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Using the canonical perturbation theory, we show that the orbit-averaged theory only requires a

time-scale separation between equilibrium and perturbed motions and verifies the widely

accepted notion that orbit averaging effects greatly reduce the microturbulent transport of

energetic particles in a tokamak. Therefore, a recent claim [Hauff and Jenko, Phys. Rev. Lett.

102, 075004 (2009); Jenko et al., ibid. 107, 239502 (2011)] stating that the orbit-averaged theory

requires a scale separation between equilibrium orbit size and perturbation correlation length is

erroneous. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820804]

I. INTRODUCTION

The method of averaging1 in classical mechanics strictly

follows from the existence of an action integral (i.e., adia-

batic invariant) in a quasi-periodic Hamiltonian system. This

method was rigorously derived half a century ago using the

canonical perturbation theory2–4 by assuming a time-scale

separation between equilibrium (periodic) and perturbed

motions. The orbit-averaged theory for the guiding center

(GC) drift motion has been widely applied in plasma

physics,5–9 and it predicts,10–13 in particular, that energetic

particle transport by microturbulence14,15 in a tokamak is

greatly reduced by the orbit averaging effects.

In a series of papers published recently in Phys. Rev.
Lett.16,17 and Phys. Plasmas,18–20 Hauff, Jenko, and collabora-

tors claimed that the orbit-averaged theory requires the orbit

size (Dr) of the equilibrium GC drift in a tokamak to be

smaller than the turbulence eddy size (kc). However, this

claim was not supported by any mathematical proof. If this

claim was correct, the requirement of a scale separation

between equilibrium orbit size and perturbation correlation

length (i.e., Dr< kc) in the orbit-averaged theory is of

both fundamental and practical significance.

Fundamentally, the requirement of the spatial-scale separa-

tion contradicts the textbook notion1–13 that only a time-

scale separation between equilibrium and perturbed

motions is required by the orbit-averaged theory.

Practically, the requirement of the spatial-scale separation

leads to an energy scaling16–20 different from that of the

orbit-averaged theory5,21–23 for the turbulent transport of

energetic particles in burning plasmas such as ITER.

The radial orbit size (Dr) of the equilibrium GC drift in

an axisymmetric tokamak was first defined in Eqs. (1)–(2) of

Ref. 16

Dr � qq

for a passing particle, and

Dr � qqffiffiffiffiffiffiffiffiffiffiffiffi
r=R0

p

for a trapped particle (for simplicity, numerical coefficients

of the order of unity are omitted). Here, q denotes the safety

factor; q, the gyroradius; r, the minor radius; and R0, the on-

axis major radius. Ref. 16 defines the drift orbit size as “Dr
the diameter of the deviation from the flux surface in the ra-
dial r (or x) direction.” Then, a condition for the orbit aver-

aging (Eq. (3) of Ref. 16) was given as follows:

maxfVE; jvdr � vyjgTorbit

kc
< 1 and Torbit � sc:

However, this condition was proposed without mathematical

proof. This equation states that the orbital time of the equi-

librium GC drift (Torbit) should be shorter than the time taken

by the GC to move across a turbulence correlation length

(kc) at the maximal speed of the equilibrium drifts vdr minus

vy, and perturbed E � B drift VE. Ref. 16 defines vdr as

“diamagnetic drifts with a velocity of the order of qici/R0,” vy

as “particle procession drift in the toroidal y direction,” and

ci as “ion thermal speed.” Finally, considering that the equi-

librium GC drifts are faster than the perturbed E � B drift

for an energetic particle, Ref. 16 states that “(for Dr � kc) a
particle gets decorrelated during its orbit motion, since it
does not return into the correlated zone.” An orbit decorrela-

tion time now replaces the turbulence correlation time sc as

the characteristic time scale for the wave-particle interaction.

This orbit decorrelation time is given by

sorbit ¼ Torbitkc

pDr
:

This equation (Eq. (4) of Ref. 16) clearly states that the time-

scale separation requirement (Torbit < sorbit) directly leads to

the spatial-scale separation requirement (Dr< kc). Ref. 16

concludes that “orbit averaging becomes invalid almost as
soon as the particle energies clearly exceed the thermal
energy of the background plasma.”

