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I. INTRODUCTIONS4

With the recent electromagnetic upgrade [1], the global gyrokinetic toroidal code (GTC)5

[2] has been successfully applied to the simulations of the toroidal Alfvén eigenmode (TAE),6

the reversed shear Alfvén eigenmode (RSAE) [3], and the beta-induced Alfvén eigenmode7

(BAE) [4]. In the previous formulation [1], the equilibrium current is not considered in the8

electron continuity equation, and an s-α like (cyclone) magnetic field model is used, in which9

the equilibrium current effect ∇×B0 = 0, because in a lot of cases the equilibrium current10

effect is not important. We want to recover the ∇ × B0 terms in the electron continuity11

equation and to build a field model with self-consistent finite ∇×B0 for completeness of the12

formulation and for the ability to study the cases where finite∇×B0 effect is important. For13

example, the equilibrium current affects the existence condition for the RSAE [3]. Recovering14

the equilibrium current will also enable us to simulate the internal kink mode [5]. In this15

work, only the linear effects are considered. The nonlinear effects will be discussed in a later16

work.17

We start with deriving the electron continuity equation with equilibrium current in Sec. II.18

To verify the correctness of the derivation, we show that the GTC formulation reduces to19

the ideal MHD theory in certain limits in Sec. III. For code implementation, the electron20

continuity equation with current is expressed in magnetic coordinates and normalized in21

Sec. IV. Then the field model with finite ∇×B0 is derived Sec. V. The equilibrium current22

effect on RSAE is discussed with analytic calculation and simulation results in Sec. VI.23

Finally, simulations of a real experiment, the DIII-D discharge #142111 at 750ms, are24

presented in Sec. VII.25

II. ELECTRON CONTINUITY EQUATION BY INTEGRATING DRIFT-KINETIC26

EQUATION27

This section is to extend the electron contiuity equation Eq. (10) of Ref. [1] to include28

equilibrium current and finite∇×B0. The drift-kinetic equation with quantities decomposed29
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into equilibrium and perturbed components writes:30

(∂t + Ẋ · ∇+ v̇‖∂v‖)[f0(X, µ, v‖) + δf(X, µ, v‖, t)] = 0 , (1)

Ẋ = v‖
B0 + δB

B0

+
cb0 ×∇φ

B0︸ ︷︷ ︸
vE

+
v2
‖

Ω
∇× b0︸ ︷︷ ︸
vc

+
µ

mΩ
b0 ×∇B0︸ ︷︷ ︸

vg

, (2)

v̇‖ = − 1

m

B0 +
B0v‖

Ω
∇× b0 + δB

B0

· (µ∇B0 + Z∇φ)− Z

mc
∂tA‖ . (3)

Assuming no equilibrium electric field (φ0 = 0), and the equilibrium magnetic field is time-31

independent (∂tA‖0 = 0), we can make such substitutions:32

φ→ δφ , ∂tA‖ → ∂t δA‖ , (4)

Integrating Eq. (1) over the guiding center velocity space:33 ∫
GC

dv =
2πB0

m

∫
dµdv‖ , (5)

we get an equilibrium equation:34

B0·∇
(
n0u‖0
B0

)
+
c∇× b0

Z
·∇
(
P‖0
B0

)
+
cb0 ×∇B0

Z
·∇
(
P⊥0

B2
0

)
+
c∇× b0 · ∇B0

ZB2
0

P⊥0 = 0 , (6)

and an linear equation:35

0 = ∂t δn+ δB · ∇
(
n0u‖0
B0

)
+B0vE · ∇

(
n0

B0

)
+B0 · ∇

(
n0 δu‖
B0

)
+
c∇× b0

Z
· ∇
(
δP‖
B0

)
+
cb0 ×∇B0

Z
· ∇
(
δP⊥
B2

0

)
+
c∇× b0 · ∇B0

ZB2
0

δP⊥

+
c∇× b0

B0

· n0∇ δφ (7)

= ∂t δn+δB · ∇
(
n0u‖0
B0

)
+B0 · ∇

(
n0 δu‖
B0

)
+B0vE · ∇

(
n0

B0

)
−n0(δv∗ + vE) · ∇B0

B0

+
c∇×B0

ZB2
0

· ∇ δP‖ +
c∇×B0 · ∇B0

ZB3
0

(δP⊥ − δP‖)

+n0
c∇×B0

B2
0

· ∇ δφ , (8)

where36

δv∗ =
c

n0ZB0

b0 ×∇(δP⊥ + δP‖) (9)

3



is the perturbed diamagnetic drift. Apply this equation to the electrons (Ze = −e):37

0 = ∂t δne + δB · ∇
(
n0eu‖0e
B0

)
+B0vE · ∇

(
n0e

B0

)
+B0 · ∇

(
n0e δu‖e
B0

)
−c∇× b0

e
· ∇
(
δP‖e
B0

)
− cb0 ×∇B0

e
· ∇
(
δP⊥e
B2

0

)
− c∇× b0 · ∇B0

eB2
0

δP⊥e

+
c∇× b0

B0

· n0e∇ δφ (10)

= ∂t δne+δB · ∇
(
n0eu‖0e
B0

)
+B0 · ∇

(
n0e δu‖e
B0

)
+B0vE · ∇

(
n0e

B0

)
−n0e(δv∗e + vE) · ∇B0

B0

+
c∇×B0

B2
0

·
[
−∇ δP‖e

e
− (δP⊥e − δP‖e)∇B0

eB0

+ n0e∇ δφ
]

. (11)

The second and the last term in Eq. (8) are new terms introduced by the equilibrium current38

and finite ∇×B0. Other terms are identical to those in Eq. (10) of Ref. [1].39

III. REDUCTION OF GYROKINETIC FORMULATION TO IDEAL MHD40

In this section, we prove that with appropriate approximations, the gyrokinetic formula-41

tion [1] reduces to the ideal MHD theory [6].42

A. Reduction of the field equations43

Gyrokinetic Poisson’s equation [7] with two ion species:44

Z2
i ni
Ti

(δφ− δφ̃i) +
Z2
fnf

Tf
(δφ− δφ̃f ) =

∑
α=i,f,e

Zαδnα , (12)

where for the ion species (α = i, f) [8],45

δφ̃α(x, t) =
1

nα

∫
X→x

dv fα(X, µ, v‖, t) 〈δφ〉 (X, t) , (13)

δnα(x, t) =

∫
X→x

dv δfα(X, µ, v‖, t) , (14)

and the integral symbol here is short for the integral over the guiding center velocity space46

and the transformation between the guiding center and the particle coordinates:47 ∫
X→x

dv ≡
∫

2πB0

m
dµdv‖

∫
dϑc
2π

dX δ(X + ρ− x) , (15)
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and ϑc is the gyro-phase angle. From Eq. (15) it can be seen that the first part of the48

integral, which is over the guiding center velocity space, is the same as
∫

GC
dv defined in49

Eq. (5). The second part of the integral, which is the transformation between the guiding50

center coordinates and the particle coordinates, gives an operator J0(k⊥ρ), where J0() is the51

