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Abstract. It is shown that the ITG-ETG symmetry is nonlinearly broken due to the different response of respec-
tively electrons and ions to Zonal Flows (ZF). ITG is dominated by ITG-ZF nonlinear interactions and turbulence
spreading, resulting in size-scaling of the associated turbulent transport. Meanwhile, nonlinear toroidal mode
coupling dominates ETG saturation and ETG-ZF interactions enter on the longest nonlinear time scale only. The
ETG turbulent transport level is smaller than values of experimental relevance.

1. Introduction and Background

The present work demonstrates that the crucial difference in nonlinear dynamic behaviors be-
tween ion temperature gradient (ITG) instabilities and electron temperature gradient (ETG)
modes stands in the particle response to zonal flows (ZF). On one hand, for ITG, massless
electron response imposes that the lowest order zonal density fluctuation vanishes; on the other
hand, for ETG, the ion response is adiabatic, due tok⊥ρi � 1, even forn = m = 0 [see Eq. (1)
below]. The main consequence of these different behaviors is that the specular symmetry be-
tween ITG and ETG, which holds linearly, is nonlinearly broken. This results into two main
facts,i.e., that the ZF polarizability is much lower for ITG [1] than for ETG [2,3] and that the
dominant Drift Wave - Zonal Flow (DW-ZF) interaction is due toE×B nonlinearity for ITG,
while ETG are characterized by the usual Hasegawa-Mima nonlinear coupling [4] (Section II).
Based on these facts, the paradigm model for ITG, presented here, assumes that different DW
interactions on the shortest non-linear time scale are mediated by ZF, which is spontaneously
generated by ITG via modulational instability [5]. The resulting coherent model demonstrates
turbulence spreading [6–11] to be the cause of transport scaling with system size [6–10] (Sec-
tion III). The non-linear saturated state can be either coherent, with limit cycles, or chaotic,
depending on proximity to marginal stability [9,10]. Meanwhile, ZF spontaneous generation is
the weakest nonlinear dynamics for ETG, which saturate via nonlinear toroidal couplings that
transfer energy successively from unstable modes to damped modes preferably with longer
poloidal wavelengths [2,3] (Section IV). The ETG turbulence is dominated by nonlinearly gen-
erated radial streamers, but both fluctuation intensity and transport level are independent of
the streamer size [2,3]. Nonlinear Gyrokinetic particle simulations indicate that typical ETG
transports are smaller than those of experimental relevance [2,3].
In the following, we assume electrostatic DWs, whose linear mode structures are represented
in the ballooning space [12] as

δφ = einζA(r)
∑
m

e−imϑ
∫ ∞

−∞
e−i(nq−m)θΦ(θ; r)dθ , (1)

where ζ is the ignorable periodic (toroidal) angle and, for convenience, we assume field-
aligned flux coordinates(r, ϑ, ζ), with r the radial (flux) variable,ϑ the poloidal angle and
q(r) ≡ B · ∇ζ/B · ∇ϑ. The moderadial envelopeA(r) is characterized by a spatial scale
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LA, such thatLp � LA � 1/|nq′|, 1/|nq′| being the characteristic radial scale length of the
single poloidal harmonics andLp the plasma inhomogeneity scale length. Furthermore,Φ(θ; r)
describes theparallel mode structurealong the extended poloidal angleθ [12], while transla-
tional invariance is implicit in Eq. (1) when considering thatr dependencies inΦ(θ; r) reflect
slow radial equilibrium variations on the scaleLp only. Consistently with Eq. (1), the linear
DW mode structures can be described with three degrees of freedom [2,3]: the toroidal mode
numbern, the parallel mode structure reflecting the radial width of a single poloidal harmonic
m, and radial mode envelopeA(r) = exp i

∫
θkd(nq). Correspondingly, nonlinear interactions

can take the following three forms: mode coupling between twon’s, distortion of the parallel
mode structure, and modulation of the radial envelope. Radial envelope modulation via gener-
ation of zonal flows dominates in ITG turbulence [5]. ETG turbulence, meanwhile, is regulated
by nonlinear toroidal mode couplings [2,3].

