

1

Microturbulence simulation in
general geometry---A short note
Y. Xiao

Department of Physics and Astronomy, University of California, Irvine, CA 92697, U.S.A.

Magnetic field Representation

The GTC code employs a toroidal magnetic coordinates),,( to represent the electromagnetic

fields and plasma profiles, where  is the poloidal magnetic flux,  is the poloidal angle and  is

the toroidal angle. The equilibrium magnetic field can be represented either in the covariant form

 ,0   IgB (1)

Or in the contravariant form

 .0   qB (2)

For most interesting cases, the toroidal current g and poloidal current I , is merely a function of  ,

i.e.,    . ,  IIgg  Therefore, the jacobian of this magnetic coordinate system is

Igq

B
J




2

01  . (3)

Laplacian operator and Geometric tensor

The Laplacian operator plays a central role in computing perturbed electromagnetic fields. In this

section, we study how to discretize the Laplacian operator in the magnetic coordinates.

In a magnetic coordinate system, the Laplacian can be expressed as

3,2,1 and ,3,2,1 with ,
12 

















 




 




fJ

J
f , where     ,,,, 321  are

coordinates the jacobian   1
 J . Define a contravariant geometric tensor

2

 



a

g . For an axisymmetric system, the Laplacian can be explicitly expressed as



















































































fJgJg

J

fJgJg

J

f
g

f
g

f
g

f
gf

11

2
2

2

2

22

2

2
2

 (4)

In order to compute the above Laplacian, we first need to compute the contravariant geometric

tensor
 a

g . Note that B-splines of magnetic fields provides a covariant form, i.e.,

    , and , ZX , where  ,,ZX forms a cylindrical coordinate system. The covariant geometic

tensor  ag can be obtained by the following formula

 ,

22































ZX
g (5)

 ,

22































ZX
g (6)

 ,





















ZZXX
g (7)

And 2, Xggg   . Using the identity 









 gg a , we can find the transformation from

the covariant to contravariant geometric tensor.

 ,
1

00

0

0

00

0

0
























































g

gg

gg

g

gg

gg

 (8)

With the determinant  gggg  .

The field aligned coordinate  00 ,,  is employed in the GTC code, where q 0 and  0 .

Then the Laplacian in this new coordinate system becomes

3

.
11

2

000

2

00
2

0

2

0

2

2

2
2



































































































fJgJg

J

fJgJg

J

f
q

g
f

g
f

g
f

gf

 (9)

Therefore, using the fact the perpendicular scale length is much shorter than the parallel scalar

length, the perpendicular Laplacian can be obtained from the preceding equation:

 

000

2

0

2
2

0

2

2

2
2

11

2














































































fJgJg

J

fJgJg

J

f
qgg

f
g

f
gf

 (10)

Next we study how to discretize the preceding

perpendicular Laplacian. In the GTC code, we use an unstructured mesh to ensure the roughly equal

grid size in the radial and poiloidal direction. The mesh is uniform in the 0 coordinate and

nonuniform in the  coordinate. In order to evaluate the Laplacian numerically in Eq. (Error!

Reference source not found.Error! Reference source not found.), we need to discretize the following

five operators:
0


,



,

2

2




,

0

2




 and

2

0

2




. Since the grid size in the 0 is uniform, we can

apply a simple spatial central algorithm to discretize
0


 to the second order accuracy.

(i-1,j*)

(i-1,j”+2)

(i-1,j”+1)

(i-1,j”)

(i-1,j”-1)

(i+1,j’-1)

(i+1,j’)

(i+1,j*)

(i+1,j’+1)
(i+1,j’+2)

(i,j+1)

(i,j-1)

(i,j)

4

 

,
2 0

1,1,

,0 i

jiji

ji

fff

 
















  (11)

Where i is the index label for  , j is the index lable for 0 , as shown in Fig. 2.