Bessel function. In the GTC, this J0(k⊥ρ) is reflected in the charge scattering from each52

particle’s guiding center to its gyro-orbit when collecting charges from the particles. Note53

that the gyro-averaging on the perturbed field quantities also gives an operator J0(k⊥ρ):54

〈δφ〉 = J0(k⊥ρ) δφ . (16)

In the case of k⊥ρi,f < 1, we can expand the J2
0 operator and keep terms up to O(k2

⊥ρ
2).55

J2
0(k⊥ρα) = J2

0

(
k⊥

√
2µB0/mα

Ωα

)

≈ 1− µmαc
2

Z2
αB0

k2
⊥

= 1 +
µmαc

2

Z2
αB0

∇2
⊥ (17)

Assume that the equilibrium distribution is a shifted Maxwellian for both ion species:56

f0α =
n0α

(2πvth,α)3/2
exp

[
−(v‖ − u‖0α)2 − 2µB0

mα

2v2
th,α

]
α = i, f , (18)

where vth,α =
√
Tα/mα is the ion thermal velocity. Then in the linear limit, δφ̃α becomes:57

δφ̃α =
1

n0α

∫
GC

dv J2
0(k⊥ρα) δφf0α

≈ 1

n0α

∫
GC

dv f0α

(
1 +

µmαc
2

Z2
αB0

∇2
⊥

)
δφ

= δφ+
mαc

2Tα
Z2
i B

2
0

∇2
⊥ δφ (19)

Then Eq. (12) reduces to:58 ∑
α=i,f,e

Zα δnα

=
Z2
i ni
Ti

(δφ− δφ̃i) +
Z2
fnf

Tf
(δφ− δφ̃f )

≈ −(n0imi + n0fmf )c
2

B2
0

∇2
⊥ δφ

= − c2

4πv2
A

∇2
⊥ δφ , (20)
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where59

v2
A =

B2
0

4π(ni0mi + nf0mf )
. (21)

Note that if the fast ion distribution is not a (shifted) Maxwellian and its density is compa-60

rable to the thermal ion density, this reduction may not be valid.61

The parallel gyrokinetic Ampère’s law writes:62

c

4π
b0 · ∇ × [∇× (δA‖b0)]b0 =

∑
α=i,f,e

δJ‖α , (22)

where the vector potential has only the parallel component δA‖ (δB‖ = 0 limit), and63

δJ‖α(x, t) =

∫
X→x

dv Zαv‖ δfα(X, µ, v‖, t) α = i, f . (23)

For electrons, the particle position and the guiding center position are not distinguished64

because of their small gyro-radii (k⊥ρe � 1), so their density and current are simply just:65

δne =

∫
GC

dv δfe , (24)

δJ‖e = −e
∫

GC

dv v‖ δfe , (25)

which are described by the electron continuity equation Eq. (11).66

In the ideal MHD limit, δE‖ = 0, and as a result:67

∂t δA‖ = −cb0 · ∇ δφ . (26)

Combine Eq. (20), Eq. (22), and Eq. (26) and take the linear normal mode theory sub-68

stitution ∂t → −iω and b0 · ∇ → ik‖ to get the reduced field equation:69

ω2

v2
A

∇2
⊥ δφ− iB0 · ∇

{
b0 · ∇ × [∇× (k‖ δφb0)]

B0

}
+iω

4π

c2

∑
α

(−iωZα δnα +∇ · δJ‖α) = 0 . (27)

B. Reduction of the ion equation70

To obtain an equation describing δnα and δJ‖α for both ion species (α = i, f), we operate71 ∫
X→x

dv on the gyrokinetic equation, which is used to describe the ions in the GTC. The72

6



gyrokinetic equation is the same as the drift-kinetic equation Eq. (1), except that the field73

quantities are gyro-averaged in the gyrokinetic equation:74

(∂t + Ẋ · ∇+ v̇‖∂v‖)[f0(X, µ, v‖) + δf(X, µ, v‖, t)] = 0 , (28)

Ẋ = v‖
B0 + 〈δB〉

B0

+
cb0 ×∇〈δφ〉

B0︸ ︷︷ ︸
〈vE〉

+
v2
‖

Ω
∇× b0︸ ︷︷ ︸
vc

+
µ

mΩ
b0 ×∇B0︸ ︷︷ ︸

vg

, (29)

v̇‖ = − 1

m

B0 +
B0v‖

Ω
∇× b0 + 〈δB〉
B0

· (µ∇B0 + Z∇〈δφ〉)− Z

mc
∂t
〈
δA‖

〉
. (30)

Similar to Eq. (16), the gyro-averaging gives a J0(k⊥ρ) operator:75

〈δB〉 = J0(k⊥ρ) δB , (31)〈
δA‖

〉
= J0(k⊥ρ) δA‖ . (32)

Integrating the gyrokinetic equation in the linear limit gives:76

0 =

∫
X→x

dv (∂t + Ẋ · ∇+ v̇‖∂v‖)(f0α + δfα)

= B0 · ∇
(
n0αu‖0α
B0

)
+
c∇× b0

Zα
· ∇
(
P‖0α
B0

)
+
cb0 ×∇B0

Zα
· ∇
(
P⊥0α

B2
0

)
+
c∇× b0 · ∇B0

ZαB2
0

P⊥0α

+∂t δnα + δB · ∇
(
n0αu‖0α
B0

)
+B0vE · ∇

(
n0α

B0

)
+B0 · ∇

(
n0α δu‖α
B0

)
+
c∇× b0

Zα
· ∇
(
δP‖α
B0

)
+
cb0 ×∇B0

Zα
· ∇
(
δP⊥α
B2

0

)
+
c∇× b0 · ∇B0

ZαB2
0

δP⊥α

+
c∇× b0

B0

· n0α∇ δφ+
mαc

2

Z2
αB0

(∇2
⊥ δB) · ∇

(
P0αu‖0α
B2

0

)
− mαc

3b0 ×∇P0α

Z2
αB

2
0

· ∇∇
2
⊥ δφ

B0

+
mαc

3P0α(3b0 ×∇B0 +∇×B0)

Z2
αB

3
0

· ∇∇
2
⊥ δφ

B0

. (33)

This equation can be separated into the equilibrium equation:77

B0·∇
(
n0αu‖0α
B0

)
+
c∇× b0

Zα
·∇
(
P‖0α
B0

)
+
cb0 ×∇B0

Zα
·∇
(
P⊥0α

B2
0

)
+
c∇× b0 · ∇B0

ZαB2
0

P⊥0α = 0 ,

(34)
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and the linear equation:78

