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Linear properties of toroidal Alfvén eigenmode (TAE) is studied in global gyrokinetic particle

simulations using both fast ion and antenna excitations. A synthetic antenna provides a precise

measurement of the Alfvén continuum gap width and the TAE eigenmode frequency, damping

rate, and mode structures. The measured gap width exhibits a linear dependence on the aspect ratio,

in agreement to a local analytic theory. The TAE frequency and mode structure excited by fast ions

show a significant radial symmetry breaking relative to the ideal magnetohydrodynamic theory due

to the non-perturbative contributions from the fast ions. The electromagnetic capability of the

global gyrokinetic toroidal code (GTC) is verified through these global gyrokinetic simulations of

Alfvén eigenmode in cylindrical and toroidal geometries. VC 2012 American Institute of Physics.

[doi:10.1063/1.3685703]

I. INTRODUCTION

Energetic particles can be created in magnetically con-

fined plasmas through fusion reactions (a-particles) and auxil-

iary heating such as neutral beam injection (NBI) or radio

frequency (RF) heating. Generally, a-particles distributions are

isotropic in velocity space, while the NBI mainly contributes to

passing populations and a large portion of RF heated particles

are deeply trapped particles. These energetic particles are sub-

ject to the interaction with magnetohydrodynamic (MHD)

instabilities,1 microturbulence,2 stochastic magnetic field,3 and

classical collisional and orbital effects.4 The interaction

between energetic particle and background field could be two-

fold: the microturbulence could affect the confinement of the

energetic particles; on the other hand, they may drive a new

type of instabilities, for example, Alfvén eigenmodes (AEs)

and nonperturbative energetic particle modes (EPMs)5 etc.

Fusion experimental4,6 and theoretical7 studies, especially

recent large scale gyrokinetic particle simulations8,9 and NBI

experiments on DIII-D,10,11 show that transport of high-energy

a-particles by ion temperature gradient microturbulence driven

by the thermal particles is negligible in burning plasmas. How-

ever, the toroidal nature of tokamak produces gaps in the con-

tinuous spectrum of Alfvén waves, which are populated by

discrete, undamped shear Alfvén gap modes, for example,

the toroidicity-induced Alfvén eigenmode (TAE),1,12–18

the reversed shear Alfvén eigenmode (RSAE),19,20 and the

b-induced Alfvén eigenmode (BAE).21–23 These modes could

be readily destabilized by energetic particles in burning

plasmas, which induce large cross-field transport of energetic

particles through wave-particle interactions and, therefore,

degrades the plasma confinement.

The global gyrokinetic toroidal code (GTC)24 has been

successfully applied to simulate energetic particle transport

by electrostatic turbulence8,9 and Alfvén eigenmodes,

RSAE20 and BAE.23 In this article, we will further demon-

strate and verify its electromagnetic capability through a se-

ries of global gyrokinetic simulations of AEs in cylindrical

and toroidal geometries. Such global gyrokinetic simulations

take advantage over the MHD model that they can capture

the full kinetic physics, which are essential for retaining the

important background damping of various types such as col-

lisional damping, Landau damping, continuum damping,

radiative damping, etc. Recently, a number of gyrokinetic

global codes13–18,25,26 have been developed to simulate the

low-n TAEs. For example, Mishchenko et al.15,16 use df par-

ticle code GYGLES, Lang et al.17,18 extended GEM code for

the TAE simulations, and Lauber et al.25,26 developed a

gyrokinetic eigenvalue code, LIGKA.

This paper is organized as follows. The gyrokinetic sim-

ulation model with uniform thermal plasma is described in

Sec. II, the Alfvén wave simulation in cylindrical geometry

is presented in Sec. III, the toroidal simulation results of

TAE excitation by antenna and fast ions are presented in

Sec. IV, and Sec. V summarizes this work.