The above textual quotes and Eqs. (1)–(4) of Ref. 16

unambiguously claim that the orbit-averaged theory

requires a spatial-scale separation (Dr< kc). Invoking this
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requirement, the authors of Refs. 16–20 then criticized the

orbit-averaged theory in Ref. 21. The critcism16–23 is primar-

ily related to the application of the theory to the single parti-

cle dynamics, for which a first-principles theory exists.1–4

Interestingly, in response to our comment23 stating that the

claim of a spatial-scale separation contradicts the canonical

perturbation theory, Jenko et al.17 vigorously defended the

condition of the orbit-averaged theory as plainly expressed

in Eqs. (1)–(4) of Ref. 16, but categorically denied “a claim
(namely, that orbit-averaged theory requires the smallness
of the orbit size with respect to the turbulence correlation
length), which was never made.”

The condition of the orbit-averaged theory expressed in

Eq. (4) of Ref. 16 is clearly erroneous. As a very simple

example, consider a time-independent, small amplitude elec-

trostatic potential /(r), which has a radial scale length that is

smaller than the gyroradius of energetic particles. According

to Eq. (4) of Ref. 16, the orbit-averaged theory is invalid

when considering the effect of /(r) on the guiding center

motion in a tokamak. However, this contradicts the fact that

the guiding center orbit is closed and periodic because of

three constants of motion in this axisymmetric system: mag-

netic moment l, energy E, and canonical toroidal angular

momentum Pf.

The error in the claim made by the authors of Refs.

16–20 arises from the use of the equilibrium drift to calculate

the “orbit decorrelation time”sorbit. In fact, in order to derive

Eq. (4) from Eq. (3) of Ref. 16, vdr or vy must be the GC

equilibrium drift due to the magnetic field gradient and cur-

vature. Since the equilibrium drift determines the GC drift

orbit size Dr, this procedure directly leads to the erroneous

condition of a spatial-scale separation for the orbit-averaged

theory. The spatial-scale separation claim is logically self-

defeating: the effect of the orbit averaging is negligible, if

Dr< kc. It also leads to some strange arguments regarding

the GC dynamics. For example, Ref. 17 states that the

applicability of the orbit-averaged theory could depend on

whether “the local safety factor happens to be an integer.”
In the one-dimensional canonical perturbation theory for

a quasi-periodic Hamiltonian system,1–4 the orbit-averaged

theory for the GC drift motion is conceptually and mathe-

matically equivalent to the gyro-averaged theory24–28 (i.e.,

gyrokinetic theory) for cyclotron motion. If the heuristic

arguments of Refs. 16–20 are applied to cyclotron motion,

the orbital time of the equilibrium cyclotron motion should

be shorter than an “orbit decorrelation time” defined as the

time taken by a charged particle in moving across a turbu-

lence eddy caused by the equilibrium cyclotron motion; the

gyrokinetic theory would then be invalid for small turbu-

lence eddy sizes regardless of the perturbation amplitude and

frequency. This contradicts the standard gyrokinetic theory.

In fact, the GC theory has been constructed29 without any

requirement of spatial-scale separation.

In this article, we use the canonical perturbation theory

to show that orbit averaging is valid for an arbitrary GC drift

orbit size in a tokamak. The orbit-averaged theory strictly

follows from the existence of a longitudinal adiabatic invari-

ant, which can only be broken by wave-particle resonances

including linear and drift-bounce resonances and stochastic

heating (see discussions of Eq. (18) in Sec. II). We demon-

strate that the energy scaling of the turbulent transport of

energetic particles predicted by the orbit-averaged theory is

consistent with results from large scale gyrokinetic particle

simulations. Our results verify the widely accepted notion

that orbit averaging greatly reduces the microturbulent trans-

port of energetic particles.