0 = ∂t δnα + δB · ∇
(
n0αu‖0α
B0

)
+B0vE · ∇

(
n0α

B0

)
+B0 · ∇

(
n0α δu‖α
B0

)
+
c∇× b0

Zα
· ∇
(
δP‖α
B0

)
+
cb0 ×∇B0

Zα
· ∇
(
δP⊥α
B2

0

)
+
c∇× b0 · ∇B0

ZαB2
0

δP⊥α

+
c∇× b0

B0

· n0α∇ δφ+
mαc

2

Z2
αB0

(∇2
⊥ δB) · ∇

(
P0αu‖0α
B2

0

)
︸ ︷︷ ︸

{i}

−mαc
3b0 ×∇P0α

Z2
αB

2
0

· ∇∇
2
⊥ δφ

B0︸ ︷︷ ︸
{ii}

+
mαc

3P0α(3b0 ×∇B0 +∇×B0)

Z2
αB

3
0

· ∇∇
2
⊥ δφ

B0︸ ︷︷ ︸
{iii}

. (35)

These two equations are the same as those of the electrons Eqs. (6) and (8) except for the79

last three terms in Eq. (35), which are introduced by the ion finite Larmor radius (FLR)80

effects. In the k⊥LB0 ∼ k⊥R0 � 1 limit, the term {ii} becomes:81

{ii} ≈ −mαc
2n0α

ZαB2
0

cb0 ×∇P0α

ZαB0n0α

· ∇∇2
⊥ δφ

= −mαc
2n0α

ZαB2
0

v∗α · ∇∇2
⊥ δφ , (36)

where82

v∗α =
cb0 ×∇P0α

ZαB0n0α

. (37)

For the thermal ion species, this term is responsible for producing the kinetic ballooning83

mode [9]. We compare the ordering of this term with the other two FLR terms:84

O

({iii}
{ii}

)
∼ LP0α

LB0

, (38)

O

( {i}
{ii}

)
∼ k‖u‖0α

ω

(
1 +

LP0α

Lu‖0α
− 2

LP0α

LB0

)
. (39)

In the case of LP0α < LB0 , LP0α
<∼ Lu‖0α , and k‖u‖0α � ω, the terms {i} and {iii} are not85

important and can be dropped. Keeping term {ii} as the only FLR effect, the ion continuity86
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equation reforms to be:87

Zα∂t δnα +B0 · ∇
(
Zαn0α δu‖α

B0

)
= −iωZα δnα +∇ · δJ‖α

≈ −δB · ∇
(
J‖0α
B0

)
−B0vE · ∇

(
Zαn0α

B0

)
+
mαc

2n0α

B2
0

v∗α · ∇∇2
⊥ δφ

−c∇× b0 · ∇
(
δP‖α
B0

)
− cb0 ×∇B0 · ∇

(
δP⊥α
B2

0

)
− c∇× b0 · ∇B0

B2
0

δP⊥α

−c∇× b0

B0

· Zαn0α∇ δφ . (40)

C. Combine the reduced equations88

The electron continuity equation Eq. (10) reforms to be:89

−e∂t δne −B0 · ∇
(
enα0 δuα‖

B0

)
= iωe δne +∇ · δJ‖e

= −δB · ∇
(
J‖0e
B0

)
+B0vE · ∇

(
en0e

B0

)
−c∇× b0 · ∇

(
δP‖e
B0

)
− cb0 ×∇B0 · ∇

(
δP⊥e
B2

0

)
− c∇× b0 · ∇B0

B2
0

δP⊥e

+
c∇× b0

B0

· en0e∇ δφ . (41)

Plug Eqs. (41) and (40) into Eq. (27), and consider Eq. (21), quasi-neutrality
∑

α Zαnα0 = 090

and Ampère’s law for equilibrium
∑

α Jα‖0 = c
4π
b0 · ∇ ×B0, we get:91

0 =
ω(ω − ω∗P )

v2
A

∇2
⊥ δφ− iB0 · ∇

{
b0 · ∇ × [∇× (k‖ δφb0)]

B0

}
−iω
c
δB · ∇

(
b0 · ∇ ×B0

B0

)
−iω4π

c

[
∇× b0 · ∇

(
δP‖
B0

)
+ b0 ×∇B0 · ∇

(
δP⊥
B2

0

)
+
∇× b0 · ∇B0

B2
0

δP⊥

]
, (42)

where δP‖ =
∑

α δPα‖, δP⊥ =
∑

α δPα⊥, and92

ω∗P = −iv∗ · ∇ , (43)

v∗ =
n0imiv∗i + n0fmfv∗f

n0imi + n0fmf

. (44)

Now the first three terms of Eq. (42) match those of the MHD equation [6]. The last93

term, i.e., the pressure term, needs more analysis.94
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D. The pressure term mismatch is negligible95

For comparison convenience, we write down the pressure terms (with the −iω4π/c coef-96

ficients removed) from the two different approaches:97

PTMHD = ∇ ·
(
b0

B0

×∇ · δP
)

, (45)

PTGK = ∇× b0 · ∇
(
δP‖
B0

)
+ b0 ×∇B0 · ∇

(
δP⊥
B2

0

)
+
∇× b0 · ∇B0

B2
0

δP⊥

=
b0 ×∇B0

B2
0

· ∇(δP⊥ + δP‖) +
∇×B0

B2
0

· ∇δP‖

+
∇×B0 · ∇B0

B3
0

(δP⊥ − δP‖) . (46)

Assume δP is diagonal:98

δP = δP‖b0b0 + δP⊥(I− b0b0)

= δP⊥I + (δP‖ − δP⊥)b0b0 . (47)

Then we have:99

PTMHD =
∇×B0 + b0 ×∇B0

B2
0

· ∇ δP⊥ +
b0 ×∇B0

B2
0

· ∇ δP‖ +
(∇×B0)⊥

B0

· ∇
(
δP‖ − δP⊥

B0

)
+
δP‖ − δP⊥

B0

{
∇ ·
[

(∇×B0)⊥
B0

]
− ∇×B0 · ∇B0

B2
0

}
. (48)

For a first glance, Eq. (48) seems to differ from Eq. (46). We calculate the mismatch:100

PTMHD − PTGK

= ∇ ·
(
b0

B0

×∇ · δP
)

−

b0 ×∇B0

B2
0

· ∇(δP⊥ + δP‖)︸ ︷︷ ︸
{1}

+
∇×B0

B2
0

· ∇δP‖︸ ︷︷ ︸
{2}

+
∇×B0 · ∇B0

B3
0

(δP⊥ − δP‖)︸ ︷︷ ︸
{3}


=
∇×B0

B2
0

· ∇ δP⊥ −
(∇×B0)‖

B0

· ∇
(
δP‖
B0

)
− (∇×B0)⊥

B0

· ∇
(
δP⊥
B0

)
+
δP‖
B0

{
∇ ·
[

(∇×B0)⊥
B0

]
− ∇×B0 · ∇B0

B2
0

}
− δP⊥

B0

∇ · (∇×B0)⊥
B0

=
(∇×B0)‖

B2
0

· ∇(δP⊥ − δP‖)︸ ︷︷ ︸
{4}

+2
(∇×B0)⊥ · ∇B0

B3
0

(δP⊥ − δP‖)︸ ︷︷ ︸
{5}

+
∇ · [(∇×B0)⊥]