2. Dynamics of Drift Wave - Zonal Flow interactions: ITG - ETG broken symmetry

The non-linear equations describing the dynamics of DW-ZF interactions can be systematically
derived from the non-linear gyrokinetic equation [13]:(

∂t + v‖∂‖ + iωd

)
k
δHk = i (e/m) QF0J0(γ)δφk − (c/B)b · (k′′⊥ × k′⊥) J0(γ

′)δφk′δHk′′ ,

QF0 = ωk

(
∂F0/∂v2/2

)
+ (k/ωc) · b×∇F0 , (2)

where, as usual, the fluctuating particle distribution function has been separated into adiabatic
and non-adiabatic response,δH:

δF =
e

m
δφ

∂

∂v2/2
F0 +

∑
k⊥

exp (−ik⊥ · v × b/ωc) δHk . (3)

In Eqs. (2) and (3),∂‖ = b · ∇, b = B/B, ωd is the magnetic drift frequency,F0 is the
particle equilibrium distribution function,γ ≡ k⊥v⊥/ωc, ωc is the cyclotron frequency,J0 is
the Bessel function of zero order,k = k′ + k′′ and the other notation is standard. In Eq. (2),
the linear response∝ QF0 and theE×B nonlinearity are readily recognized on the right hand
side (RHS). Assuming a plasma equilibrium with one ion species and densityni = ne = n0,
the non-linear equations for the DW-ZF system are finally obtained in the form of the quasi-
neutrality conditions

n0e
2 (1/Ti + 1/Te) δφk =

〈
eJ0(γi)δH i

〉
k
−
〈
eJ0(γe)δHe

〉
k

. (4)

Further progress with then 6= 0 Eqs. (4) can be made by formally separating linear from non-
linear particle responses asδH ≡ δH

L
+ δH

NL
and explicitly solving for eitherδH

NL

i or
δH

NL

e in the fluid limit for the ITG or ETG cases, respectively. In this way we obtain:(
n0e

2/Ti

)
(1 + Ti/Te) δφk −

〈
eJ0(γi)δH

L

i

〉
k
+
〈
eJ0(γe)δH

L

e

〉
k

=

− (i/ωk)
〈
(ec/B)b · (k′′⊥ × k′⊥) δφk′J0(γ

′′
e )δHek′′

〉
k
−
〈
eJ0(γe)δH

NL

e

〉
k

− (i/ωk)
〈
(ec/B)b · (k′′⊥ × k′⊥) [J0(γi)J0(γ

′
i)− J0(γ

′′
i )] δφk′δH ik′′

〉
k

, (5)
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for the ITG case [5,8,9], where all non-linear couplings have been isolated on the RHS. Mean-
while, following the same procedure as that described in Ref. [9], for ETG we obtain:(

n0e
2/Te

)
(1 + Te/Ti) δφk −

〈
eJ0(γi)δH

L

i

〉
k
+
〈
eJ0(γe)δH

L

e

〉
k

=

+ (i/ωk)
〈
(ec/B)b · (k′′⊥ × k′⊥) δφk′J0(γ

′′
i )δH ik′′

〉
k
+
〈
eJ0(γi)δH

NL

i

〉
k

+ (i/ωk)
〈
(ec/B)b · (k′′⊥ × k′⊥) [J0(γe)J0(γ

′
e)− J0(γ

′′
e )] δφk′δHek′′

〉
k

. (6)

Equations (4) to (6) clearly reflect the well-known symmetry of ITG and ETG dynamics
when electron and ions are exchanged. However, while this symmetry is well preserved in
the linear limit, it is broken nonlinearly due to the different ZF response of electrons and
ions, respectively. In fact, then 6= 0 electron response to ITG is (nearly) adiabatic, due to
their vanishingly small inertia. Similarly,n 6= 0 ion response to ETG is (nearly) adiabatic
as well, this time because of their large Larmor orbit compared to the perpendicular wave-
length, i.e. k⊥ρi ∝ (mi/me)

1/2 � 1. For the same reasons, then 6= 0 nonlinear electron
and ion responses, respectively, can be neglected for ITG and ETG. In this way, and assum-
ing γi � 1 for ITG andγe � 1 for ETG, only the last nonlinear term survives in Eqs. (5)
and (6),i.e. the Hasegawa-Mima nonlinearity [4], along with theE × B nonlinearity terms
∝ 〈b·(k′′⊥ × k′⊥) δφk′J0(γ

′′
e,i)δHe,ik′′〉, with k′′ = erkz = −ier∂r, kz being the ZF wave vector.