II. GYROKINETIC SIMULATION MODEL

In this section, the electromagnetic gyrokinetic model

used by GTC is described first. Then, the ideal MHD theory

is recovered in the long wave-length limit. Next, the TAE

dispersion relation is derived from the reduced equations.

Finally, the TAE excitation by antenna is explained.

A. Formulation for gyrokinetic simulation

The gyrokinetic equation used to describe the plasma in

toroidal systems is expressed in 5D phase space (gyrocenter

position X, magnetic moment l, and parallel velocity vjj)a)Electronic mail: wlzh@ustc.edu.cn.
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where index a ¼ e; i; f stands for particle species of electron,

thermal ion, and fast ion, respectively, Za is the particle

charge, ma is the particle mass, / and Ak are the gyroaver-

aged perturbation of electrostatic and vector potentials,

B0 � B0b̂0 is the equilibrium magnetic field, B¼B0þdB,

B� ¼B�0þdB;B�0¼B0þðB0vjj=XaÞr�b0, dB¼r�ðAjjb̂0Þ.
The E�B drift vE, the curvature drift vc, and the grad-B drift

are given by

vE ¼
cb̂0 �r/

B0

;

vc ¼
v2
jj

Xa
r� b̂0;

vg ¼
l

maXa
b̂0 �rB0:

In order to describe the properties of electrons for the meso-

scale turbulence, GTC adopts the fluid-kinetic hybrid elec-

tron model, which consist of a dominant adiabatic part and a

high-order kinetic response. The lowest order adiabatic part

is used in this work to simulate the AEs, which is obtained

by integrating the electron gyrokinetic equation in the drift-

kinetic limit and gives the continuity equation of the electron

density

@dne
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þ B0 � r

ne0duejj
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� �
þ B0vE � r

ne0
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� �
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where ve� ¼ b̂0 �r dPejj þ dPe?
� �

=ðne0meXeÞ, dPjj ¼
Ð

dv

mv2
jjdfe, dPe? ¼

Ð
dvlB0dfe, ne0 ¼

Ð
dvfe0. The electron par-

allel fluid velocity in the above equation can be calculated

by using the parallel Ampère’s law

ne0edujje ¼
c

4p
r2
?dAjj þ

X
a¼i;f

na0Zaduajj: (5)

Here, the vector potential is obtained using the Faraday’s

law

@dAjj
@t
¼ rjjð/eff � /Þ � rjj/ind: (6)

The effective potential /eff is calculated by integrating the

leading order terms of x=ðkjjvjjÞ in the electron gyrokinetic

equation assuming the uniform electron density,

e/ð0Þeff

Te
¼ dne

ne0

: (7)

This system is closed with the gyrokinetic Poisson’s equation

Z2
i ni

Ti
ð/� ~/Þ ¼

X
a¼i;e; f

Zadna; (8)

where ~/ is the second gyrophase-averaged potential.

A more complete formulation with non-uniform thermal

plasmas can be found in Ref. 27.

B. Reduction to ideal MHD theory

We now show that the gyrokinetic simulation model

retains ideal MHD modes, for example, TAE, by reducing

our equations in the long wavelength limit and no parallel

electric field, /eff ¼ 0. For uniform thermal plasmas, the lin-

earized continuity equation (4) can be written

@
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The Possion equation (8) becomes
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where vA ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pmini

p
is the Alfvén velocity. Applying

r2
? operator on Eq. (6) gives

1

c

@

@t
r2
?Ajj

� �
¼ �r2

? b̂0 � r/
� �

: (11)

The inverse Ampère’s law Eq. (5) reads

duejj ¼ c
e

Te
k2

D r2
?Ajj

� �
: (12)

The ion density and ion parallel velocity have been ignored

in Eqs. (10) and (12), since the ion parallel current is much

smaller than the electron parallel current. Equations (9)–(12)

can be combined into an eigenmode equation:

@2

@t2
r? �

1

v2
A

r?/
� �� �

� B0 � r
1

B0

r2
? b̂0 � r/
� �� �

¼ 0:

