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1 Introduction

In Dr. Lin’s 1995 paper, a method of solving the gyrokinetic Poisson equa-
tion is developed. The calculation of the complicated average gyro-average
potential, &, can be simplified to calculating the 4-point average of ¢ on sev-
eral rings. To calculate ¢, we need to do the 4-point average again, which
finally gives us:
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Gij = E(‘lﬁbm‘ + 20i10; + 20; j1o + Pirojro) (1)

Fig.1 (a) shows the eight extra points that appear in the equation above.

When we calculate gz~5 in GTC, we neglect the redundant points in Fig.1
(a) and rotate the view by 7/4. However, that’s not the only difference.
In Fig.1(b), in order to calculate ¢ in the middle, we need to calculate the
values of ¢ at the eight red points outside. However, the coordinates in GTC
is (1, 0) (the green lines in Fig.1(b)), but not Cartesian coordinate (the blue
lines in Fig.1(b)), which means that we are actually calculating ¢ at the eight
dark red points. Given ¢, GTC’s calculation tends to give a systematic shift
of ¢ inward, though they are the same to the lowest order.

Here I will derive the second order corrections in (¢, 6) to put the eight
points back to the correct positions. We do the coordinate transformation
from Cartesian coordinate to polar coordinate (the black curves in Fig.1(b))
first, and then go from polar coordinate to flux coordinate.
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Figure 1: (a) The eight extra points we need to calculate (;5” (b) The
difference between the points we want to use and the ones we actually use

2 Coordinate Transformation

Let me paraphrase the problem in this way:

Without losing generosity, we can assume the original point A is (xg,0) in
Cartesian coordinate, and (1o, 0) in fluz coordinate. We know the coordinate
of a point A" near A is (vo + Az, Ay). We want to express its coordinate in
flux coordinate (o + A, AD)

The solution of (A, Af) in the lowest order is trivial, and already cal-
culated in GTC (pgyro, tgyro). So, in the end, I will express the solution
in terms of their lowest order solution (A1), Abfn)).

2.1 Cartesian coordinate to polar coordinate

A" is (xg + Ar, Af) in polar coordinate. Let’s expand the solution order by
order.

Ar = Arqy + Argy + ...

Af = A@(l) + A@(g) + ...



The transformation can be expressed as:
(w0 + Ar)? = (20 + Ax)* + (Ay)?

A = arcTan (i)
xo + Ax

The lowest order is trivial.

Argy = Ax
A
N
Zo
The second order solution is
Ay?  x 9
Are) = 5 == 5 A
AzxA
Ay = === = — A Ar
0

So the expression for (Ar, Af) is

Ar = Arg) + A + ..
A = Ag(l) — Ae(l)AT‘(l) + ...

2.2 polar coordinate to flux coordinate

1
o+ A = §B(=’Eo + Ar)?

Though in general flux coordinate could be quite complicated, I will only
solve for the simplest one in cylindrical geometry with uniform B field. 6
stays the same as in polar coordinate.

(7)

We can find that the lowest order is simply Ay = BxoAr(), and the

second order is
1 1

Now we rewrite Afy) in terms of (Avy and Afy)) :
Ab) Ay

AG(Q) = —Ae(l)AT(l) = — BCL’%

(8)



So the coordinate of A’ is
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3 Corrections

In this section, I will calculate the corrections of each point.
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Figure 2: The corrections we need for the 8 points



The radius of the ring is vp,. (v is corresponding to vring(kr) in GTC)

We define .

Bz?
Mark the eight points with kp = 1,2, 3, ..., 8, just like in GTC. (Fig.2)
For kp =1, 3:

AO = AV = vp; (11)

Aty = £2AT A = +2AT + 2AOAT + . 12
Atg(l) =0 AO=0+...
For kp = 2,4:
Aty = 0 At = 20OAT + ...
= (13)
Ay = +2A0 AG = +200 + ...
For kp = 5, 6:
1 1
A = +AVY A = £AT — + )AOAWY + ...
{ (0N . (0 +(2+2) OAV + (14)
Aby) = A0 A =AOFAO? + ...
For kp = 7, 8:
Ay = FAT Ay = FAU + (£ + Haeaw +
{ m=Fa% _ -7 2" 2 T (15)
Ay = —AB A= —AO+AO”...

4 Check in simulation

4.1 Check the corrected coordinates by transforming
back in z, z

In this part, I pick a particular point in GTC to check the eight gyro-average-
needed points GTC gives us, and calculating the coordinate transformation
by function spx and spz in GTC.

The central point is at (6.86E-02, 0.00).



uncorrected result

corrected result

kp | z kp | z

1 | 7.55E-02 | 0.00 1 | 7.58E-02 | 0.00

2 | 6.82E-02 | 7.10E-03 2 | 6.86E-02 | 7.14E-03
3 ] 6.10E-02 | 0.00 3 | 6.14E-02 | 0.00

4 | 6.82E-02 | -7.16E-03 4 |6.86E-02 | -7.19E-03
5 | 7.20E-02 | 3.75E-03 5 | 7.22E-02 | 3.55E-03
6 | 6.48E-02 | 3.37E-03 6 | 6.50E-02 | 3.55E-03
7 | 6.48E-02 | -3.38E-03 7 | 6.50E-02 | -3.5TE-03
8 | 7.20E-02 | -3.75E-03 8 | 7.22E-02 | -3.57E-03

There are many improvements here. For example, the z of point 2 and
point 4 should be the same as the x of the central point. The y of point 5
and point 6 should be the same. etc.

It’s easy to check that the corrected result agrees with our expectation.

4.2 Check by Laplacian

GTC use (¢ — gg) to calculate the Laplacian operation on ¢, V2 ¢. We know
Bessel functions are eigenfunctions of Laplacian operator in cylindrical ge-
ometry. So given a ¢ in the form of a Bessel function, we know that V¢
should have the same shape as ¢.

The result is shown below (Fig.3)

Figure 3: Comparison of the results from old and corrected Laplacian

Fig.3 (b) shows the simulation result from the corrected ¢ and (a) shows



the simulation result from the corrected ¢.! In both figures, the blue curve
represent the theoretical value. The black curve is the simulation result with
50 radial grid points. The red curve is the simulation result with 100 radial
grid points. And the green curve is the simulation result with 150 radial grid
points.

These result tells us that the deviation from theoretical curve we found
in (a) is not a convergence issue but a systematic error in our simulation.
And the corrected result agrees with theory very well.

However, we can see in both figures that when we increase the number of
grid points, the noise in our result of Laplacian becomes larger and larger.
But this is beyond the topic of this document. I will write about it if I fix it
some day.

5 End

The main purpose of this document is to explain the complicated changes in
the subroutine poisson_solver_initial and gyroinitial of GTC.

By now, these corrections are only validated in cylindrical geometry. It
might be O.K. to apply these corrections to the toroidal geometry if we ignore
the non-orthogonality between 1) and 6. But if this fails in toroidal geometry,
this document provides a guideline of how to introduce some new geometric
corrections.

n (b), there is actually another change in the Laplacian near the edge which removes
the singularity there in the original solver