The modulation interaction model [5] considers a coherent linearly unstable DW (pump), in-
teracting with collisionally damped ZF [1] in the presence of damped sidebands due to DW-ZF
nonlinear interactions. In the case of ITG, the density perturbation caused by ZF is identi-
cally zero, due to massless electron response. Thus,δHez = −(e/Te)F0eδφz and Eq. (5) is
dominated by theE×B nonlinearity forγi � 1. In the local limit [5], Eq. (5) gives

A+ = −i (c/B) (ω0∂ω0DRi)
−1 (ωz + ∆ + iγd)

−1 (Ti/Te) kθkzA0Az (7)

for theA+ sideband amplitude, withω0 the ITG real frequency,DRi the Hermitian part of the
ITG dielectric function,ωz the ZF frequency,∆ the ITG frequency shift due to finite radial
envelope width,γd the sideband damping rate, andA0 andAz the ITG and ZF amplitudes. The
complex conjugate sideband amplitudeA− satisfiesA− = A∗

+. Furthermore,DRi is computed
with an integral over the ballooning space [9]

DRi =
∫ +∞

−∞
Φ0

[
(1 + Ti/Te) Φ0 − (Ti/n0e)

〈
J0(γi)δH

L

i

〉
/A0

]
dθ , (8)

having chosen to normalize the ballooning linear eigenfunctionΦ0 of thepumpITG such that∫+∞
−∞ Φ2

0dθ = 1. Meanwhile, rewriting Eq. (5) for then = 0 ZF component, and defining the
ZF collisional dissipation asγz ≈ (1.5ενii)

−1 [14], ε = r/R0, it is readily shown that [5,8,9]

(ωz + iγz) χizAz = −i (c/B) kθkzαik
2
zρ

2
i (A+A∗

0 − A0A−) , (9)

whereαi = δP⊥i/(en0δφ) + 1 [5] andχiz ' 1.6q2ε−1/2k2
zρ

2
i is the ITG ZF polarizability [1].

With Eqs. (7) and (9) and assumingωz = iΓz, the ZF modulational instability growth rate [5]
is readily shown to scale linearly with|A0| well above its onset threshold,i.e. Γz = γM with

γ2
M =

(
c

B
kθkz

)2 (Ti/Te)

ω0∂ω0DRi

k2
zρ

2
i αi

χiz

|A0|2 . (10)
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In the case of ETG, the ion response to ZF is still adiabatic due toγi � 1. Thus, there is a finite
density perturbation caused by ZF,δH iz = 0 and Eq. (6) is dominated by the Hasegawa-Mima
nonlinearity (γe � 1) [4]. In the local limit [5], Eq. (6) gives

A+ = −i (c/B) (ω0∂ω0DRe)
−1 (ωz + ∆ + iγd)

−1 αe

(〈〈
k2
⊥

〉〉
− k2

z

)
ρ2

ekθkzA0Az , (11)

whereαe = δP⊥e/(en0δφ) − 1 [2,3] and〈〈k2
⊥〉〉 =

∫+∞
−∞ Φ2

0k
2
⊥dθ. Meanwhile,DRe is de-

fined as [2,3]DRe =
〈〈[

(1 + Te/Ti) + (Te/n0e)
〈
J0(γe)δH

L

e

〉
/δφ

]〉〉
in analogy with Eq. (8).

