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Magnetic field Representation 

The GTC code employs a toroidal magnetic coordinates ),,(   to represent the electromagnetic 

fields and plasma profiles, where   is the poloidal magnetic flux,   is the poloidal angle and   is 

the toroidal angle. The equilibrium magnetic field can be represented either in the covariant form  

 ,0   IgB  (1) 

Or in the contravariant  form 

 .0   qB  (2) 

For most interesting cases, the toroidal current g  and poloidal current I , is merely a function of  , 

i.e.,    . ,  IIgg   Therefore, the jacobian of this magnetic coordinate system is 
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Laplacian operator and Geometric tensor 

The Laplacian operator plays a central role in computing perturbed electromagnetic fields. In this 

section, we study how to discretize the Laplacian operator in the magnetic coordinates. 

In a magnetic coordinate system, the Laplacian can be expressed as 
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coordinates the jacobian   1
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a

g . For an axisymmetric system, the Laplacian can be explicitly expressed as 
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In order to compute the above Laplacian, we first need to compute the contravariant geometric 

tensor 
 a

g . Note that B-splines of magnetic fields provides a covariant form, i.e., 

    , and , ZX , where  ,,ZX  forms a cylindrical coordinate system. The covariant geometic 

tensor  ag can be obtained by the following formula 
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And 2, Xggg   . Using the identity 





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 gg a , we can find the transformation from 

the covariant to contravariant geometric tensor. 
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With the determinant  gggg  .  

The field aligned coordinate  00 ,,  is employed in the GTC code, where q 0 and  0 . 

Then the Laplacian in this new coordinate system becomes 
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Therefore, using the fact the perpendicular scale length is much shorter than the parallel scalar 

length, the perpendicular Laplacian can be obtained from the preceding equation: 
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Next we study how to discretize the preceding 

perpendicular Laplacian. In the GTC code, we use an unstructured mesh to ensure the roughly equal 

grid size in the radial and poiloidal direction. The mesh is uniform in the 0 coordinate and 

nonuniform in the  coordinate. In order to evaluate the Laplacian numerically in Eq. (Error! 

Reference source not found.Error! Reference source not found.), we need to discretize the following 

five operators:  
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
. Since the grid size in the  0  is uniform, we can 

apply a simple spatial central algorithm to discretize 
0


 to the second order accuracy. 
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Where i is the index label for  , j is the index lable for 0 , as shown in Fig. 2.  

 

 

 

 

Then we discretize 
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With 11  iih  , iih   12 , and  2112 hhhw  ,  2121 hhhw  . The value of *,1 jif   can be 

evaluated using the neighboring four points on the same flux surface 1i , as shown in Fig. 1, to the 

second order of accuracy: 
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Where   1',11   ijiiw  , and 11 1   ii w . A similar expression can be found for the value 

*,1 jif  . 
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Using four neighboring points in the same flux surface, we can obtain 
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Similar expressions can be written for 
0

*,1
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Where *,1 jif   can be evaluated by the four point interpolation using Eq. (13). Similar expression can 

be found for *,1 jif  . 

Poisson solver in the general geometry    

The gyrokinetic poisson equation for perturbed electrostatic potential, suitable for the particle 

simulation, is formulated as following 
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For the electrostatic case, the electron is dominated by adiabatic response. Therefore, it is convenient 

to write    
,

1

0 eeeee nTenxn   where magnetice 1 , with 0magnetic  for electrostatic 

case and 1magnetic  for electromagnetic case. So we obtain the following gyrokinetic poisson 

equation: 
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There are two approaches to solve for 
~

 , the n-point average or Pade approximation. The n-point 

average method is illustrated in Ref [Lin 95] and improved by Wang Zhixuan’s notes. In the n-point 

average method, we can use iterative solver for the electrostatic case. For the electromagnetic case, the 
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Petsc solver has to be invoked. The Pade approximation needs further elucidation.  
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Suppose a scale separation between equilibrium scale and perturbed scale, the gyrokinetic poisson 

equation Eq. (18) can be rewritten as 
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For this Pade approximation, we invoke Petsc solver for either electrostatic or electromagnetic case. 

The poisson solver and Laplacian related subroutines in the current GTC are listed in the following 

table.  
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Poisson Solver 

 ipade=0 

n-point average for 
~

 

ipade=1 

Finite diff. for 
~

 

Set ipad in setup.F90 

Magnetic=0  iterative poisson solver Petsc Pade-poisson 

solver 

For ipade=1, requires 

idiagonal=1 in sub 

lap2pestc; 

Automatically enforce the 

source n=0 for inner and 

outer flux surfaces 

Magnetic=1 Petsc poisson solver  Petsc Pade-poisson 

solver 

 

Laplacian 

 

Set laplacian locally  

ilaplacain=0 

n-point average 

ilaplacian=1 

Finite difference 

2n  Call laplacian_petsc()  

(set magnetic=1) 

Call laplacian() 

 

  n
12 

  

(not used in the current GTC) 

call petsc_solver  

(set magnetic=1), valid in long 

wave-length limit 

Set idiagonal=0 in sub 

lap2pestc 

call lapmat_pssolver 

 

 

 

 

 

 


