us netic approach [3, 4, 10-16] and the hybrid MHD-gyrokinetic approach [17-20]. A typical
s model for the pure gyrokinetic approach is based on the gyrokinetic equation Eq. (28) and

11



s the gyrokinetic field equations, i.e., the gyrokinetic Poisson’s equation Eq. (12) and the gy-
17 rokinetic Ampere’s law Eq. (22). A typical model for the hybrid approach [6] is based on the
us MHD equations, with the fast ion pressure tensor calculated from the gyrokinetic equation.
ne We have shown that these two models agree with each other in the derivations above, so it

120 makes sense to compare the simulation results from the two different approaches [3, 4].

122 However, it should be kept in mind that the simulation results should not be expected to
122 be identical even if the geometry, the numerical schemes and other simulation situations are
123 identical, because the agreement between the two models are based on a number of approx-
124 imations. In the hybrid model, the interaction between the fast ions and the background
125 plasma is reflected only in the pressure term. Although being higher order, the pressure
126 term mismatch between the two models would cause simulation result difference. In the gy-
127 rokinetic model, under certain conditions, the fast ions can have other kinds of interactions
128 with the background plasma besides the pressure term. For example, when k; py Z 1, the
120 expansion of the Bessel function in Eq. (17) is no longer valid. As a result, the terms of
150 order O(k? p;%) and higher can cause noticeable effects. When the equilibrium flow of either
wm of the ion species is strong enough, i.e., wjoo < w/kj (o = i, f), the FLR term {¢} in Eq. (35)
132 becomes at least as important as the diamagnetic term {i¢}. When the fast ion distribution
133 is not a (shifted) Maxwellian, Eq. (20) needs to be corrected, causing another difference
134 between the two models. Although most of these effects should be small when the fast ion
135 density is much smaller than the thermal ion density, they may still be noticeable in the

136 simulations.

157 IV. IMPLEMENTATION OF THE ELECTRON CONTINUITY EQUATION WITH
138 CURRENT

130 Using the Ampere’s law:

Cc
Ebo -V X BO = z?; Za”OauHOa — €Npel||oe - (59)
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1o Eq. (11) for electron becomes:

- Zoz L0 W0 C e(S e
0=0;0n.+0B -V (Z T;OBUHO — 477‘23 by -V x Bo) + By -V (M)
v 0 0

Noe VB
+Bovg -V <£§0) — N0e(0Vse + V) - BOO
"V x B VoP,. (0P.—0P.)VB
Sl (0P, Ie)  Fne Vo . (60)
Bg e eBy
——
{1} {11}

11 The term {/1} comparing to the term {I} is of order 1/(k; Ry) < 1, so it can be dropped.

12 A. Current terms in magnetic coordinates

13 The magnetic coordinates [1, 21] are used in the GTC, so the equilibrium magnetic field

14 is expressed as:

By = g()VC+1(¥)VO+ (4, 0) VY (61)
=qVyY x VO -V x V(. (62)
us The Jacobian is:
T P=Vy VO x V(= By (63)
B g+ 1
us  The curvature of the magnetic field then writes:
V x By= gV xV(+ (I' —9p0)Vip x VO | (64)

117 where the prime symbol () denotes the derivative with respect to 1. The parallel component

148 Writes:

g(I' — 9p0) — Iy’

bo‘VXBOIBO gq—|—] (65)
1o The second term in Eq. (60) can be expanded into two components:
Za NoaU||0a
ZasB .-
“5B.v ( - )
~ Zoc Moo U)|0a
I GV(SA”XbO V( BO >
jil NoaU||0a N0 U||0c
= — (gag 5A|| - Iac 5A||)8¢ — | + ((58( 5A|| — g&p (514“)89 —_—
By By By
M0 U||0a
—i—(]aw (514” — 56@ (514“)8( ( BO ) :| . (66)
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150

151

152

153

154

_053.v<b0’v><B0>

4dme By
g(I' — 00) — lg’}
gq+1

A ———V A x by V [
4dme

where

c J1 g§8§5> g*d30
= ——— |—9(0y5)(0p0A 10,8 Oc0A)) — Oy 6A
=T [o@usinoa + 10,5+ 9% 0oy - L0 5,04
g(I" — 0pd) — Ig']
O0pS = 0,
Y Y { gq+1
_ 90" = 04090) — g'0p0 — 19" [9(I" = 3pd) — I¢'](¢'a + 94" + 1)
99+1 (99 + 1)
The last term in Eq. (60) becomes the summation of these two terms:
cV x By c , ,
—— =——|— — Pl .
(:‘Bg \Y (SPeH (gq+ 1) [ g' 0y 5Pe|| + (7 (995)8( 4] GH]
CVXBO L NepC Y, o
neng'V(5Q— gq+[[ G'0p 0+ (I' — 090)0; I )] .