(13)

Finally, applying the Fourier transforms in time to the above

equation, we arrive at

x2r? �
1

v2
A

r?/
� �

¼ �B0 � r
1

B0

r2
? b̂0 � r/
� �� �

; (14)

which recovers the ideal MHD equations.20

C. TAE dispersion relation

Now, we consider perturbations with high toroidal

mode number n and use d � �=n � Oðkjj=k?Þ with � ¼ r=a
as an expansion parameter to develop an asymptotic

solution of Eq. (14). Employing the high-n ballooning

mode representation, the perturbed quantities can be

expressed as
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/ðW; h; fÞ ¼
X1

l¼�1

�/ðW; h� 2pl; fÞ;

where the coordinate system ðW; h; fÞ is adopted, the h
domain of �/ extends from �1 to 1, 2pW is the poloidal

flux between the magnetic axis and a constant W surface.

The equilibrium magnetic field B0 ¼ ra�rW, and

a ¼ f� qðWÞh is the magnetic field line label in a toroidal

system. h and f are the generalized poloidal and toroidal

angles with a period of 2p, and q is the safety factor and

is a function of W only. In this coordinate system,

B0 � rh ¼ ðra�rWÞ � rh ¼ J�1;B0 � r ¼ J�1@h, and

J ¼ qðWÞR2=ðBð0Þf R2
0Þ is the Jacobian. It is clear that Eq.

(14) is satisfied by the perturbed quantities over an infinite

range in h with no periodicity constrain. Then, we express �/
by the WKB representation,

�/ ¼ UðW; h; dÞ exp½ivða;WÞ�;

where v describes the rapid cross field variations and U is the

slow variations along the field lines on the equilibrium scale,

so that B � rv ¼ 0. For an axisymmetric toroidal system, v is

separable and can be expressed as v ¼ n aþ
Ð

hkðWÞdq
� �

,

where hk is to be determined by a higher-order radial nonlo-

cal analysis. In the lowest order in d, Eq. (14) then reduce to

a single second-order differential equations in h for every W
and hk. The final equation is given by

J�1 @

@h
jraj2

JB2

@

@h
U

" #
þ x2

v2
A

jraj2U ¼ 0: (15)

For the purpose of analytical studies, we consider an axisym-

metric, large aspect ratio, low-b toroidal plasma with con-

centric, circular magnetic surfaces, which is used as the

analytic equilibrium geometry. The generalized radius,

poloidal, and toroidal angles are related to the geometrical

radius and angles (~r; ~h; ~f) through ~r ¼ r; ~h ¼ hþ � sin h, and
~f ¼ f. Thus, the lab coordinate can be expressed as x ¼ ðR0

þ ~r cos ~hÞ cos ~f; y ¼ �ðR0 þ ~r cos ~hÞ sin ~f, z ¼ ~r sin ~h. There-

fore, we have jraj2¼ðq0hÞ2þðq0=rdh=dhrÞ2¼q2ð1þs2h2Þ=
½r2ð1þ�coshÞ2�, where magnetic shear s¼q0rð1þ�coshÞ=q.

Then, the above equation can be rewritten as

@

@h
1þ s2h2

ð1þ � cos hÞ2
@

@h
U

" #
þ X2ð1þ 4� cos hÞ

� ð1þ s2h2Þ
ð1þ � cos hÞ2

U ¼ 0:

If we prescribe A¼ð1þs2h2Þ=ð1þ�coshÞ2 and U¼A�1=2u,

the high-n ballooning equation, Eq. (15), then reduces to

@2u

@h2
þ X2ð1þ 4� cos hÞuþ @2A=@h2

4A2

� �
u ¼ 0; (16)

where X ¼ x=xA;xA ¼ vð0ÞA =qR0; v
ð0Þ
A ¼ vAjr¼0. The last

term is the origin for the TAE eigenmode. Without this term,

Eq. (16) is the standard Mathieu’s equation, which holds a

frequency gap in the Alfvén continuum and the gap width is

proportional to 2�.

