
Comment on ‘‘Electrostatic and Magnetic Transport of
Energetic Ions in Turbulent Plasmas’’

In a recent Letter [1], Hauff et al. state [see also Eq. (3)
therein] without proof that the condition for the validity
of orbit averaging is that the orbital time of the equilibrium
periodic motion is shorter than the time for the perpendicu-
lar drift across a turbulence eddy by either the turbulence
E� B drift or the equilibrium magnetic drift. The
authors further state that the equilibrium magnetic drift
dominates over the perturbed E� B drift in the high en-
ergy limit and that the orbit averaging is invalid since the
perpendicular magnetic drift time is shorter than the equi-
librium orbital time. This time-scale separation between
the equilibrium drift across the eddy and the equilibrium
periodic motion is identical to the spatial-scale separation
between the turbulence eddy size (�c) and the guiding
center orbit size (�r), as is plainly expressed in Eq. (4)
of Ref. [1], which is independent of the turbulence
intensity.

This claim of a spatial-scale separation between equi-
librium and perturbed fields is of both fundamental and
practical significance. Fundamentally, the claim implies
that the orbit-averaged theory is valid only if �c >�r.
This claim contradicts the textbook [2–4] notion that the
time-scale separation between equilibrium and perturbed
motions is the only requirement for the validity of the well-
established orbit-averaged theory [5–7] in plasma physics.
Practically, the requirement of the spatial-scale separation
leads to an energy scaling in Ref. [1] different from that of
the orbit-averaged theory [6–8] for the turbulent transport
of energetic trapped particles.

In this Comment, we present a canonical perturbation
theory to demonstrate that orbit averaging is valid for
arbitrary radial eddy size. The orbit-averaged theory
(averaging over the canonical angle variable) strictly fol-
lows from the existence of an adiabatic invariant (canoni-
cal action variable). The gyrokinetic quasilinear theory
with orbit averaging for low-frequency electrostatic turbu-
lence in an axisymmetric system has been rigorously
derived [6]. Here we apply the general theory of
Ref. [6] to the diffusivity for deeply trapped particles in a
tokamak:

Dt / jk��nJ0ðk?�EÞJlðk?�dÞj2�ð!� n �!p � l!bÞ: (1)

The only assumption made in deriving this equation is
equilibrium time-scale separations, i.e., � � !b � !p,

along with the usual quasilinear assumptions. Here, � is
the particle cyclotron frequency,!b is the transit or bounce
frequency of the guiding center parallel motion, and !p is

the toroidal precessional drift frequency of the guiding
center perpendicular motion (the overbar represents guid-
ing center orbit averaging on the 1=!b fast time scale).
Moreover, ! is the perturbation mode frequency, �n is the

electrostatic potential with a toroidal mode number n, k�
and k? are the poloidal and perpendicular wave vector,
respectively, and l is the bounce harmonics. The Bessel
function J20ðk?�EÞ comes from the width of the gyroradius

and J2l ðk?�dÞ from the width of the guiding center drift

orbit.
With an additional assumption of a separation between

equilibrium and fluctuation time scales !b � !, Eq. (1)
becomes the guiding center bounce-averaged theory. Here,
! represents themaximumof perturbationmode frequency,
inverse of turbulence autocorrelation time, and nonlinear
frequency �v=�c (�v is the perturbed E� B drift).
The condition of !b � ! is always satisfied for energetic
particles, since! is independent of the particle energyE for
a given turbulence intensity and spectrum but!b is propor-

tional to E1=2. We now show that the orbit-averaging theory
for deeply trapped energetic particles is valid for arbitrary
radial eddy size. For low-nmodes (large poloidal eddy size)
but with arbitrary radial eddy size, the dominant term in
Eq. (1) is l ¼ 0. Equation (1) thus becomes Dt/P

n;ljk��nJ0ðk?�EÞJlðk?�dÞj2�ð!�n �!pÞ, which is

simply the usual bounce-averaged theory [5] also appli-
cable to trapped-ion mode and fishbone oscillation [9].
The guiding center orbit-averaged potential �� ¼
�nJ0ðk?�dÞ is valid for arbitrary radial eddy size since Jk
is conserved.
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