Note that, because of the difference in ZF response and the vanishing ofE×B nonlinearities,
Eq. (11) gives a≈ 〈〈k2

⊥〉〉 ρ2
e weaker sideband excitation for ETG than Eq. (7) for ITG. Simi-

larly, ZF excitation rate is also weaker for ETG than for ITG since the ZF ETG polarizability
is χez ' (Te/Ti) [2,3], i.e. larger thanχiz, and the ZF evolution equation in the ETG case is
obtained from Eq. (9) by substitutingχiz → χez, αi → αe andρi → ρe. Therefore, the ZF
modulational instability growth rate [5] well above its onset threshold isΓz = γM with

γ2
M =

(
c

B
kθkz

)2 (Ti/Te)

ω0∂ω0DRe

k2
zρ

2
eα

2
e

(〈〈
k2
⊥

〉〉
− k2

z

)
ρ2

e|A0|2 . (12)

A direct comparison of Eqs. (10) and (12) demonstrates that ETG-ZF dynamics occurs on a
≈ (

√
k2

z 〈〈k2
⊥〉〉ρ2

e)
−1 longer (normalized) time scale with respect to that of ITG-ZF [2,3]. For

this reason, ZF are fairly ineffective in altering ETG turbulence structures [2,3], while they are
crucial for regulating ITG turbulence level and the associated transport [6,15].

3. ITG nonlinear dynamics and size scaling of turbulent transport

For ITG, the Hasegawa-Mima nonlinearity,i.e. the nonlinear coupling between differentn’s
(Section I), is an orderO(k2

⊥ρ2
i ) smaller than theE×B nonlinearity, dominated by ZF [5,8,9].

Meanwhile, nonlinear distortions of the parallel mode structure are subdominant as well since
Φ(θ; r) is formed on a≈ ω−1

0 time scale,i.e. much shorter than the that of nonlinear processes
τNL. All nonlinear interactions reflect on the radial envelope only, for which one can system-
atically derive nonlinear equations under the assumption that there exists a hierarchy among
nonlinear wave-wave interactions, where theτNL ≈ γ−1

L is set by ITG-ZF interactions [8,9]

LP P = 2S∂xZ

LSS = −P∂xZ

LZZ = 2IRe [P ∗∂xS − S∂xP
∗] . (13)

Here,P , S andZ stand for the suitably normalized [8,9] ITG,sideband(which appear as com-
plex conjugate pairs) and ZF amplitudes, while the linear operatorsLP ,LS,LZ , are defined as
LP,S = ∂τ − γ̄P,S − 2δ1/2∂x + iΓ(λ + ξ) + i∂2

x andLZ = (∂τ + γ̄z). Furthermore, we have ex-
tracted a∝ exp(−iω0t) time dependence from ITG and sideband envelopes, time is normalized
asτ = |γL P (x = xN)|t, i.e., to the “pump” ITG growth rate at a reference radial positionxN

and[γ̄P,S, γ̄z] = [γL P,S, γz]/|γL P (x = xN)|. The normalized radial coordinatex and the other
quantities to be defined are given byΓ = ω0/|γL P (x = xN)|, δ1/2 = (ξΓ1/2)/(2λ1/2), ξ =
(θk0∂DR/∂θk0 − θ2

k0∂
2DR/∂θ2

k0)/(ω0∂DR/∂ω0), λ = (θ2
k0/2)(∂2DR/∂θ2

k0)/(ω0∂DR/∂ω0),
∂x = (λ1/2Γ1/2)/(θk0n(dq/dr))∂r, with the dispersion functionD = DR + iDI , γL ≡
−DI/(∂DR/∂ω0) andθk0(r) implicitly defined viaDR(r, ω0, θk0) = 0 [8,9]. This form oflin-
ear propagatorsis consistent with the present Mode Structure Decomposition approach [16],
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based on both time and spatial scale separation of the mode structures, and includes the wave
dispersive properties of the radial envelope to the leading order,i.e., finite group velocity and
focusing/de-focusing of the wave packet, which reflect the crucial importance of equilibrium
geometry (toroidal) on the ITG intensity propagation via their dependencies onθk0(r) [8,9].
As discussed in Section II, ZFs are generated by ITG turbulence via modulational instability [5]
and, in turn, act both as nonlinear damping as well as anti-potential well on the ITG pump [8,9].
This nonlinear interaction causes ITG to spread radially and eventually reach the linearly stable
region [7–9,11,17]. In our model, turbulent transport is a local diffusive process due to the
local turbulence level, that may eventually depend on the system size only via dependencies
of the turbulence intensity on the global plasma equilibrium properties. For sufficiently strong
growth rate, the mode grows at the local growth rate and nonlinearly saturates before any linear
radial mode structure can form. The same happens for a sufficiently large system as well,
when nonlinear interactions become important before the ITG traveling radial wave-packets
sample regions of varying equilibrium, either because of the linear wave dispersive properties
or of nonlinearly induced wave spreading. Under these circumstances, the system behaves
as an infinite and uniform medium and turbulent transport is gyro-Bohm: in fact, fixed point
solutions of Eqs. (13) for largēLp give [10]

