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Transport of energetic particles by the microturbulence in magnetized plasmas is studied in gyrokinetic
simulations of the ion temperature gradient turbulence. The probability density function of the ion radial
excursion is found to be very close to a Gaussian, indicating a diffusive transport process. The particle

diffusivity can thus be calculated from a random walk model. The diffusivity is found to decrease

drastically for high energy particles due to the averaging effects of the large gyroradius and orbit width,
and the fast decorrelation of the energetic particles with the waves.
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Energetic particles can be generated in magnetically
confined plasmas by fusion reactions and auxiliary heating.
They can be subjected to the diffusion by macroinstabil-
ities [1], microtubulences [2], a stochastic magnetic field
[3], and classical collisional and orbital effects [4]. The
confinement of the energetic particles is a critical issue in
the International Thermonuclear Experimental Reactor
(ITER) [5], since the ignition relies on self-heating by
the energetic fusion products. The diffusion of the ener-
getic particles such as the cosmic rays by microscopic
turbulence is also an important scientific issue in the space
and astrophysical plasmas [6]. Earlier fusion experimental
[4,7] and theoretical [8] studies indicated that energetic
particles do not suffer a large transport due to the micro-
turbulence excited by the pressure gradients of thermal
particles. However, a recent fusion experiment [9] showed
some evidence of the correlation between the excitation of
the microturbulence and the redistribution of energetic ions
produced by the neutral beam injection (NBI). Some recent
theoretical [10] and computational [11] studies also sug-
gested a significant transport level of the energetic particles
driven by the microturbulence.

To resolve this discrepancy, here we study the diffusion
of the energetic particles by the microscopic ion tempera-
ture gradient (ITG) [2] turbulence in large scale first-
principles simulations of fusion plasmas using the global
gyrokinetic toroidal code (GTC) [12]. The ion radial
spread as a function of energy and pitch angle is measured
in the steady-state ITG turbulence. The probability density
function of the radial excursion is found to be very close to
a Gaussian, indicating a diffusive transport from a random
walk process. The radial diffusivity as a function of the
energy and pitch angle can thus be calculated using the
random walk model. We find that the diffusivity decreases
drastically for high energy particles due to the averaging
effects of the large gyroradius and banana width, and the
fast decorrelation of the energetic particles with the ITG
oscillations. By performing the integration in phase space,
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we can calculate the diffusivity for any distribution func-
tion. The NBI ion diffusivity driven by the ITG turbulence
is found to decrease rapidly for the born energy up to an
order of magnitude of the plasma temperature and more
gradually to a very low level for higher born energy. This
result may explain the differences between the older ex-
periments [4] with a higher born energy and the newer
experiment [9] with a lower born energy (relative to the
plasma temperature).

Fully self-consistent ITG turbulence simulation.— This
study employed a well bench-marked, massively parallel
full torus gyrokinetic toroidal code (GTC) and used repre-
sentative parameters of tokamak H-mode core plasmas
which have a peak temperature gradient of thermal ions
at a radial position r = 0.5¢ with the following local
parameters: Ry,/L; = 6.9, Ry/L, =22, g=14, §=
(r/q)(dq/dr) = 0.78, T,/T; = 1, and € = a/R, = 0.36.
Here R, is the major radius, a is the minor radius, Ly and
L, are the temperature and density gradient scale lengths,
respectively, T; and T, are the ion and electron tempera-
ture, and g = 0.854 + 2.184(r/a)? is the safety factor. In
the full torus nonlinear simulation of a a = 500p; tokamak
with p; measured at r = 0.5a, we calculated 800 transit
times of 4 X 10% bulk marker particles (guiding centers),
and interactions of these particles with self-consistent
electrostatic potential represented on 4 X 107 spatial grid
points to address realistic reactor-grade plasma parameters
covering disparate spatial and temporal scales. A more
complete simulation model is described in Ref. [13]. The
simulation starts with very small random fluctuations
which grow exponentially due to the toroidal ITG insta-
bility as evident in the early part of the time history of the
ion heat conductivity shown in the lower panel of Fig. 1.
Zonal flows are then generated through modulational in-
stability [14,15] and the ITG instabilities are saturated at
the time of ¢ = 250L/v; through random shearing by the
zonal flows [16]. Finally, the nonlinear coupling of ITG-
zonal flows leads to a fully developed turbulence after
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FIG. 1 (color). Lower panel: Time history of the thermal ion
heat conductivity y; driven by ITG turbulence (solid) or by
particle noise (dashed). Upper panel: Time history of the radial
excursion (Ar?) for particle energy E/T, = 1 (black), 2 (blue), 4
(green), 16 (orange) when the ITG turbulence is present (solid)
or absent (dashed).