B. Normalization of the current terms

Follow the normalization units and symbols in Ref. [1]. Normalize Eq. (60) to be:

. N0a 00 2 p? b,-V x B
O—aténe—l—ZZa()B-V( OB’O"O >_6%6B'V<OBOO>
ae a

Thep Ol .
+B0v 0 I +B()UE'V fleo —neo(ve*+vE)-
By By

VB,
By

156 Where

V X BO (6PLE — 5PH5)VBO
Bg . {—V 5P@H — By + Neg - VOO ,
8mn 1y,
/B(l = BZ 9
pa - meZ )

157 with T}, being the electron on-axis temperature. Normalizing Eqgs. (66)—(70):

10aU||0a
Za0B - e
v < By >

\7*1 10 U0 Toa 00
" By [(989 GA) — 19 0A))0y <OT”°> + (60 5A) — gDy 5A;)0s ( ano )
0 0 )
(10, 6A) — 305 04))3; (_”chma) } |
0

14

, (67)

(68)

(69)

(70)

(71)

(72)

(73)



158

2 p2 bU'VXBO
_“FasB. oV 20
2 p2 J! [ ( 95835) g*030
= 2= | —g(0,5)(0y0A 10,5 o 0A)) — 0y 0A (75
LR By 9(0pS)(0p 6 A)) + | 10y +gq+l (Oc 0A)) gq+I(w Dl »(75)
159
gU“—@ﬁ)—fdl
0y S = 0,
v w[ 9q+1
_gI" — 0y090) — g'0p0 — 1g"  [g(I" — 0pd) — 19')(9'q + 94’ + ')
_ - i (79
99 +1 (99 +1)
- V x B, 1
- VP =———[—¢'0y 0P, I' — 0p0)0; 0P, , 77
B 1= =g p 7990 0Fe + (I = 300)0c 0Fy (77)
o / V X BO . Neo , ,

12 V. EXTEND THE MAGNETIC FIELD MODEL TO RECOVER FINITE V x By

13 In this section we keep using the normalized quantities. All quantities in this section
164 are equilibrium quantities, so the equilibrium subscript 0 for the magnetic field is omitted.

165 Previously in the GTC, an s-a like (cyclone) magnetic field model (citation?) is used:

B=1-¢ccosh+O(?) (79)
I=0+0(?) , (80)
g=1+0(), (81)
§=0+0() , (82)
0 =0+ O(e) , (83)
(=G+0(e), (84)

166 where € = 1/ Ry is the normalized radial coordinate, 6y and (y are the geometric poloidal and
167 toroidal angles, and 6 and ( are the corresponding magnetic coordinates. Such a field model
168 makes all the derivatives of g and I zero, and thus leading to zero equilibrium current terms.
10 Here we extend this field model to a higher-order one to recover the equilibrium current.

o Assume concentric circular magnetic surfaces.

d ded g¢qd
r_ - _ = _ 417 85
dyp  dypde  ede’ (85)
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i In the large-aspect-ratio limit, we expand the field related quantities with respect to e:

B=1—ccosby+eBy+ By + -+, (86)
[=EL+ L+, (87)
g=1+gp+eg+ -, (88)
0 =0+ el + ey +--- (89)
(=C+ea+€E€Q+- -, (90)

12 where ¢g; and I; (i = 2,3,---) are functions of the safety factor ¢; and B;, 0;, and (; (i =

w3 1,2, -+ +) are periodic functions of 6.

s We want the field model to satisfy these conditions:

175

The Jacobian satisfies J ' = V¢ - VO x V( = B?/(gq + I) so that I is a function of

176 only 1 (equivalently e, because of concentric circular flux surfaces).

The radial component of the field is zero because of concentric circular flux surfaces:

178 B€=65/q+fa€9+986C:O.

177

179 The field magnitude expression is consistent with the covariant representation: B =

180 [0V + IVO + gV (|.

The field line is straight in the (6, () space, so B - V(/(B - V0) = q(v) with g being

181

182 the safety factor which is independent of € and (.