B2
0

(δP‖ − δP⊥)︸ ︷︷ ︸
{6}

, (49)
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It can be immediately seen that if δP⊥ = δP‖, the mismatch vanishes. In the case δP⊥ 6= δP‖,101

assuming O(δP⊥) ∼ O(δP‖) ∼ O(δP⊥ ± δP‖), the mismatch is shown to be small compared102

to the pressure term as follows.103

Here we use the scalings of k‖ � k⊥, k⊥R0 � 1, O(βR0/LP0) ∼ 1, and O((2− s)/q) ∼ 1.104

We first estimate the order of the terms {1}, {2}, {3} to find out the leading order of the105

pressure term.106

O({1}) ∼ k⊥
R0

δP‖,⊥
B0

, (50)

O({2}) ∼
(
βk⊥
2LP0

+
2− s
q

k‖
R0

)
δP‖,⊥
B0

, (51)

O({3}) ∼ β

2LP0R0

δP‖,⊥
B0

, (52)

O

({2}
{1}

)
∼ βR0

2LP0

+
2− s
q

k‖
k⊥
∼ 1 , (53)

O

({3}
{1}

)
∼ βR0

2LP0

1

k⊥R0

� 1 . (54)

The term {1} and {2} are the leading order terms. Next we only need to compare the107

mismatch with the term {1}, which is one of the leading order terms. Using Eqs. (A5) and108

(A6), we get:109

O({4}) ∼ 2− s
qB0R0

k‖ δP‖,⊥ , (55)

O({5}) ∼ O({6}) ∼ β

LP0R0

δP‖,⊥
B0

(56)

O

({4}
{1}

)
∼ 2− s

q

k‖
k⊥
� 1, (57)

O

({5}
{1}

)
∼ O

({6}
{1}

)
∼ βR0/LP0

k⊥R0

� 1 . (58)

Therefore, the mismatch is not important and the gyrokinetic model reduces to the ideal110

MHD model with appropriate approximations made.111

E. Discussions about the fast ions in different simulation models112

There are two major simulation approaches to study the fast ion physics: the pure gyroki-113

netic approach [3, 4, 10–16] and the hybrid MHD-gyrokinetic approach [17–20]. A typical114

model for the pure gyrokinetic approach is based on the gyrokinetic equation Eq. (28) and115
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the gyrokinetic field equations, i.e., the gyrokinetic Poisson’s equation Eq. (12) and the gy-116

rokinetic Ampère’s law Eq. (22). A typical model for the hybrid approach [6] is based on the117

MHD equations, with the fast ion pressure tensor calculated from the gyrokinetic equation.118

We have shown that these two models agree with each other in the derivations above, so it119

makes sense to compare the simulation results from the two different approaches [3, 4].120

However, it should be kept in mind that the simulation results should not be expected to121

be identical even if the geometry, the numerical schemes and other simulation situations are122

identical, because the agreement between the two models are based on a number of approx-123

imations. In the hybrid model, the interaction between the fast ions and the background124

plasma is reflected only in the pressure term. Although being higher order, the pressure125

term mismatch between the two models would cause simulation result difference. In the gy-126

rokinetic model, under certain conditions, the fast ions can have other kinds of interactions127

with the background plasma besides the pressure term. For example, when k⊥ρf >∼ 1, the128

expansion of the Bessel function in Eq. (17) is no longer valid. As a result, the terms of129

order O(k4
⊥ρ

4
f ) and higher can cause noticeable effects. When the equilibrium flow of either130

of the ion species is strong enough, i.e., u‖0α >∼ ω/k‖ (α = i, f), the FLR term {i} in Eq. (35)131

becomes at least as important as the diamagnetic term {ii}. When the fast ion distribution132

is not a (shifted) Maxwellian, Eq. (20) needs to be corrected, causing another difference133

between the two models. Although most of these effects should be small when the fast ion134

density is much smaller than the thermal ion density, they may still be noticeable in the135

simulations.136

IV. IMPLEMENTATION OF THE ELECTRON CONTINUITY EQUATION WITH137

CURRENT138

Using the Ampère’s law:139

c

4π
b0 · ∇ ×B0 =

∑
α 6=e

Zαn0αu‖0α − en0eu‖0e . (59)
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Eq. (11) for electron becomes:140

0 = ∂t δne+δB · ∇
(∑
α6=e

Zαn0αu‖0α
eB0

− c

4πeB0

b0 · ∇ ×B0

)
+B0 · ∇

(
n0e δu‖e
B0

)
+B0vE · ∇

(
n0e

B0

)
− n0e(δv∗e + vE) · ∇B0

B0

+
c∇×B0

B2
0

·

−∇ δP‖ee︸ ︷︷ ︸
{I}

−(δP⊥e − δP‖e)∇B0

eB0︸ ︷︷ ︸
{II}

+n0e∇ δφ

 . (60)

The term {II} comparing to the term {I} is of order 1/(k⊥R0)� 1, so it can be dropped.141

A. Current terms in magnetic coordinates142

The magnetic coordinates [1, 21] are used in the GTC, so the equilibrium magnetic field143

is expressed as:144

B0 = g(ψ)∇ζ + I(ψ)∇θ + δ(ψ, θ)∇ψ (61)

= q∇ψ ×∇θ −∇ψ ×∇ζ . (62)

The Jacobian is:145

J −1 = ∇ψ · ∇θ ×∇ζ =
B2

0

gq + I
. (63)

The curvature of the magnetic field then writes:146

∇×B0 = g′∇ψ ×∇ζ + (I ′ − ∂θδ)∇ψ ×∇θ , (64)

where the prime symbol (′) denotes the derivative with respect to ψ. The parallel component147

writes:148

b0 · ∇ ×B0 = B0
g(I ′ − ∂θδ)− Ig′

gq + I
. (65)

The second term in Eq. (60) can be expanded into two components:149

Zα
e
δB · ∇

(
n0αu‖0α
B0

)
≈ Zα

e
∇ δA‖ × b0 · ∇

(
n0αu‖0α
B0

)
=
J −1

B0

[
(g∂θ δA‖ − I∂ζ δA‖)∂ψ

(
n0αu‖0α
B0

)
+ (δ∂ζ δA‖ − g∂ψ δA‖)∂θ

(
n0αu‖0α
B0

)
+(I∂ψ δA‖ − δ∂θ δA‖)∂ζ

(
n0αu‖0α
B0

)]
. (66)
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150

− c

4πe
δB · ∇

(
b0 · ∇ ×B0

B0

)
≈ − c

4πe
∇ δA‖ × b0 · ∇

[
g(I ′ − ∂θδ)− Ig′

gq + I

]
=

c

4πe

J −1

B0

[
−g(∂ψS)(∂θ δA‖) +

(
I∂ψS +

gδ∂2
θδ

gq + I

)
(∂ζ δA‖)−

g2∂2
θδ

gq + I
(∂ψ δA‖)