t = 400Ly/v; with an ion heat conductivity of y; =
3.1xgg when averaging over ¢ = [400, 800]L;/v;. The
gyro-Bohm unit for the heat conductivity of the thermal
ions are defined as ygg = p*xp, Where p* = p;/a and
x5 = cT,/(eB). Here ¢ and e are the speed of light and
electric charge of electron. The fluctuations in the steady
state are nearly isotropic in radial and poloidal directions
[13] with the perpendicular spectrum peaks at k, p; =
0.15. GTC simulations of this ITG turbulence with similar
parameters to study the size scaling [17] of the ITG trans-
port and the turbulence spreading [13] that underlies the
transition of the size scaling have previously been carried
out with extensive numerical convergences. In particular,
convergence with respect to the number of particles is
carefully studied to ensure that the particle noise does not
affect the physics being studied. We find that the noise-
driven flux [18] is consistently smaller than the ITG-driven
flux by at least an order of magnitude when using 10
particles per cell, as shown in the lower panel of Fig. 1.
Statistics of ion radial diffusion.—In order to study the
transport of energetic particles by the ITG turbulence, we
measure the radial diffusion of the ions, especially for the
high energy tails of the distribution function. For this
purpose, we calculate the radial excursion of several
groups of ions in the phase space, specifically, a mesh of
17 grids in the energy E = mwv?/2 (up to 64T, ) and 40 grids
in the pitch angle & = v} /v, where v is the local parallel
velocity. For each velocity grid point, we initiate N =

50000 particles uniformly distributed in the radial domain
of r/a = [0.45, 0.55] where the intensity of the turbulence
is maximal. We calculate the mean-squared radial dis-
placement of each group of particles (Ar?) =
N7USN [ri(0) — r(0)?, where r;(0) and r;(z) are the
radial position of the ith particle at time # = 0 and time ¢,
respectively. The time history of the radial displacements
for several energy groups (averaged over the pitch angle)
are shown as the solid lines in the upper panel of Fig. 1. To
isolate the effects of turbulence scattering, we also calcu-
late the radial displacements of the same ions in another
simulation where the ITG turbulence is suppressed. These
displacements of the equilibrium orbits are plotted as
dashed lines in the same figure. After a few bounce times
7 = 2mwqR/(\/€v), the equilibrium displacements reach
fixed amplitudes that are proportional to the energy as
expected. Furthermore, the equilibrium displacements
(dashed lines) are identical to the perturbed displacements
(solid lines) for all energy groups before the turbulence
grows to a high amplitude (¢ < 200Ly/v;). After the tur-
bulence reach a steady state (¢ > 400L;/v;), the difference
between the equilibrium and perturbed displacements is
small for high energy ions (e.g., E = 167T,), indicating that
the effect of the turbulence on the high energy orbits is
small. On the other hand, for a lower energy (e.g., E =
2T,), the perturbed displacement is much larger than the
equilibrium displacement, indicating that the effect of the
turbulence scattering dominates the radial displacement.
An important feature in these results is that the net turbu-
lent displacement (perturbed displacement subtracted by
the equilibrium displacement) increases linearly with time
for all energy groups in the steady-state ITG turbulence.
This feature indicates that the radial excursion of the ions
due to the turbulence scattering is a diffusive process.