183 Plug the expansions Egs. (86)—(90) into the above conditions, and solving them up to the

16



18 O(€) order gives:
B =1—c¢ecosby+ O(?) ,
§ = esinby + O(e?) = esinf + O(¢*)
1=S 1o,
I = 2q— s+ 0(e?)

(
(
(
(
g=1+0(), (95
g =0(), (
(
(
(

0 =0y — esinfy + O(€?) , 97

0y = 0 + esinf + O(e?) | 98

(=G +O0(e), 99

V x By =O0()Vi x VC+[(2 — 5) — ecos 4+ O(e))|Vep x VO | (100
bO-VxBoz‘gol[(Q—s)—ECOSGO—FO(e)]. (101

15 Although it is straightforward to solve the equations up to the O(e?) order, such a model
1ss would not be very useful because other effects come into play at the order of O(e?) or even
187 lower, such as the Shafranov shift, and the finite pressure gradient effect. The field model of
18 order O(e), i.e., Egs. (91)—(99), is good enough to recover the parallel current and is therefore
150 implemented. It is straightforward to show that in Eqs. (74)—(78) the terms containing the
10 nonorthogonality factor ¢ are one order smaller than the leading order and thus are dropped

101 in the implementation for simplicity.

12 VI. EQUILIBRIUM CURRENT EFFECT ON THE RSAE
13 A. Analytic calculation

1ws  In a simple geometry with concentric-circular flux surfaces, in the uniform plasma and
105 zero-f3 limit, considering only one n and m harmonic d¢(r,0,¢) = 5$(r) expli(n¢ — m#)],

106 Eq. (42) near the gy, surface becomes [3]:

1d d - m?> -~ D _.
—— [ rA— — —ANdp— —d0¢ = 102
rdr (r dr&b) r? ¢ r 9=0, (102)
107 where
w? )

17



108 D represents contributions from fast ion pressure, background plasma pressure gradient,
100 toroidal coupling, magnetic shear, etc. The first two terms of Eq. (102) give the Alfvén con-
200 tinuum. The last term determines whether an eigenmode exists near the Alfvén continuum
201 extremum. Here we only consider the magnetic shear effect. When the equilibrium current
202 1S ignored,

D= ka‘/‘ + Tk||]€|/|/ . (104)

203 At the gumin surface, noting that k| = 0 and & # 0, D is non-zero and an RSAE exists as

204 can be shown by numerically solving Eq. (102). With the equilibrium current recovered,
D = —Qka"‘ , (105)

205 Which is zero at the ¢, surface and thus eigenmode does not exist. Note that other effects

s contributing to D mentioned above may bring back the eigenmode.

N
o

207 B. Verification in simulation

208 To verify the implementation of the current, we simulate a case in a simple geometry which
200 should recover what the analytic calculation shows. The parameters are taken from Ref. [3].

210 The ¢-profile is shown in Fig. 1(a), whose corresponding Alfvén continua of n = 4, m = 6 and

=

aun = 4,m = 7 without coupling are shown in Fig. 1(b). The n = 4, m = 6 mode is studied
212 here to avoid distraction by the toroidal coupling effect, because the toroidal coupling effect
213 cannot make an RSAE below the continuum minimum [22]. In the ideal MHD limit, the
25 RSAE exists when the equilibrium current is not taken into account.

26 The differences between the simulations without and with equilibrium current can mainly
217 be seen in the contour plots of ¢ in the radial-time space in Fig. 2. In Fig. 2(a), which is
218 corresponding to the case without equilibrium current, as an eigenmode exists, the mode
210 structures are horizontal, indicating that d¢ at every radial location oscillates at the same
20 eigenmode frequency. For the case with equilibrium current shown in Fig. 2(b), since no
21 eigenmode exists, d¢ at every radial location oscillates at the local continuum frequency,
22 leading to the bending of the mode structures or the so-called phase-mixing. The quick
23 damping of the mode amplitude in Fig. 2(b) also indicates that there is no eigenmode in
24 this case. Therefore, the simulation results are consistent with the analytic calculation in

226 Sec. VI A

18
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FIG. 1. (a) Safety factor g-profile. (b) Alfvén continua of n =4, m =6 and n =4, m = 7 in ideal

MHD limit and without linear coupling.
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FIG. 2. Contour plots of ¢ in the radial-time space in RSAE simulations (a) without equilibrium

current; (b) with equilibrium current. The time is normalized to Ro/vap, where v4,, is defined as

vap = Ba/+/Amngmy,

27 VII. SIMULATIONS OF DIII-D DISCHARGE #142111 AT 750ms

2s  One of the most significant energetic-particle-driven modes in the DIII-D discharge
29 #142111 at the time of 750ms is the RSAE. The magnetic field, including the flux surface
230 structure, field magnitude, and the g-profile, the density and the temperature profiles of all
21 three species, i.e., the electron, the background ion, and the fast ion, are loaded from the
» experimental data into the GTC. The equilibrium profiles are shown in Fig. 3. The quin

233 surfaces is at p = 0.33 where p is the square root of the normalized toroidal flux. ¢, takes

19



FIG. 3. Equilibrium profiles in DIII-D discharge #142111 at 750ms: (a) g-profile, (b) background

plasma density, (c¢) fast ion density, (d) background plasma temperature, (f) fast ion temperature.