In Sec. II, canonical perturbation theory shows that the

orbit-averaged theory does not require a spatial-scale separa-

tion. The energy scaling of the turbulent transport predicted

by the orbit-averaged theory is shown to be fully consistent

with results from large scale gyrokinetic particle simulations

in Sec. III. Conclusions are drawn in Sec. IV.

II. CANONICAL PERTURBATION THEORY OF GC
DYNAMICS

In this section, we show by using the canonical perturba-

tion theory that the orbit-averaged theory does not require a

spatial-scale separation. The Hamiltonian governing the GC

drift in an axisymmetric tokamak is

H ¼ H0 þ dH ¼ 1

2
v2
k þ lBðr; hÞ þ /ðt; r; h; fÞ: (1)

Here, t denotes time and l, magnetic moment. Particle mass

and charge are taken to be unity. We consider a concentric

tokamak for simplicity and use the toroidal coordinate sys-

tem with the minor radius r, poloidal angle h, and toroidal

angle f. The equilibrium Hamiltonian H0 ¼ 1
2

v2
k þ lB

describes the periodic GC drift in the equilibrium magnetic

field B(r, h) and determines the GC orbit size Dr. The per-

turbed Hamiltonian dH¼/ describes the perturbed GC drift

due to the electrostatic potential /(t, r, h, f) with a correla-

tion length kc. We neglect the finite Larmor radius effects

and start with the GC Hamiltonian so that the magnetic

moment is a constant even in the presence of the perturba-

tion. The Hamilton’s equation is constructed using the poloi-

dal (Ph) and toroidal (Pf) canonical angular momenta.30

The equilibrium GC drift orbit is determined by three

constants of motion (l, E, Pf) with energy E ¼ 1
2

v2
k

þlBðr; hÞ. The Hamilton’s equation can be greatly simpli-

fied through a canonical transformation from the (h, Ph, f,
Pf) phase space to action-angle variables. Obviously, l is the

first action associated with the cyclotron motion, which has

been removed from the GC equation of motion (so that l
appears in the Hamiltonian only as a parameter). As per the

standard procedure,9,30,31 we define the second action (longi-

tudinal invariant) of the GC transit or bounce motion as

J2 ¼
1

2p

þ
Phdh ¼ J2ðl;E;PfÞ: (2)

The integration is performed along the complete path of a

passing or trapped GC orbit. The corresponding angle h2

describes the GC position along the magnetic field line. The

third action J3 describes the toroidal precessional drift of the

GC orbit center with ðh3; J3Þ representing the orbit center

position in the toroidal and radial directions, respectively. In
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the action-angle phase space (h2, J2, h3, J3), the equilibrium

Hamiltonian is simplified as

H0 ¼ Eðl; J2; J3Þ: (3)

The transit or bounce frequency is

xb ¼
@H0ðl; J2; J3Þ

@J2

: (4)

The precessional frequency is

xp ¼
@H0ðl; J2; J3Þ

@J3

: (5)

The equilibrium GC drift is now completely described by the

three actions (l, J2, J3). A simple example9 for this action-

angle formulation is a purely passing particle with l¼ 0

H0 ¼ xbJ2; J2 ¼ qR0

ffiffiffiffiffiffiffiffi
E=2

p
; and xb ¼

ffiffiffiffiffiffi
2E
p

qR0

: (6)

On including the perturbation, the GC drift is no longer

periodic and (J2, J3) are no longer constants of motion. We

now seek to define the condition for the motion to remain

quasi-periodic so that the canonical perturbation theory2–4

can be applied. We use a small parameter e to represent the

deviation from the periodic motion

e� 1: (7)

The frequencies associated with the three actions are well sep-

arated for an energetic particle confined in a tokamak, i.e.,

xp � e xb � e2X: (8)

Here, X denotes the particle cyclotron frequency. We assume

a low frequency perturbation:

x � exb x ¼
���� 1

/
@/
@t

���� : (9)

We can formally label the e ordering of the terms in the

Hamiltonian as

H ¼ H0ðl; J2; eJ3Þ þ e/ðet; r; h; fÞ: (10)