D. Basic theory of TAE excitation by antenna

In Sec. II C, the dispersion relation for TAE can be

obtained from Eq. (16), which has been verified by TAE simu-

lations excited by initial perturbations.13 Now, we are going to

discuss the eigenmode excitation by antenna, which provides a

way to accurately determine the eigenfrequency, damping

rate, and mode structure for the damped modes in the linear

and nonlinear initial value code. In GTC, the antenna is imple-

mented through an extra synthetic potential /ant added to in-

ductive potential /ind

/ind ¼ /eff � /þ /ant

then Eq. (14) becomes

@2

@t2
r? �

1

v2
A

r?/
� �� �

� B0 � r

1

B0

r2
?ðb̂0 � rð/� /antÞÞ

� �
¼ 0: (17)

Suppose that a standing sinusoidal signal is loaded on the

antenna at time t¼ 0,

/ant ¼ �/antðW; h; fÞ cosðxanttÞ;

and potential / can be separated into spacial and temporal

components / ¼ /sðW; h; fÞ/tðtÞ. Here, the antenna drive

frequency xant is chosen close to an particular eigenfre-

quency xE of Eq. (17). Then, applying the Laplace transform

to the above equation, we have

Ut ¼
p/tðþ0Þ þ /t0ðþ0Þ
ðp2 þ x2

EÞ

þ SðW; h; fÞ xant

ðp2 þ x2
antÞðp2 þ x2

EÞ
;

where Ut is the Laplace transform of /t; SðW; h; fÞ repre-

sents the spacial dependence. The inverse Laplace transform

gives

/t ¼
/tðþ0Þ cosðxEtÞ þ x�1

E /0tðþ0Þ sinðxEtÞ þ SðW; h; fÞ
2x2

E

sinðxEtÞ � xEt cosðxEtÞð Þ; xant ¼ xE

/tðþ0Þ cosðxEtÞ þ x�1
E /0tðþ0Þ sinðxEtÞ þ SðW; h; fÞ

x2
E � x2

ant

sinðxanttÞ �
xant

xE
sinðxEtÞ

� �
; xant 6¼ xE:

8>><
>>: (18)
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In the first scenario, the antenna drive frequency equals to

the eigenfrequency, which corresponds to a linearly growing

mode with respect to time, with a frequency xE. However, in

the second scenario, the antenna frequency is different from

the eigenfrequency, and the corresponding mode is purely

oscillating waves, which contains both the drive frequency

xant and the eigen-frequency xE.

III. ALFVÉN EIGENMODE SIMULATIONS IN
CYLINDRICAL GEOMETRY

The electromagnetic capability is first demonstrated by

shear Alfvén continuum spectrum in Fig. 1, where a initial

perturbation is applied to the adiabatic electron density dne

with a given mode number m/n¼ 8/5. We uses a screw pinch

in this simulation with a linear safety factor q ¼ 1:0þ r=a
and a constant magnetic shear s¼ 0.2 in the cylindrical

geometry. The stars in Fig. 1 are the Alfvén frequency meas-

ured at different radial locations in the simulation, while the

solid line is the theoretical prediction x ¼ jkjjvAj / jðn
�m=qÞj, where the vertical axis is normalized with the local

Alfvén frequency xA at r ¼ 0:5a.

IV. TAE EXCITATIONS BY ANTENNA

The electromagnetic capability is further demonstrated

in toroidal simulation by TAE excitations using an external

synthetic antenna. The eigenmode frequency, mode struc-

ture, and TAE gap size can be precisely measured in our

simulation.

To recover the basic fluid properties of TAE, kinetic

effects of the background thermal ions and electrons have

been suppressed in the simulations in this section.