]
, (67)

where151

∂ψS = ∂ψ

[
g(I ′ − ∂θδ)− Ig′

gq + I

]
=
g(I ′′ − ∂ψ∂θδ)− g′∂θδ − Ig′′

gq + I
− [g(I ′ − ∂θδ)− Ig′](g′q + gq′ + I ′)

(gq + I)2
. (68)

The last term in Eq. (60) becomes the summation of these two terms:152

−c∇×B0

eB2
0

· ∇ δPe‖ = − c

e(gq + I)
[−g′∂θ δPe‖ + (I ′ − ∂θδ)∂ζ δPe‖] . (69)

153

ne0
c∇×B0

B2
0

· ∇ δφ =
ne0c

gq + I
[−g′∂θ δφ+ (I ′ − ∂θδ)∂ζ δφ] . (70)

B. Normalization of the current terms154

Follow the normalization units and symbols in Ref. [1]. Normalize Eq. (60) to be:155

0 = ∂t δne+
∑
α 6=e

Zα δB · ∇
(
n0αu‖0α
B0

)
− 2

βa

ρ2
a

R2
0

δB · ∇
(
b0 · ∇ ×B0

B0

)
+B0 · ∇

(
ne0 δue‖
B0

)
+B0vE · ∇

(
ne0
B0

)
− ne0(ve∗ + vE) · ∇B0

B0

+
∇×B0

B2
0

·
[
−∇ δPe‖ −

(δP⊥e − δP‖e)∇B0

B0

+ ne0 · ∇ δφ
]

, (71)

where156

βa =
8πnaTa
B2
a

, (72)

ρ2
a =

Ta
mpΩ2

p

, (73)

with Ta being the electron on-axis temperature. Normalizing Eqs. (66)–(70):157

ZαδB · ∇
(
n0αu‖0α
B0

)
=
J −1

B0

[
(g∂θ δA‖ − I∂ζ δA‖)∂ψ

(
n0αu‖0α
B0

)
+ (δ∂ζ δA‖ − g∂ψ δA‖)∂θ

(
n0αu‖0α
B0

)
+(I∂ψ δA‖ − δ∂θ δA‖)∂ζ

(
n0αu‖0α
B0

)]
, (74)
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158

− 2

βa

ρ2
a

R2
0

δB · ∇
(
b0 · ∇ ×B0

B0

)
=

2

βa

ρ2
a

R2
0

J −1

B0

[
−g(∂ψS)(∂θ δA‖) +

(
I∂ψS +

gδ∂2
θδ

gq + I

)
(∂ζ δA‖)−

g2∂2
θδ

gq + I
(∂ψ δA‖)

]
, (75)

159

∂ψS = ∂ψ

[
g(I ′ − ∂θδ)− Ig′

gq + I

]
=
g(I ′′ − ∂ψ∂θδ)− g′∂θδ − Ig′′

gq + I
− [g(I ′ − ∂θδ)− Ig′](g′q + gq′ + I ′)

(gq + I)2
, (76)

160

−∇×B0

B2
0

· ∇ δPe‖ = − 1

gq + I
[−g′∂θ δPe‖ + (I ′ − ∂θδ)∂ζ δPe‖] , (77)

161

ne0
∇×B0

B2
0

· ∇ δφ =
ne0

gq + I
[−g′∂θ δφ+ (I ′ − ∂θδ)∂ζ δφ] . (78)

V. EXTEND THE MAGNETIC FIELD MODEL TO RECOVER FINITE ∇×B0162

In this section we keep using the normalized quantities. All quantities in this section163

are equilibrium quantities, so the equilibrium subscript 0 for the magnetic field is omitted.164

Previously in the GTC, an s-α like (cyclone) magnetic field model (citation?) is used:165

B = 1− ε cos θ +O(ε2) , (79)

I = 0 +O(ε2) , (80)

g = 1 +O(ε2) , (81)

δ = 0 +O(ε) , (82)

θ = θ0 +O(ε) , (83)

ζ = ζ0 +O(ε) , (84)

where ε = r/R0 is the normalized radial coordinate, θ0 and ζ0 are the geometric poloidal and166

toroidal angles, and θ and ζ are the corresponding magnetic coordinates. Such a field model167

makes all the derivatives of g and I zero, and thus leading to zero equilibrium current terms.168

Here we extend this field model to a higher-order one to recover the equilibrium current.169

Assume concentric circular magnetic surfaces.170

′ =
d

dψ
=

dε

dψ

d

dε
=
q

ε

d

dε
, (85)
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In the large-aspect-ratio limit, we expand the field related quantities with respect to ε:171

B = 1− ε cos θ0 + ε2B2 + ε3B3 + · · · , (86)

I = ε2I2 + ε3I3 + · · · , (87)

g = 1 + ε2g2 + ε3g3 + · · · , (88)

θ = θ0 + εθ1 + ε2θ2 + · · · , (89)

ζ = ζ0 + εζ1 + ε2ζ2 + · · · , (90)

where gi and Ii (i = 2, 3, · · · ) are functions of the safety factor q; and Bi, θi, and ζi (i =172

1, 2, · · · ) are periodic functions of θ0.173

We want the field model to satisfy these conditions:174

• The Jacobian satisfies J −1 = ∇ψ · ∇θ ×∇ζ = B2/(gq + I) so that I is a function of175

only ψ (equivalently ε, because of concentric circular flux surfaces).176

• The radial component of the field is zero because of concentric circular flux surfaces:177

Bε = εδ/q + I∂εθ + g∂εζ = 0.178

• The field magnitude expression is consistent with the covariant representation: B =179

|δ∇ψ + I∇θ + g∇ζ|.180

• The field line is straight in the (θ, ζ) space, so B · ∇ζ/(B · ∇θ) = q(ψ) with q being181

the safety factor which is independent of θ and ζ.182

Plug the expansions Eqs. (86)–(90) into the above conditions, and solving them up to the183
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O(ε) order gives:184

B = 1− ε cos θ0 +O(ε2) , (91)

δ = ε sin θ0 +O(ε2) = ε sin θ +O(ε2) , (92)

I =
ε2

q
+O(ε4) , (93)

I ′ = 2− s+O(ε2) , (94)

g = 1 +O(ε2) , (95)

g′ = O(ε0) , (96)

θ = θ0 − ε sin θ0 +O(ε2) , (97)

θ0 = θ + ε sin θ +O(ε2) , (98)

ζ = ζ0 +O(ε4) , (99)

∇×B0 = O(ε0)∇ψ ×∇ζ + [(2− s)− ε cos θ +O(ε2)]∇ψ ×∇θ , (100)

b0 · ∇ ×B0 =
J −1

B0

[(2− s)− ε cos θ0 +O(ε)] . (101)

