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Notes on Boozer Coordinates

The Boozer coordinates constructed from M3D-C1 output use the coordinates
(χ, θ, ζ), where χ increases outward from the magnetic axis, ζ increases counter-
clockwise about the R = 0 axis, and θ increases clockwise about the magnetic
axis in the (R,Z) plane. The (axisymmetric) equilibrium field is represented as

~B0 = ψ′ [∇χ×∇ζ + q∇θ ×∇χ] (1)

where ψ′ = dψ/dχ. Note that ~B0 · ∇θ = ψ′∇χ×∇ζ · ∇θ = −ψ′J−1.
Defining the poloidal magnetic flux Ψ as the magnetic flux through the area

enclosed by the magnetic surface in the θ direction (i.e. upward along the R = 0
axis), we find

Ψ(χ) =

∫ χ

0

dχ

∫ 2π

0

dζ J ~B0 · ∇θ

= −2πψ

In covariant form, we may write the field as

~B0 = β∇χ+ g(χ)∇ζ + I(χ)∇θ (2)

The total toroidal current enclosed by a magnetic surface in the equilibrium is

Iζ(χ) =
1

µ0

∫

d ~A · ∇ × ~B0

=
1

µ0

∫ 2π

0

dθ

∫ χ

0

dχJ∇ζ · (∇θ ×∇χ) [∂θβ − ∂χI(χ)]

=
2π

µ0
I(χ)

Thus the covariant ζ component of the magnetic field I(χ) is related to the
current enclosed by the surface Iζ(χ) by

I(χ) =
µ0

2π
Iζ(χ) (3)

1



Similarly, the covariant θ component of the magnetic field g(χ) is related to
the poloidal current external to the surface Iθ(χ) by

g(χ) = −
µ0

2π
Iθ(χ) (4)

Note we may also calculate Iθ(χ) in cylindrical (R,ϕ,Z) coordinates given the

field representation ~B = ∇ϕ×∇ψ + F∇ϕ by

Iθ(χ) = −
1

µ0

∫ 2π

0

dϕ

∫ R

0

R′ dR′ ∂R′F

= −
2π

µ0
F

Thus g(χ) = F (χ).

Defining α to preserve δ ~B · ∇χ

Many electromagnetic codes use a reduced model of electromagnetic perturba-
tions in which

δ ~Bα = ∇× (α~B0) (5)

= ∇α× ~B0 + αµ0
~J0 (6)

where we use the subscript α to denote the fact that this is a reduced represen-
tation.

In general, given δ ~B, there is no unique way to choose α, since δ ~B has two
degrees of freedom (three vector components plus the constraint that ∇ · δ ~B =
0, whereas equation (5) has only one degree of freedom. Therefore we must

choose α so that δ ~Bα captures the particular features of δ ~B that we deem most
important.

Here we choose to determine α such that δ ~Bα · ∇χ = δ ~B · ∇χ. This choice
ensures that the reduced field accurately represents Bmn, where

Bmn =
(2π)2

A

∫∫

dζ dθJ (δ ~B · ∇χ)eimθ−inζ (7)

and where A is the surface area of the magnetic surface. Below, we show that
α is uniquely determined by Bmn.

Writing the equilibrium field ~B0 in the covariant form defined in equation (2),
we may write the reduced perturbed field as

δ ~Bα = ∇α× ~B0 + αµ0
~J0

= g(χ) (∂χα∇χ×∇ζ + ∂θα∇θ ×∇ζ)

+ I(χ) (∂χα∇χ×∇θ + ∂ζα∇ζ ×∇θ)

+ β (∂θα∇θ ×∇χ+ ∂ζα∇ζ ×∇χ)

+ αµ0
~J0

(8)
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Noting that ~J0 · ∇χ = 0, this becomes

δ ~Bα · ∇χ = J−1 [g(χ)∂θα− I(χ)∂ζα] (9)

Now we write α in terms of its spectral components

α =
∑

m,n

αmne
inζ−imθ (10)

Inserting this definition into equation (9) yields

δ ~Bα · ∇χ = −iJ−1
∑

mn

[mg(χ) + nI(χ)]αmne
inζ−imθ (11)

We now derive the relationship between αmn and Bmn that results from the
choice ~Bα · ∇χ = ~B · ∇χ. Substituting the above expression for ~Bα for ~B · ∇χ
in equation (7) yields

Bmn = −
i(2π)2

A

∫∫

dζdθ
∑

m′n′

[m′g(χ) + n′I(χ)]αm′n′ei(m−m′)θ−i(n−n′)ζ

= −
i(2π)4

A
[mg(χ) + nI(χ)]αmn

(12)

Thus we find

αmn =
iABmn

(2π)4 [mg(χ) + nI(χ)]
(13)

Other ways to define α

Defining α to preserve δB‖

As mentioned in the previous section, the above definition of α is not unique
since any choice of α will result in some loss of information about δB in general.
Instead of defining α to retain exact information about δ ~B ·∇χ, we may instead
define α in order to exactly reproduce δB‖. From the parallel component of
equation (5) we find

α =
δ ~B · ~B0

µ0
~J0 · ~B0

(14)

Given this choice of α, the perpendicular components of a given δ ~B will generally
not agree with equation (5).

Defining α to preserve δA‖

Since δ ~B = ∇× δ ~A, we find the relation between α and δ ~A:

δ ~A = α~B0 +∇Φ (15)
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for some function Φ. Thus

α =
(δ ~A−∇Φ) · ~B0

|B0|2
(16)

If we make the assumption that ~B0 · ∇Φ = 0 so that α = δA‖/|B0|, we pre-
serve the parallel component of the vector potential exactly, but all of the field
components from equation (5) will generally differ from ∇× δ ~A.

Conversion from M3D-C1 Boozer coordinates to

GTC Boozer coordinates

In GTC [1], the Boozer coordinatesa (ψ̄, θ̄, ζ̄) are defined such that

~B = δ̄∇ψ̄ + Ī∇θ̄ + ḡ∇ζ̄

= q∇ψ̄ ×∇θ̄ −∇ψ̄ ×∇ζ̄

where ψ̄ always increases outward from the magnetic axis, θ̄ is clockwise about
the magnetic axis in positive-IP equilibria anc counter-clockwise in negative-IP
equilibria (so that ~B ·∇θ̄ = J̄−1 > 0 is always satisfied), and ζ̄ always increases
in the direction of IP . This implies

ψ̄ = −sgn(IP )χψ
′ θ̄ = sgn(IP ) θ ζ̄ = sgn(IP ) ζ (17)

Thus

δ̄ = −sgn(IP )β Ī = sgn(IP ) I ḡ = sgn(IP ) g (18)

For both codes, the safety factor q is defined such that q > 0 when IP and BT

both have the same sign, and q < 0 otherwise.
GTC defines the Fourier components of α by

α = ᾱm̄n̄e
im̄θ̄−in̄ζ̄ (19)

Using the transformation in equation (17) together with M3D-C1’s definition of
αmn in equation (10) we find that this implies

m̄ = −sgn(IP )m n̄ = −sgn(IP )n (20)

and therefore

ᾱm̄n̄ =

{

α∗
mn IP > 0

αmn IP < 0
(21)

where we have used the fact that α−m−n = α∗
mn
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