For low toroidal mode number n, the TAE mode fre-

quency is determined by the breaking of shear Alfvén contin-

uum spectra. Given a toroidal number n, the coupling

between adjacent poloidal harmonics of Alfvèn waves causes

a frequency gap in the continuous spectra. The radial posi-

tion r corresponding to a frequency gap is determined by the

safety factor profile and toroidal/poloidal mode numbers. In

our simulations, the inverse aspect ratio is 0.15 at r¼ 0.5 a,

safety factor has a linear profile q ¼ 1:0þ r=a, and the toroi-

dal mode number is chosen as n¼ 5. At r ¼ 0:5a, m¼ 7

and m¼ 8 modes have the same jkjjj ¼ jn� m=qj=R and

form the local TAE gap. The TAE eigenfrequency can be

determined by the spectrum of vector potential, which is

dominated by the antenna drive frequency, the upper accumu-

lating frequency, the lower accumulating frequency, and the

TAE frequency. The TAE frequency moves from right above

the lower accumulating point up to the middle of the gap

when magnetic shear increases. Therefore, depending on the

magnetic shear, the TAE frequency and the lower accumulat-

ing point may not be well separated. In our simulation, the

magnetic shear is s¼ 0.2, so the TAE frequency and the lower

accumulating frequency is too close to be distinguished.

The TAE is first excited by an antenna with a frequency

right in the middle of the TAE gap, xant ¼ xA ¼ vA=ð2qRÞ,
see Fig. 2. The upper panel is the spectrum of the antenna,

the middle is the spectrum of the response vector potential

Ajj, and the lower is the time history of Ajj. In the response

vector potential, two dominating frequencies other than the

antenna frequency are the upper accumulating frequency,

and the TAE frequency (lower accumulating point), respec-

tively. This is held naturally by Eq. (11) for an ideal MHD

case, where Ejj ¼ 0 and Ajj / rjj/ / @h/ for a standing

wave.

Next, the antenna’s frequency is set to the TAE fre-

quency, xant ¼ xTAE. In this scenario, Fig. 3, the only domi-

nate frequency in the response Ajj is the TAE eigenfrequency,

and as predicted by the analytic theory, the time history of

vector potential Ajj grows linearly with time because of the

FIG. 1. Shear Alfvén frequency vs radial positions in cylindrical geometry

in long wave-length limit. xA is the local Alfvén frequency at r¼ 0.5a.

FIG. 2. Spectra of Alfvén waves excited by external drive: /ext (upper

panel), Ajj (middle), and time history of Ajj (lower).

022507-4 Zhang et al. Phys. Plasmas 19, 022507 (2012)



weak damping. As shown in Eq. (18), the width of the peaks

in Fig. 3 depends on the eigen-frequencies, the driving fre-

quency, and the number of oscillations used to calculate the

mode frequency in the simulation. If damping mechanism is

included in the simulation, the damping rate of the system

affects the peak width as well. The mode structure is shown

in Fig. 4, where the upper panel is that of the vector potential

Ajj and the lower is the electrostatic potential /. It is evident

that the electrostatic potential shows a ballooning structure,

while the vector potential shows an anti-ballooning structure.

The dominant upper accumulating frequency and TAE

eigenfrequency in Fig. 2 can be used to estimate the TAE gap

size. Fig. 5 shows the gap size dependence on the local aspect

ratio �, where the stars are simulation results for � ¼ 0:05,

0.1, 0.15, 0.2, respectively. The frequency has been normal-

ized using the Alfvén frequency xAE ¼ vA=ð2qRÞ. The upper

and lower frequencies are fitted with solid and dotted lines,

respectively, which shows a clear linear dependence to aspect

ratio: x=xTAE ¼ 161:35�. This gap size is slightly bigger

than the theory predictions in Sec. II, where we employed a

simplified model and the third term in Eq. (16) is committed.

V. TAE EXCITATIONS BY FAST IONS

The MHD capability of gyrokinetic particle simulation

is further established by the TAE excitations using fast ions.