We seek a near-identity transformation from (h2, J2, h3, J3)

to ð�h2; �J2; �h3; �J3Þ so that the new Hamiltonian �H does not

depend on the rapidly varying angle �h2. The canonical trans-

formation is given by a generating function

S ¼ h2
�J2 þ h3

�J3 þ eS1ðh2; �J2; h3; �J3; etÞ: (11)

The coordinate transformation is given by

J2 ¼
@S

@h2

¼ �J2 þ e
@S1

@h2

; J3 ¼
@S

@h3

¼ �J3 þ e
@S1

@h3

: (12)

The new Hamiltonian is

�H ¼ H0ðl; J2; eJ3Þ þ e/þ @S

@t

¼ H0ðl; �J2; �J3Þ þ e /þ e
@S1

@t
þ xb

@S1

@h2

þ exp
@S1

@h3

� �
:

(13)

In order to eliminate the rapidly varying angle �h2 from the

new Hamiltonian, we separate the perturbed potential into

two components: / ¼ �/ þ /1. The orbit-averaged part �/ is

defined as the potential integrated along the path of a com-

plete equilibrium GC transit or bounce motion

�/ðet; l; J2; h3; J3Þ ¼ xb

þ
/ðet; r; h; fÞ qR

vk
dh: (14)

The new Hamiltonian is then cast order by order

�H ¼ H0ðl; �J2; e�J3Þ þ e�/ðet; l; �J2; �h3; �J3Þ

þ e xb
@S1

@h2

þ /1

� �
þ e2 @S1

@t
þ xp

@S1

@h3

þ � � �
� �

: (15)

We solve the following equation for the first-order solution

of S1:

xb
@S1

@h2

þ /1 ¼ 0: (16)

The new Hamiltonian is independent of �h2 when expressed

up to the first order of e as

�H ¼ H0ðl; �J2; e�J3Þ þ e�/ðet; l; �J2; �h3; �J3Þ: (17)

The above is the desired Hamiltonian that describes the per-

turbed GC bounce or transit motion under the influence of

the orbit-averaged potential �/. The new action �J2 is an adia-

batic invariant. As expected, the orbit-averaged theory

strictly follows from the existence of this new longitudinal

invariant.

We now list the assumptions made in the derivation

leading to Eq. (17)

x; xd; xnl � exb: (18)

First, the condition x� exb results from the assumption that

the @S1

@t term in Eq. (15) is of the second order. The violation of

this condition leads to the linear resonance. Second, the drift

frequency xd¼ nxp is the Doppler-shifted frequency of the

perturbed potential with a toroidal mode number n, as observed

from the GC orbit center with a toroidal precession frequency

of xp. The condition of xd � exb results from the assumption

that the term xp
@S1

@h3
in Eq. (15) is of the second order. The vio-

lation of this condition leads to the familiar drift-bounce reso-

nance underlying the ripple loss process.32 Finally, the

nonlinear frequency xnl ¼ @�/
@ �J 2

is associated with the perturbed

GC drift, which depends on the turbulence amplitude. The con-

dition of xnl � exb results from the assumption that the per-

turbed potential / is smaller than the equilibrium Hamiltonian.

The violation of this condition requires a large turbulence in-

tensity, which can lead to stochastic heating.33

These conditions (Eq. (18)) for the orbit-averaged theory

impose only a time-scale separation requirement. Therefore,

the canonical perturbation theory of the GC dynamics does

not require the equilibrium orbit size to be smaller than the

perturbation correlation length, in contradiction to the claim

in Refs. 16–20.
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III. ENERGY SCALING OF ENERGETIC PARTICLE
TRANSPORT BY ELECTROSTATIC
MICROTURBULENCE

Having established the validity of the orbit averaging,

we now show that the energy scaling of the turbulent trans-

port predicted by the orbit-averaged theory is fully consistent

with results from large scale gyrokinetic particle simulations.