Although it is straightforward to solve the equations up to the O(ε2) order, such a model185

would not be very useful because other effects come into play at the order of O(ε2) or even186

lower, such as the Shafranov shift, and the finite pressure gradient effect. The field model of187

order O(ε), i.e., Eqs. (91)–(99), is good enough to recover the parallel current and is therefore188

implemented. It is straightforward to show that in Eqs. (74)–(78) the terms containing the189

nonorthogonality factor δ are one order smaller than the leading order and thus are dropped190

in the implementation for simplicity.191

VI. EQUILIBRIUM CURRENT EFFECT ON THE RSAE192

A. Analytic calculation193

In a simple geometry with concentric-circular flux surfaces, in the uniform plasma and194

zero-β limit, considering only one n and m harmonic δφ(r, θ, ζ) = δφ̂(r) exp[i(nζ − mθ)],195

Eq. (42) near the qmin surface becomes [3]:196

1

r

d

dr

(
rΛ

d

dr
δφ̂

)
− m2

r2
Λ δφ̂− D

r
δφ̂ = 0 , (102)

where197

Λ =
ω2

v2
A

− k2
‖ , (103)
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D represents contributions from fast ion pressure, background plasma pressure gradient,198

toroidal coupling, magnetic shear, etc. The first two terms of Eq. (102) give the Alfvén con-199

tinuum. The last term determines whether an eigenmode exists near the Alfvén continuum200

extremum. Here we only consider the magnetic shear effect. When the equilibrium current201

is ignored,202

D = k‖k
′
‖ + rk‖k

′′
‖ . (104)

At the qmin surface, noting that k′‖ = 0 and k′′‖ 6= 0, D is non-zero and an RSAE exists as203

can be shown by numerically solving Eq. (102). With the equilibrium current recovered,204

D = −2k‖k
′
‖ , (105)

which is zero at the qmin surface and thus eigenmode does not exist. Note that other effects205

contributing to D mentioned above may bring back the eigenmode.206

B. Verification in simulation207

To verify the implementation of the current, we simulate a case in a simple geometry which208

should recover what the analytic calculation shows. The parameters are taken from Ref. [3].209

The q-profile is shown in Fig. 1(a), whose corresponding Alfvén continua of n = 4,m = 6 and210

n = 4,m = 7 without coupling are shown in Fig. 1(b). The n = 4,m = 6 mode is studied211

here to avoid distraction by the toroidal coupling effect, because the toroidal coupling effect212

cannot make an RSAE below the continuum minimum [22]. In the ideal MHD limit, the213

RSAE exists when the equilibrium current is not taken into account.214215

The differences between the simulations without and with equilibrium current can mainly216

be seen in the contour plots of δφ in the radial-time space in Fig. 2. In Fig. 2(a), which is217

corresponding to the case without equilibrium current, as an eigenmode exists, the mode218

structures are horizontal, indicating that δφ at every radial location oscillates at the same219

eigenmode frequency. For the case with equilibrium current shown in Fig. 2(b), since no220

eigenmode exists, δφ at every radial location oscillates at the local continuum frequency,221

leading to the bending of the mode structures or the so-called phase-mixing. The quick222

damping of the mode amplitude in Fig. 2(b) also indicates that there is no eigenmode in223

this case. Therefore, the simulation results are consistent with the analytic calculation in224

Sec. VI A225226
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FIG. 1. (a) Safety factor q-profile. (b) Alfvén continua of n = 4,m = 6 and n = 4,m = 7 in ideal

MHD limit and without linear coupling.

(a) (b)

FIG. 2. Contour plots of δφ in the radial-time space in RSAE simulations (a) without equilibrium

current; (b) with equilibrium current. The time is normalized to R0/vAp, where vAp is defined as

vAp = Ba/
√

4πnamp

VII. SIMULATIONS OF DIII-D DISCHARGE #142111 AT 750ms227

One of the most significant energetic-particle-driven modes in the DIII-D discharge228

#142111 at the time of 750ms is the RSAE. The magnetic field, including the flux surface229

structure, field magnitude, and the q-profile, the density and the temperature profiles of all230

three species, i.e., the electron, the background ion, and the fast ion, are loaded from the231

experimental data into the GTC. The equilibrium profiles are shown in Fig. 3. The qmin232

surfaces is at ρ = 0.33 where ρ is the square root of the normalized toroidal flux. qmin takes233
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FIG. 3. Equilibrium profiles in DIII-D discharge #142111 at 750ms: (a) q-profile, (b) background

plasma density, (c) fast ion density, (d) background plasma temperature, (f) fast ion temperature.

the value 3.1828. Both ion species are deuterium nuclei.234235

The n = 3 and n = 4 modes have been successfully simulated, respectively. For the236

n = 3 mode, before adding in the fast ions, the background plasma pressure effects are237

tested. When fast ions are not loaded, the thermal ion density is loaded to be the same as238

the electron density so as to retain neutrality. In the zero temperature ideal MHD limit,239

giving an initial perturbation near the qmin surface produces an RSAE-like mode shown in240

Fig. 4(a) and (b). The mode frequency is listed as the case (I) in Table I and marked on241

the Alfvén continuum plot in Fig. 5(a). To study the finite-β effect, various simulation cases242

are done as listed in Table I and their frequencies are marked on the corresponding Alfvén243
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FIG. 4. Mode structures for n = 3 mode: (a)(c) poloidal contour plots of δφ for case (I) and case

(VI), respectively, (b)(d) m-harmonic decomposed δφ for case (I) and case (VI), respectively.

continuum plots in Fig. 5. The Alfvén continua are calculated using the m-spectral method244

in the slow sound approximation described in Appendix B with the kinetic consideration245

[23]: γsP0 = P0e + 7P0i/4. Adding in the finite electron temperature from case (I) to246

case (II) raises the Alfvén continua and the mode frequency due to the electron geodesic247

compressibility. From case (II) to case (III) the ion geodesic compressibility is recovered to248

raise the continua and mode frequencies even more. In case (III) due to the presence of the249

ion pressure gradient, the ion kinetic damping cannot be seen, so in case (IV) the pressure250

gradient drive is artificially suppressed to show the damping effect. Moving the ion pressure251

effect to be carried by electrons and getting the same mode frequency, case (V) shows that252

other than the 7/4 coefficient for ion, the ion pressure and the electron pressure contribute253

to the mode frequency in a very similar way.254255256257

When the fast ions are added, which is the case (VI) in Table I, the mode frequency is258
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(a)

(b)

(c)

FIG. 5. Alfvén continua with slow sound approximation for n = 3: (a) zero-β limit, (b) only include

electron β, (c) complete background plasma β. The horizontal lines are the frequencies obtained

in various simulation cases described in Table I. The width of each horizontal line represents the

FWHM of the mode structure.

further raised. The non-perturbative mode structure modification by fast ions can be seen in259

the poloidal mode structure in Fig. 4(c). In the m-harmonic decomposition plot in Fig. 4(d),260

it can be seen that besides the dominant m = 10 harmonic, there is a sub-dominant m = 9261

harmonic. This is because the time 750ms is during the mode transition from RSAE to262