I ' γ̄z(γ̄d + 2γ̄P0)

|γ̄d − γ̄P0|

(
2 +

2Γ1/2

5γ̄P0L̄p

)
, (14)

for the turbulence intensityI = 〈|P |2 + 2|S|2〉 dependence on the system size. Here, angular
brackets denote spatial averaging, which we typically take to be1/5 of the linear unstable
domain for the ITG pumpP [8,9]. Furthermore, we have assumed a modelDR = ω/ω0 − 1 +
θ2

k + V (x), V (x) = 1 − exp(−x2/L̄2
p), L̄p = |ndq/dr|Lp/Γ

1/2, γ̄P = γ̄P0 − (1 + γ̄P0)V (x)
and constantly damped sidebands,γ̄S = −γ̄d [8–10]. In the opposite case,i.e. for either
sufficiently small system or weak growth rate, the ITG traveling radial wave-packets sample
regions of varying equilibrium and turbulent transport is Bohm-like: it can be shown that, for
L̄pγ̄P0Γ

1/2 ≈ 1, the turbulence intensity is

I ' γ̄zγ̄dL̄p√
2Γ

(
1 +

2

γ̄dΓ1/2L̄p

)−1 (
1 +

4Γ

γ̄2
dL̄

2
p

)
, (15)

which scales with the system size. From the discussion above, it is not surprising that the
control parameter from Bohm-like to gyro-Bohm transition isL̄pγ̄P0Γ

1/2, which is also the
number of linearly unstable radial eigenmodes of the pump ITG [8–10].
Despite the coherence of the underlying nonlinear dynamics, the dynamic system of Eqs. (13)
exhibits both fixed point and limit cycle attractors as well as chaotic behavior, depending on
the system size and proximity to marginal stability [9,10]. However, even for the unstable fixed
points, the turbulence intensity oscillates around the fixed point values, which provide a good
estimate for the turbulence level and, thus, of turbulent transport [10]. Equations (14) and (15)
provide an excellent fit to numerical solutions for the whole range of exploredL̄p andγ̄P0 [10].

4. ETG saturation via nonlinear toroidal coupling

The theoretical analysis of Section II demonstrates that nonlinear ETG-ZF dynamics is of neg-
ligible importance for ETG saturation and for setting the level of turbulent transport. The main
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reason is the ion (nearly) adiabatic response, which annihilates theE × B nonlinearity and
makes the Hasegawa-Mima term the dominant interaction. The weak coupling between ETG
and ZF is confirmed byglobalgyrokinetic simulations, which demonstrate the fairly ineffective
role of ZFs in altering ETG turbulence structures [2,3,18,19]. However, there remain open dis-
cussions on the actual ETG saturation mechanism and on the corresponding level of turbulent
transport [2,3,18–21].
Within our paradigm for treating nonlinear interactions (Section I) and given the analysis of
Section II, ETG saturation can be set only by distortions of the parallel mode structures or
by nonlinear coupling between differentn’s. This situation was recently studied by dedicated
numerical simulations [2,3]. First of all, analyses of the nonlinear evolution of a single-n ETG,
demonstrated that saturation occurs via the generation of an(m = ±1, n = 0) = (m, n)∗ ×
(m±1, n) mode, which broadens the radial width of poloidal harmonics,i.e., increases|k‖| and
enhances Landau damping. The|k‖| increase corresponds to a strengthening of the ballooning
character ofΦ(θ; r) due to the modification of theθ-space potential well by the(±1, 0) mode.
The elongated ETG eddies at saturation (streamers) are not appreciably altered with respect to
the linear growth phase, suggesting weak ZF effects on ETG and excluding the mode saturation
via excitation of a slab-like secondary Kelvin-Helmholtz (KH) instability [20,21]. Similar
analyses, carried out with multiple-n ETG, show a much lower saturation level than in the
single-n case, indicating that the nonlinear coupling between two differentn’s is the dominant
process in the ETG saturation. It is readily recognized that this coupling is a truly toroidal
process, since the Hasegawa-Mima term is∝ b · k′⊥ × k′′⊥. It is the localized radial structure
of the single poloidal harmonics on a≈ 1/|nq′| scale that makes the coupling of two elongated
streamers withk′r,k