In this section, the aspect ratio is chosen to be a=R0

¼ 0:3 (a and R0 are the minor and major radius of tokamak,

respectively). The fast ions are loaded with a Maxwellian

distribution that holds the following on-axis parameters:

vf ¼ vA; nf 0=ne0 ¼ 0:07; a ¼ 80qf ; khqf ¼ 0:2, be ¼ 4pn0Te=
B2

0 ¼ 0:125; Tf ¼ 16Te, where vf is the thermal velocity of

FIG. 3. Spectrum of external drive (upper panel), response Ajj (middle), and

time history of Ajj (lower), where xext ¼ xTAE.

FIG. 4. (Color) Poloidal mode structure of vector potential Ajj (upper panel)

and electrostatic potential / (lower), where xext ¼ xTAE.

FIG. 5. TAE gap with respect to local inverse aspect ratio �. The points are

the pair of dominant TAE eigenfrequency and the upper accumulating

frequency.
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the fast ions. The density gradient of fast ions peak at

r ¼ 0:5a and q¼ 1.5 surface such that two adjacent harmon-

ics, m¼ 7 and m¼ 8, dominate the n¼ 5 mode. In the fol-

lowing part, the m¼ 8 TAE harmonics of the n¼ 5 mode is

used as an example to investigate the linear TAE properties

excited by fast ions.

As shown in Fig. 6, the fast ion excited TAE mode

grows exponentially, with a growth rate of c=xTAE � 6%,

while the theory prediction12 gives a growth rate of c=xA

¼ 8%. The imaginary part of the mode is p=2 leading the

real part in phase, which means that this wave is a traveling

wave and propagates in the fast ion diamagnetic direction.

The mode frequency is slightly lower than the antenna result

in Sec. III due to the nonperturbative kinetic contributions

from the fast ions. The mode structure, Figs. 7 and 8, of TAE

excited by fast ions shows a clear radial symmetry breaking

when comparing with that excited by antenna, which is due

to the nonperturbative kinetic effects of fast ions. The radial

structure of the ballooning mode is determined by the radial

eigenmode equation. In the local 1D theory, the ballooning

mode has no radial structure (i.e., kr ¼ 0 at a poloidal angle

h ¼ hk) because of the radial symmetry (Fig. 4). Any break-

ing of the radial symmetry, i.e., radial variations of pressure

gradient and Er etc., leads to the radial dependence of hk

(ballooning angle). Then, the radial mode structure can be

twisted (Fig. 7) and a 2D global eigenmode theory28 is

needed to solve the radial mode structure.

VI. SUMMARY

In summary, the MHD capability of gyrokinetic particle

simulation has been verified through the simulations for the

shear Alfvén eigenmodes in cylindrical and tokamak geome-

tries by the GTC. A synthetic antenna is implemented in

GTC to provide a way to precisely measure the eigenmode

frequency, damping rate and mode structures. The Alfvén

eigenmode simulation in cylindrical geometry is verified,

where the measured shear Alfvén eigen-frequency depend-

ence on the radial position agrees with the theoretical predic-

tions. The antenna excitation provides the verifications of the

TAE mode frequency, gap width, and mode structure. The

measured gap size shows a linear dependence on the local as-

pect ratio. The TAE mode structure excited by fast ions

shows a significant radial symmetry breaking relative to the

FIG. 6. (Color online) Time history of TAE mode amplitude of vector

potential Ajj (upper panel) and spectrum of Ajj (lower panel), where the dom-

inate frequency is the TAE frequency. Here, the mode number is m¼ 8 and

n¼ 5.

FIG. 7. (Color) Poloidal mode structure of vector potential Ajj (upper panel),

and electrostatic potential / (lower), where the TAE is excited by fast ions.
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antenna excitation due to the nonperturbative contributions

from the fast ions. Through these verifications, we demon-

strated that the shear Alfvén modes can be treated accurately

with the gyrokinetic PIC method.
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