TAE [22]. The mode seen in simulation is something between an RSAE and a TAE. In one263

situation it may be more RSAE-like, such as the cases (I)-(V). In another situation it could264

be more TAE-like, such as the fast ion driven case (VI).265

(n = 4 case pending to add)266
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TABLE I. Various simulation cases and resulted frequencies to test the finite-β effect on the n = 3

mode

Case Description (ωr, γ)/(vAp/R0) (ωr, γ)/(2π)/kHz γ/ωr

(I) Zero temperature ideal MHD 0.103 73.8

(II) Finite δE‖, adiabatic e− with real Te profile (0.113,−0.00208) (80.9,−1.49) −0.0185

and kinetic ions with only 2% of real Ti

(III) Same as case (II) except for real Ti profile recovered 0.118 84.7

(IV) Same as case (III) except that kinetic ion (pending measure)

gradient drive is artificially suppressed

(V) Same as case (II) except that electrons carry (0.118,−0.00273) (84.6,−1.96) −0.0231

the total pressure (Te ← Te + 7Ti/4)

(VI) Same as case (IV) except that fast ions are added in (0.130, 0.00919) (92.9, 6.59) 0.0710

Appendix A: Estimation of some magnetic field parameters in a tokamak267

Noticing the safety factor q ≈ rBζ/(R0Bθ) = εBζ/Bθ, the equilibrium magnetic field268

writes:269

B0 = Bθθ̂ +Bζ ζ̂

= Bζ

(
ε

q
θ̂ + ζ̂

)
.

where Bθ and Bζ are the poloidal and the toroidal component, respectively, while θ̂ and ζ̂270

are the unit vectors in the poloidal and the toroidal direction, respectively. The toroidal271

vacuum field writes:272

Bζ =
BaR0

R
=

Ba

1 + ε cos θ
. (A1)

This can be used to estimate the parallel component of ∇×B0:273

(∇×B0)‖ ≈
ζ̂

r

[
∂r

(
r
ε

q
Bζ

)]
≈ ζ̂ B0

qR0

(2− s) , (A2)

where274

s =
r

q

dq

dr
(A3)
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is the magnetic shear. For the perpendicular component of ∇ × B0, the force balance275

equation is used:276

∇P0 =
1

c
J0 ×B0

=
1

4π
(∇×B0)×B0 . (A4)

Take b0× Eq. (A4) to get:277

(∇×B0)⊥ =
4π

B0

b0 ×∇P0 . (A5)

Meanwhile,278

∇ · [(∇×B0)⊥]

= 4π∇ ·
(
b0

B0

×∇P0

)
=

4π

B2
0

(∇×B0 + 2b0 ×∇B0) · ∇P0 . (A6)

We also have:279

∇B0 ≈ −
BaR0

R2
R̂ ≈ −B0

R0

(r̂ cos θ − θ̂ sin θ) (A7)

280

b0 ×∇B0 ≈
B0

R0

[
−r̂ sin θ − θ̂ cos θ + ζ̂

ε

q
cos θ

]
(A8)

Appendix B: Alfvén continuum calculation281

In realistic situations, simple estimation of the Alfvén continuum like ωA ≈ (nq −282

m)vA/(qR0) is not good enough. Such an estimation would introduce fairly large inac-283

curacy by geometric effects, finite-β effect, etc. In this section an m-spectral method is284

used to solve the ideal MHD Alfvén continuum equation [24] in the slow sound (low-β)285

approximation [25].286

The Alfvén continuum equation writes [24]:287  E11 E12

E21 E22

 ξs

∇ · ξ

 = 0 , (B1)

24



where288

E11 =
4πρMω

2|∇ψ|2
B2

0

+B0 · ∇
( |∇ψ|2B0 · ∇

B2
0

)
, (B2)

E12 = 4πγsP0κs , (B3)

E21 = κs , (B4)

E22 =
4πγsP0 +B2

0

B2
0

+
γsP0

ρMω2
B0 · ∇

(
B0 · ∇
B2

0

)
. (B5)

289

κs = 2κ · B0 ×∇ψ
B2

0

, (B6)

κ = b0 · ∇b0 = (∇× b0)× b0 . (B7)

Using the magnetic coordinates mentioned in Sec. IV A, some vector expressions can be290

simplified:291

B0 · ∇ = J −1(∂θ + q∂ζ) , (B8)

κs = −2J −1

B0

g

(
∂θ

1

B0

)
=

2J −1g

B3
0

∂θB0 . (B9)

In the GTC, |∇ψ|2 can be calculated using the splines of the poloidal Cartesian coordinates292

(X,Z):293

|∇ψ|2 = (∂Xψ)2 + (∂Zψ)2 =

(
1

∂ψX − ∂θX ∂ψZ

∂θZ

)2

+

(
1

∂ψZ − ∂θZ ∂ψX

∂θX

)2

. (B10)

Equation (B1) is an eigenvalue equation with ω2 being the eigenvalue. The second term294

of E22 is ω-dependent, which complicates the problem. However, comparing to the first term295

gives:296

γsP0

ρMω2B0 · ∇
(

B0·∇
B2

0

)
4πγsP0+B2

0

B2
0

=
−4πγsP0k

2
‖/(4πρMω

2)

(4πγsP0 +B2
0)/B2

0

≈ −4πγsP0/B
2
0

(4πγsP0 +B2
0)/B2

0

∼ O

(
β

β + 1

)
,

(B11)

This shows the second term of E22 can be dropped in the low-β limit, which is the slow297

sound approximation in Ref. [25]. In this approximation, Eq. (B1) becomes:298 [
4πρMω

2 |∇ψ|2
J −1B2

0

+
B0 · ∇
J −1

( |∇ψ|2B0 · ∇
B2

0

)
− 4πγsP0κ

2
sB

2
0

J −1(4πγsP0 +B2
0)

]
ξs = 0 . (B12)

25



Expanding θ-dependent quantities as summations of m-harmonics:299

ξs = einζ
∑
m

(ξs)me
−imθ , (B13)

|∇ψ|2J−1

B2
0

|∇ψ|2
B2

0J−1

4πγsP0κ2sB
2
0

J−1(4πγsP0+B2
0)

 =
∑
m


(
|∇ψ|2J−1

B2
0

)
m(

|∇ψ|2
B2

0J−1

)
m(

4πγsP0κ2sB
2
0

J−1(4πγsP0+B2
0)

)
m

 eimθ . (B14)

Using {e−imθ} as basis, Eq. (B12) can be written in this matrix form:300

(G†HG + N)ξs = 4πρMω
2Jξs , (B15)

which is a generalized eigenvalue problem, with 4πρMω
2 being the eigenvalue,301

ξs = (· · · , (ξs)m−1, (ξs)m, (ξs)m+1, · · · )T (B16)

being the eigenvector. The operator matrices and their elements are:302

G = −iB0 · ∇
J −1

Gm,m′ = (nq −m)δm,m′ (B17)

H =
|∇ψ|2J −1

B2
0

Hm,m′ =

( |∇ψ|2J −1

B2
0

)
m′−m

(B18)

J =
|∇ψ|2
B2

0J −1
Jm,m′ =

( |∇ψ|2
B2

0J −1

)
m′−m

(B19)