′′
r ' 0 possible, which otherwise could not effectively interact. Efficient

nonlinear coupling between two differentn’s, sayn0 andn1, imposes that poloidal harmonics
be localized near the same radial position,i.e. that we consider a low order rational surface
rs, wherem0/n0 ' m1/n1 ' q(rs) ≡ ml/nl. Assuming the typical ETG unstable spectrum,
an optimal ordering is found fornl ≈ n

1/2
0 . Furthermore, we takenl = n0 − n1 to satisfy

mode number matching conditions. The low-n beat waves arequasi modessince they do not
satisfy three-wave resonant conditions due to1 > (γL0/ω0) ∼ (γL1/ω1) ∼ k⊥ρe ∼ n

−1/4
0 >

|ω0 − ω1|/ω0 ∼ n
−1/2
0 [2,3]. Due to toroidal geometry and their nonlinear nature, quasi modes

are characterized by highly localized radial structures as well as long parallel wavelength,k‖ ∼
1/(n

1/2
0 qR0) (not ballooning). Starting from the quasineutrality conditions forn0, n1, nl modes

in the form of Eq. (6), it is possible to systematically calculate the parallel mode structure of
the quasi modes, and then derive the evolution equations for the normalized amplitudesa0(t),
a1(t) andal(t), wherea = eA/Te andA is the local mode amplitude defined by Eq. (1). Given
s the magnetic shear, we have [2,3]:

(∂t − γL0)a0 = −γNL1a1al , (∂t − γL1)a1 = γNL0a0a
∗
l , ∂tal = γNLla0a

∗
1 , (16)

whereγNL0,1 = (
〈〈

k2
⊥0,1

〉〉
/W 2

l )k2
θ0,1sαe|ωce|(Ti/Te)ρ

4
e, γNLl = (2nl/n0)k

4
θsαe|ωce|(Ti/Te)ρ

4
e

and, definingθ` ≡ θ + 2π`,

〈〈k2
⊥〉〉

k2
θW

2
l

= 4π2
∑

`

`2e2πi`nq
∫ ∞

−∞

[
4π2`2 −

(
1 + s2

〈〈
θ2
〉〉)] [

1 + s2θ2
`

]
Φ∗(θ)Φ(θ`)dθ . (17)

Note that, from Eqs. (16), the spectral transfer is toward longer poloidal wavelengths. Since
n0 ∼ n1 � nl, we can generalize Eqs. (16) to the multiplen case in the continuum limit.
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IntroducingIn = |an|2/2 andvn = −γNLnl|al|, we finally have

(∂t−2γLn)In +vn∂nIn = 0 , (∂t +γl)|al| = 4αe|ωce|(Ti/Te)ρ
4
eq
′
∫

k3
θnIndn , (18)

where we have introducedγl as the damping rate of the forcednl-mode viak‖v‖ Landau damp-
ing. Sincevn < 0, Eqs. (18) indicate that ETG energy is gradually transferred to longer
poloidal wavelengths via scattering off the low-n quasi modes, till saturation takes place due
to enhanced damping and/or decreased drive. The corresponding turbulent transport level is
smaller than values of experimental relevance, as demonstrated in global gyrokinetic simula-
tions [2,3]. The crucial role of low-n quasi modes asmediatorsof the nonlocal spectral energy
transfer [2,3] makes it necessary to properly treat the dynamics of these low mode numbers,
which are characterized by highly localized radial structures and are very extended along the
field lines,k‖ ∼ 1/(n

1/2
0 qR0). Underestimating the quasi mode amplitude or occupation num-

ber implies underestimatingvn, resulting in a larger ETG saturation level and turbulent trans-
port. This point could help resolving the discrepancy between flux tube and global gyrokinetic
particle simulation results [2,3,18–21].
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