23 the value 3.1828. Both ion species are deuterium nuclei.

26 The n = 3 and n = 4 modes have been successfully simulated, respectively. For the
o n = 3 mode, before adding in the fast ions, the background plasma pressure effects are
238 tested. When fast ions are not loaded, the thermal ion density is loaded to be the same as
23 the electron density so as to retain neutrality. In the zero temperature ideal MHD limit,
20 giving an initial perturbation near the ¢, surface produces an RSAE-like mode shown in
21 Fig. 4(a) and (b). The mode frequency is listed as the case (I) in Table I and marked on
22 the Alfvén continuum plot in Fig. 5(a). To study the finite-3 effect, various simulation cases

23 are done as listed in Table I and their frequencies are marked on the corresponding Alfvén

20
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FIG. 4. Mode structures for n = 3 mode: (a)(c) poloidal contour plots of d¢ for case (I) and case

(VI), respectively, (b)(d) m-harmonic decomposed d¢ for case (I) and case (VI), respectively.

2aa continuum plots in Fig. 5. The Alfvén continua are calculated using the m-spectral method
25 in the slow sound approximation described in Appendix B with the kinetic consideration
a6 [23]: vsPy = Poe + TPy;/4. Adding in the finite electron temperature from case (I) to
27 case (II) raises the Alfvén continua and the mode frequency due to the electron geodesic
s compressibility. From case (II) to case (III) the ion geodesic compressibility is recovered to
200 Taise the continua and mode frequencies even more. In case (III) due to the presence of the
250 ion pressure gradient, the ion kinetic damping cannot be seen, so in case (IV) the pressure
251 gradient drive is artificially suppressed to show the damping effect. Moving the ion pressure
2 effect to be carried by electrons and getting the same mode frequency, case (V) shows that
253 other than the 7/4 coefficient for ion, the ion pressure and the electron pressure contribute

258 t0 the mode frequency in a very similar way.

»s  When the fast ions are added, which is the case (VI) in Table I, the mode frequency is

21
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FIG. 5. Alfvén continua with slow sound approximation for n = 3: (a) zero-£ limit, (b) only include
electron f3, (¢) complete background plasma . The horizontal lines are the frequencies obtained
in various simulation cases described in Table I. The width of each horizontal line represents the

FWHM of the mode structure.

further raised. The non-perturbative mode structure modification by fast ions can be seen in
the poloidal mode structure in Fig. 4(c). In the m-harmonic decomposition plot in Fig. 4(d),
it can be seen that besides the dominant m = 10 harmonic, there is a sub-dominant m =9
harmonic. This is because the time 750ms is during the mode transition from RSAE to
TAE [22]. The mode seen in simulation is something between an RSAE and a TAE. In one
situation it may be more RSAE-like, such as the cases (I)-(V). In another situation it could

be more TAE-like, such as the fast ion driven case (VI).

(n = 4 case pending to add)
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TABLE I. Various simulation cases and resulted frequencies to test the finite-5 effect on the n = 3

mode
Case Description (wr,7)/(vap/Ro) |(wr,7v)/(2m)/kHz| ~/w,
(I) Zero temperature ideal MHD 0.103 73.8

(IT) Finite JE)|, adiabatic e~ with real T, profile (0.113,-0.00208) | (80.9,—1.49) |—0.0185

and kinetic ions with only 2% of real T;

(III) | Same as case (II) except for real T; profile recovered 0.118 84.7

(IV) Same as case (III) except that kinetic ion (pending measure)

gradient drive is artificially suppressed

(V) Same as case (II) except that electrons carry (0.118,—0.00273) | (84.6,—1.96) |—0.0231

the total pressure (T, < T + 71;/4)

(VI) |Same as case (IV) except that fast ions are added in| (0.130,0.00919) (92.9,6.59) 0.0710

%7 Appendix A: Estimation of some magnetic field parameters in a tokamak

s Noticing the safety factor ¢ ~ rB;/(RoBy) = €B¢/Bp, the equilibrium magnetic field

260 Writes:

By = Byb + B¢
— B, (fé+é) .
q

20 where By and B¢ are the poloidal and the toroidal component, respectively, while 6 and f
on are the unit vectors in the poloidal and the toroidal direction, respectively. The toroidal

o2 vacuum field writes:

BaRO Ba
B = = : Al
¢ R 1+ ecosf (A1)
213 This can be used to estimate the parallel component of V x By:
€
. By
~(—((2—3), A2
(o 2-3) (42)
2ra where
_rde (A3)
~ qdr



o is the magnetic shear. For the perpendicular component of V x By, the force balance

216 equation is used:

1
VP():—J()XBO
C

1
= — B By . A4
47T(V x Bo) x By (A4)
o Take bygx Eq. (A4) to get:
4
(V x Bo). = —by x VB . (A5)
By
s Meanwhile,
V- [(V X BO)J_]
b
= A7V - (gf; X VPO)
4
:§<VXB()+2bO XVB())'VP() . (A6)
0
29 We also have:
B . B .
VBy~ — ;’;joRz —ﬁz(ﬁcosé’—esinﬁ) (A7)
280
BO a . A ~€
bOXVBO%R— —rsm9—00089+§’56089 (A8)
0

281 Appendix B: Alfvén continuum calculation

2 In realistic situations, simple estimation of the Alfvén continuum like wy ~ (ng —
203 m)va/(qRy) is not good enough. Such an estimation would introduce fairly large inac-
2sa curacy by geometric effects, finite-g effect, etc. In this section an m-spectral method is
25 used to solve the ideal MHD Alfvén continuum equation [24] in the slow sound (low-3)

266 approximation [25].

27 The Alfvén continuum equation writes [24]:

Ell ]E12 és
EQI ]E22 V- é

~0, (B1)
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288 where

A pprw? |V |? IV|?Bg - V
EHZT‘FBO'V B—g ) (B2)
ElZ = 47TP)/5POK'S s (B3)
Eo1 = ks, (B4)

drysPo+ By vsh B, -V
22 B + g 0"V B2 (B5)

289
By x Vv

Ke = 2K - Tg , (B6)
K,:bo'VbO:(VXbo)Xb[). (B?)

200 Using the magnetic coordinates mentioned in Sec. IV A, some vector expressions can be

201 simplified:

By-V =7 "0+ q0) , (B8)
o 2g! 1\ 277
Rg = — BO qg (89§0) = BS’ 8930 . (B9>

22 In the GTC, |V)|? can be calculated using the splines of the poloidal Cartesian coordinates
203 (X 2 ):

2 2
1 1
’V¢’2 = (an>2 + (3Z¢)2 = ( F) Z) + ( F) X) : (Bl())
X — 0 X 55 OZ — 0 Z 5+
2« Equation (B1) is an eigenvalue equation with w? being the eigenvalue. The second term
205 Of 99 is w-dependent, which complicates the problem. However, comparing to the first term

296 giVGSI

s I By-V
i Bo -V <—r§0 ) _ —AmyRki/Umpne?®) Ay Py/BE 3
APyt B (4mysPo+ B3)/Bs  (4nv.Py+ B3)/Bj B+1) "7
' (B11)
207 This shows the second term of Egs can be dropped in the low-£ limit, which is the slow

208 sound approximation in Ref. [25]. In this approximation, Eq. (B1) becomes:

ATppw

2 [VU[! | Bo-V (\WPBO-V) _ 4my PoRlBg
J

s=20. B12
7t B APy + Bg)] $ (B12)
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200 Expanding #-dependent quantities as summations of m-harmonics:

fs _ einC Z(fs)meiimg ’

[VyPT ! [Vv27—1
B3 B Jm
[V - § : [Vy|? oim
BT 1 B§T ) '
4y Por2 B2 m 4y Pors2 B2
T~ H(4mysPy+B3) I~ HdmysPo+B3) /.

w0 Using {e~"’} as basis, Eq. (B12) can be written in this matrix form:
(GTHG + N)¢, = dmppw?Jé,
so0 which is a generalized eigenvalue problem, with 47py;w? being the eigenvalue,

§s = ( T (58)771_17 (58)7717 (£S)m+1’ T )T

s2 being the eigenvector. The operator matrices and their elements are:

G = —iB};lv G = (ng — M)y m
_ VeI _ (VeI
H= "0 How = (S —)
S_IveE (e
B(%j_l m’m ng_l m/—m

N:

4y, Py’ B2 N, 4ry, Pok* B3
j_1(4W75P0 + BEQ)) . j_1(47T78P0 + Bg) m/—m

(B13)

(B14)

(B15)

(B16)

(B17)

(B18)
(B19)

(B20)

203 A code based on the eigenvalue library SLEPc [26] is written to solve Eq. (B15) to give the

04 Alfvén continuum plots in Sec. VII.
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