Assuming a small perturbation amplitude, the gyrokinetic

quasilinear theory with the orbit-averaging for electrostatic

turbulence in an axisymmetric system has been rigorously

derived5 using the nonlinear gyrokinetic theory.25 Here, we

apply the theory of Ref. 5 to the diffusivity for purely pass-

ing particles (l¼ 0) in a tokamak to obtain

Dp /
c2

B2

X
n;l

jkh/nJlðk?qdÞj2 dðx� �kkvk � lxbÞ (19)

and for deeply trapped particles (vk� 0),

Dt /
c2

B2

X
n;l

jkh/nJ0ðk?qEÞJlðk?qdÞj2 dðx� nxp � lxbÞ:

(20)

Here, qE and qd denote the gyroradius and GC drift orbit

width, respectively; kh and k? denote the poloidal and

perpendicular wavenumbers; c denotes the speed of light;

l denotes the transit/bounce harmonics; and the over-bar

indicates averaging over the GC transit/bounce orbit on

the 1/xb fast time scale. The parallel wavevector �k jj ¼
ðn� m=qÞ=R is evaluated at the transit orbit center (m is the

poloidal harmonic). The Bessel function J2
0ðk?qEÞ results

from the gyroradius and J2
l ðk?qdÞ from the width of the GC

transit/bounce orbit. The only assumption made in deriving

these equations is time-scale separation between the three

degrees of freedom in the equilibrium motion (Eq. (8)), i.e.,

X�xb�xp, together with the usual quasilinear assump-

tions of a small amplitude turbulence made in Refs. 16–23.

Equations (19) and (20) describe the GC orbit-averaged

theory with an additional assumption of a time-scale sepa-

ration between equilibrium and perturbed motions, as

expressed in Eq. (18).

Purely passing particles—For energetic particles, the

l¼ 0 term in Eq. (19) dominates for a microturbulence with

modestly ballooning structures.34 In such a case, Eq. (19)

becomes

Dp /
c2

B2

X
n

jkh/nJ0ðk?qdÞj2 dðx� �k jjvjjÞ: (21)

The GC orbit-averaged potential �/ ¼ /nJ0ðk?qdÞ is there-

fore valid for arbitrary turbulence eddy sizes.

Deeply trapped particles—For low-n modes (large

poloidal eddy size) with arbitrary radial eddy sizes, the

dominant term in Eq. (20) is the l¼ 0 term. In such a case,

Eq. (20) thus becomes

Dt /
c2

B2

X
n

jkh/nJ0ðk?qEÞJ0ðk?qdÞj2 dðx� nxpÞ; (22)

which is simply the result of usual bounce-averaged theory

as applied previously to the trapped-ion mode34 and fishbone

oscillation.35 The GC orbit-averaged potential �/ ¼
/nJ0ðk?qEÞJ0ðk?qdÞ is therefore valid for arbitrary radial

eddy sizes.

For high-n modes, the dominant term in Eq. (20) is the

l¼ 1 term for energy ranges of a-particles in ITER. This cor-

responds to the drift-bounce resonance x� nxp � xb ¼ 0.

The usual adiabatic invariant �J2 is not conserved, in this

case, due to the resonance between GC parallel and perpen-

dicular equilibrium motions. Again, this is completely analo-

gous to the breaking of l in the cyclotron motion due to the

resonance between the perpendicular gyro-frequency and

parallel Doppler-shifted frequency (X¼ kkvk). Using the sec-

ular perturbation theory for two degrees of freedom, Taylor

and Laing36 showed that a new adiabatic invariant can be

constructed by removing the resonance through a transfor-

mation to the Doppler-shifted frame. This is always possible

as long as the turbulence intensity is not strong enough for

the onset of global stochasticity.4 When x, xnl� nxp, xb,

the same procedure can be used to remove the GC drift-

bounce resonance through a transformation to a new frame

rotating with a precessional frequency xp; in the new frame

the GC orbit is closed after a complete bounce motion. Then,

a modified longitudinal invariant can be constructed

(superadiabaticity) and an orbit integration over the

fast bounce motion gives a perturbed Hamiltonian with
�/ ¼ /nJ0ðk?qEÞJ1ðk?qdÞ. Thus, the orbit integration leads

to an effective orbit-averaged potential.