Then we discretize



 to obtain

 ,
1

*,1,

1

2

,*,1

2

,
h

ff
w

h

ff
w

f jijijiji

ji

 


















 (12)

With 11  iih  , iih   12 , and  2112 hhhw  ,  2121 hhhw  . The value of *,1 jif  can be

evaluated using the neighboring four points on the same flux surface 1i , as shown in Fig. 1, to the

second order of accuracy:

   ]1
3

1
1

3

1

[
2

1',112',11',11

1',11
11

',111',11*,1












jiijiijii

jii
ii

jiijiiji

ffwf

fw
w

ffwf






 (13)

Where   1',11   ijiiw  , and 11 1   ii w . A similar expression can be found for the value

*,1 jif  .

We continue to discretize
 



0

2

 to obtain

0

*,1

2

2

0

*,1

2

21,1,

2

2

1

1

,0

2

2  






































  jiji

i

jiji

ji

f

h

wf

h

wff

h

w

h

wf
 (14)

(i,j)

5

Using four neighboring points in the same flux surface, we can obtain

   

  ]3331
3

1

[
2

1

2',11',1',11',111

',12',111',11',11

10

*,1



















jijijijiii

jijiijijii

i

ji

ffffw

ffwff
f






 (15)

Similar expressions can be written for
0

*,1



  jif .Finally we deal with the operator
2

2




.

  jijiji

ji

ffwfw
hh

f
,*,12*,11

21,

2

2 2





















 (16)

Where *,1 jif  can be evaluated by the four point interpolation using Eq. (13). Similar expression can

be found for *,1 jif  .

Poisson solver in the general geometry

The gyrokinetic poisson equation for perturbed electrostatic potential, suitable for the particle

simulation, is formulated as following

      xnxnZ
T

enZ
eii

i

ii  
~0

2

 (17)

For the electrostatic case, the electron is dominated by adiabatic response. Therefore, it is convenient

to write    
,

1

0 eeeee nTenxn   where magnetice 1 , with 0magnetic for electrostatic

case and 1magnetic for electromagnetic case. So we obtain the following gyrokinetic poisson

equation:

 10

2

00

2
~

eii

i

ii
e

e

e

i

ii nnZ
T

enZ

T

en

T

enZ
 














 (18)

There are two approaches to solve for 
~

 , the n-point average or Pade approximation. The n-point

average method is illustrated in Ref [Lin 95] and improved by Wang Zhixuan’s notes. In the n-point

average method, we can use iterative solver for the electrostatic case. For the electromagnetic case, the

6

Petsc solver has to be invoked. The Pade approximation needs further elucidation.






22

22

1

~










i

i (19)

Suppose a scale separation between equilibrium scale and perturbed scale, the gyrokinetic poisson

equation Eq. (18) can be rewritten as

     1222200

2

0 1 eiiii

e

e
e

i

ii

e

e
e nnZ

T

n

T

nZ

T

n
 





























  (20)

For this Pade approximation, we invoke Petsc solver for either electrostatic or electromagnetic case.

The poisson solver and Laplacian related subroutines in the current GTC are listed in the following

table.

7

Poisson Solver

 ipade=0

n-point average for 
~

ipade=1

Finite diff. for 
~

Set ipad in setup.F90

Magnetic=0 iterative poisson solver Petsc Pade-poisson

solver

For ipade=1, requires

idiagonal=1 in sub

lap2pestc;

Automatically enforce the

source n=0 for inner and

outer flux surfaces

Magnetic=1 Petsc poisson solver Petsc Pade-poisson

solver

Laplacian

Set laplacian locally

ilaplacain=0

n-point average

ilaplacian=1

Finite difference

2n Call laplacian_petsc()

(set magnetic=1)

Call laplacian()

  n
12 



(not used in the current GTC)

call petsc_solver

(set magnetic=1), valid in long

wave-length limit

Set idiagonal=0 in sub

lap2pestc

call lapmat_pssolver