N =
4πγsP0κ

2
sB

2
0

J −1(4πγsP0 +B2
0)

Nm,m′ =

(
4πγsP0κ

2
sB

2
0

J −1(4πγsP0 +B2
0)

)
m′−m

(B20)

A code based on the eigenvalue library SLEPc [26] is written to solve Eq. (B15) to give the303

Alfvén continuum plots in Sec. VII.304

[1] I. Holod, W. L. Zhang, Y. Xiao, and Z. Lin, Physics of Plasmas 16, 122307 (2009).305

[2] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Science 281, 1835 (1998).306

[3] W. Deng, Z. Lin, I. Holod, X. Wang, Y. Xiao, and W. Zhang, Physics of Plasmas 17, 112504307

(2010).308

[4] H. S. Zhang, Z. Lin, I. Holod, X. Wang, Y. Xiao, and W. L. Zhang, Physics of Plasmas 17,309

112505 (2010).310

[5] M. N. Bussac, R. Pellat, D. Edery, and J. L. Soule, Phys. Rev. Lett. 35, 1638 (1975).311

26

http://dx.doi.org/ 10.1063/1.3273070
http://dx.doi.org/ 10.1126/science.281.5384.1835
http://dx.doi.org/10.1063/1.3496057
http://dx.doi.org/10.1063/1.3496057
http://dx.doi.org/10.1063/1.3496057
http://dx.doi.org/10.1063/1.3498761
http://dx.doi.org/10.1063/1.3498761
http://dx.doi.org/10.1063/1.3498761
http://dx.doi.org/ 10.1103/PhysRevLett.35.1638


[6] W. Park, S. Parker, H. Biglari, M. Chance, L. Chen, C. Z. Cheng, T. S. Hahm, W. W. Lee,312

R. Kulsrud, D. Monticello, L. Sugiyama, and R. White, Physics of Fluids B: Plasma Physics313

4, 2033 (1992).314

[7] W. Lee, Journal of Computational Physics 72, 243 (1987).315

[8] Z. Lin and W. W. Lee, Phys. Rev. E 52, 5646 (1995).316

[9] H. Biglari and L. Chen, Phys. Rev. Lett. 67, 3681 (1991).317

[10] P. Lauber, S. Gunter, and S. D. Pinches, Physics of Plasmas 12, 122501 (2005).318

[11] Y. Nishimura, Z. Lin, and W. X. Wang, Physics of Plasmas 14, 042503 (2007).319

[12] W. Zhang, Z. Lin, and L. Chen, Phys. Rev. Lett. 101, 095001 (2008).320

[13] Y. Nishimura, Physics of Plasmas 16, 030702 (2009).321

[14] A. Mishchenko, A. Konies, and R. Hatzky, Physics of Plasmas 16, 082105 (2009).322

[15] J. Lang, Y. Chen, S. E. Parker, and G.-Y. Fu, Physics of Plasmas 16, 102101 (2009).323

[16] E. M. Bass and R. E. Waltz, Physics of Plasmas 17, 112319 (2010).324

[17] G. Vlad, S. Briguglio, G. Fogaccia, F. Zonca, and M. Schneider, Nuclear Fusion 46, 1 (2006).325

[18] G. Vlad, S. Briguglio, G. Fogaccia, F. Zonca, C. D. Troia, W. Heidbrink, M. V. Zeeland,326

A. Bierwage, and X. Wang, Nuclear Fusion 49, 075024 (10pp) (2009).327

[19] X. Wang, F. Zonca, and L. Chen, Plasma Physics and Controlled Fusion 52, 115005 (2010).328

[20] B. J. Tobias, I. G. J. Classen, C. W. Domier, W. W. Heidbrink, N. C. Luhmann, R. Nazikian,329

H. K. Park, D. A. Spong, and M. A. Van Zeeland, Phys. Rev. Lett. 106, 075003 (2011).330

[21] R. B. White, Physics of Fluids B: Plasma Physics 2, 845 (1990).331

[22] B. N. Breizman, H. L. Berk, M. S. Pekker, S. D. Pinches, and S. E. Sharapov, Phys. Plasmas332

10, 3649 (2003).333

[23] F. Zonca and L. Chen, Physics of Plasmas 3, 323 (1996).334

[24] C. Z. Cheng and M. S. Chance, Phys. Fluids 29, 3695 (1986).335

[25] M. S. Chu, J. M. Greene, L. L. Lao, A. D. Turnbull, and M. S. Chance, Physics of Fluids B:336

Plasma Physics 4, 3713 (1992).337

[26] V. Hernandez, J. E. Roman, and V. Vidal, ACM Transactions on Mathematical Software 31,338

351 (2005).339

27

http://dx.doi.org/ 10.1063/1.860011
http://dx.doi.org/ 10.1063/1.860011
http://dx.doi.org/ 10.1063/1.860011
http://dx.doi.org/10.1016/0021-9991(87)90080-5
http://dx.doi.org/10.1103/PhysRevE.52.5646
http://dx.doi.org/10.1103/PhysRevLett.67.3681
http://dx.doi.org/10.1063/1.2135284
http://dx.doi.org/10.1063/1.2718908
http://dx.doi.org/ 10.1103/PhysRevLett.101.095001
http://dx.doi.org/10.1063/1.3088028
http://dx.doi.org/10.1063/1.3207878
http://dx.doi.org/ 10.1063/1.3243493
http://dx.doi.org/10.1063/1.3509106
http://dx.doi.org/ 10.1088/0029-5515/46/1/001
http://dx.doi.org/ 10.1088/0029-5515
http://dx.doi.org/ 10.1088/0741-3335/52/11/115005
http://dx.doi.org/ 10.1103/PhysRevLett.106.075003
http://dx.doi.org/10.1063/1.859270
http://dx.doi.org/ 10.1063/1.1597495
http://dx.doi.org/ 10.1063/1.1597495
http://dx.doi.org/ 10.1063/1.1597495
http://dx.doi.org/10.1063/1.871857
http://dx.doi.org/10.1063/1.865801
http://dx.doi.org/ 10.1063/1.860327
http://dx.doi.org/ 10.1063/1.860327
http://dx.doi.org/ 10.1063/1.860327

	Gyrokinetic particle simulations of reversed shear Alfvén eigenmode in nonuniform plasmas with equilibrium current
	Abstract
	Introductions
	Electron continuity equation by integrating drift-kinetic equation
	Reduction of gyrokinetic formulation to ideal MHD
	Reduction of the field equations
	Reduction of the ion equation
	Combine the reduced equations
	The pressure term mismatch is negligible
	Discussions about the fast ions in different simulation models

	Implementation of the electron continuity equation with current
	Current terms in magnetic coordinates
	Normalization of the current terms

	Extend the magnetic field model to recover finite bold0mu mumu BBBBBB0
	Equilibrium current effect on the RSAE
	Analytic calculation
	Verification in simulation

	Simulations of DIII-D discharge #142111 at 750 ms
	Estimation of some magnetic field parameters in a tokamak
	Alfvén continuum calculation
	References