Energy scaling—We now demonstrate that the energy

scaling for the energetic particle transport with orbit averag-

ing (Eqs. (19)–(22)) is fully consistent with results of large

scale gyrokinetic particle simulations of electrostatic ion

temperature gradient (ITG) turbulence using global gyroki-

netic toroidal code (GTC).37 We note that the GTC simula-

tion results21,22 are the first published phase space structures

of energetic particle diffusivity, and can be used to construct

the diffusivity of any distribution function. For example, the

diffusivity of a slowing down beam, in qualitative agreement

with an independent study,13 successfully explains many

features of the fast ion transport in DIII-D tokamak

plasmas.14,15

For purely passing energetic particles, Eq. (21) gives an

asymptotic energy scaling of the diffusivity, Dp / E�1,

which agrees very well with the GTC simulation results in

Fig. 1. To verify that the resonance condition of x ¼ �k jjvjj
and the orbit averaging J2

0ðk?qdÞ each contributes an energy

dependence of E�1/2 to the diffusivity, we examine the

energy dependence of the Bessel function J2
0 by numerically

integrating the intensity weighted J2
0 over kh (dominant con-

tribution to k?) using the turbulence spectrum measured

from simulations. The result in Fig. 2 indicates that when

E> 8.2 T, J2
0 exhibits E�1/2 scaling. The other condition,

xb>x is easily satisfied when E> 1.2 T.

For deeply trapped energetic particles, the resonance

condition becomes nxp¼ lxb (dominated by l¼ 1), which

contributes an energy scaling of E�1 to the diffusivity. The

particle gyro-averaging J2
0ðk?qEÞ and GC orbit averaging

J2
1ðk?qdÞ each contributes to a dependence of E�1/2.
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Therefore, deeply trapped particle diffusivity scales as

Dt/E�2, which is confirmed by the GTC simulation results

in Fig. 1. We now estimate the energy threshold for this as-

ymptotic scaling. For the ITG turbulence, we find that when

E> 13 T, the condition xb>x is satisfied. Since qd � qE,

J1 reaches the asymptotic limit of the E�1/2 dependence

faster than J0.

In contrast, the erroneous claim in Refs. 16–20 leads to

an energy scaling of the diffusivity Dt /E�1.5 for trapped

particles. Moreover, GENE simulation results (Fig. 2 of Ref.

16) show that the diffusivity of trapped particles is larger

than that of passing particles, i.e., Dt>Dp at E¼ 100 T
(roughly the energy of a-particles in ITER). This clearly con-

tradicts the orbit-averaged theory and GTC simulation

results in Fig. 1, which show that Dt< 0.01Dp at E¼ 100 T.

Therefore, the validity of GENE simulation results in Refs.

16–20 for predicting the scaling and the level of transport of

energetic particles by microturbulence in ITER is

questionable.

We remark that the accuracy in measuring Dt must be

better than 10�4 times the thermal diffusivity Di since

Dt� 10�4Di at E¼ 100 T as can be seen from Fig. 1. Such a

level of accuracy is very difficult to achieve since most gyro-

kinetic simulations do not bother to reach an accuracy of

even 10�2. In fact, special techniques and cares38–41 need to

be adopted in the GTC simulation21,22 to obtain an extremely

high accuracy in measuring Dt; these techniques include the

detailed Lagrangian analysis, and the convergences of parti-

cle number, time step, device size, and gyro-averaging, etc.

IV. CONCLUSIONS

In summary, we have shown using the canonical

perturbation theory that a recent claim16–20 stating that the

orbit-averaged theory requires a scale separation between the

equilibrium orbit size and perturbation correlation length is

erroneous. The orbit-averaged theory only requires a time-

scale separation. We have rigorously derived the orbit aver-

aging for the purely passing and deeply trapped energetic

particles in an electrostatic turbulence with an arbitrary eddy

size. Our results verify the widely accepted notion that parti-

cle gyro-averaging and GC orbit-averaging greatly reduce

the energetic particle transport by microturbulence.
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