The diffusive process is confirmed by the probability
density function (PDF) of the radial displacement for each
energy group. The PDF obtained at ¢ = 800Ly/v; is in-
deed very close to a Gaussian as shown in the upper panel
of Fig. 2. Here, the skewness is §=+NYN (x; —
#3/(EN,(x; — ¥)%)%/? and the kurtosis K = N3V (x; —
04/ (N (x; — X)?)* — 3. Consistent with the trend of the
mean-squared displacements in Fig. 1, the standard devia-
tion of the PDF in Fig. 2 decreases with increasing energy
after it peaks at an energy of E = 2T,. This peak energy is
found to be consistent with the toroidal resonance condi-
tion for the ITG modes. That is, the drift resonance condi-
tion of w = w, is satisfied at E = 2.1T, when averaging
over the pitch angle. Here the drift frequency is w, =
kovg, vg = (V7 + v})/(RQ), and the ITG frequency is
= kgvp,, where () is the ion cyclotron frequency and
kg = ng/r. The linear phase velocity v, is measured in
the simulation and is roughly a constant [13] for the modes
of kgp; = [0, 0.3], which have significant amplitudes in the
nonlinear state.

The diffusive nature of the ITG turbulent transport is
further supported by the fact that the radial profile of the
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FIG. 2 (color). Lower panel: Radial profiles for thermal ion
heat conductivity y; and ITG intensity of fluctuating potential
I = (ed¢p/p*T,)?. Upper panel: Probability density functions of
the radial excursion Ar/a for particle energy E/T, = 1 (black),
2 (blue), 4 (green), 16 (orange). o, S, and K are the standard
deviation (in unit of p;), skewness, and kurtosis, respectively.

heat conductivity matches very well with the intensity
profile as shown in the lower panel of Fig. 2; i.e., the
transport is driven by the local fluctuation [13].
Furthermore, the PDF of the intensity of the fluctuating
electrostatic potential, of the ion heat fluxes, and of the
radial excursions all decay exponentially with no signifi-
cant tails at large amplitudes. We conclude that the heat
flux is carried by the radial diffusion of particles, and that
large transport events, where heat pulses propagate ballis-
tically, are apparently absent over this simulation time.
Fundamentally, the stochastic wave-particle decorrelation
[19] due to the overlaps of the phase-space islands gives
rise to the diffusive transport process. That is, the wave
does not trap or convect the particles, but only scatters the
particle orbits.

Transport of energetic particles.—Since the radial ex-
cursion of the ions is diffusive, a phase-space-resolved
diffusivity can be defined using the random walk model
D(E, £) = Ao?/(2At), where Ao? is the change of the
PDF standard deviation of the net radial displacement for
each group of ions with energy E and pitch angle £ during a
time interval of A¢ between r=400L;/v; and t=
800L;/v; (when the turbulence is in a steady state). This
radial diffusivity as a function of (E, ¢) is plotted in Fig. 3.
The diffusivity is relatively smooth across the pitch angle &
with no sharp resonance in the entire phase space. This is
consistent with the diffusive process and the transport
could therefore be described by a quasilinear theory [19].
As a consistency check, we calculate the diffusivity of the
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FIG. 3 (color). Diffusivity D/D; as a function of particle
energy E/T, and pitch angle £.

thermal ions by averaging the diffusivity D over a
Maxwellian distribution function with a temperature of
T,,Dy = [DF wd>v. We find that this diffusivity D, based
on the random walk model is very close to an effective
particle diffusivity D; of thermal ions measured in the
simulation, Dy = 1.1D;. Here D; = 2y,;/3 and y; =
3.1 xgp calculated from the self-consistent heat flux using

= Q,/(dT/dr), Q; = [1v*6v,8fd*v measured in the
simulation, where v is particle velocity, é f is the perturbed
distribution function, and dv, is the radial component of
gyrophase-averaged E X B drift. Note that the particles
used to measure the radial diffusion are part of the plasma
with both drag and scattering effects. However, the scat-
tering effect dominates the radial diffusion (similar to test
particles) because of the constraints of the quasineutrality
and adiabatic electrons.

The diffusivity shown in Fig. 3 peaks at the resonant
energy of E = 2T, and decreases drastically for higher
energy particles. This is due to the averaging effects of
the large gyroradius and orbital width, and the fast decor-
relation of the energetic particles with the waves for the
high energy particles. To understand the physical mecha-
nisms of the reduction of the diffusivity for energetic
particle, we examine the scaling of the diffusivity with
respect to the particle energy. Taking a cut of ¢ = 0 in
Fig. 3, we find that the diffusivity D o« 1/E? for trapped
energetic particles with E > 3T,. This scaling can be
understood from the quasilinear theory of the diffusivity
for trapped particles in the high energy limit,

c Ikk .
D3 0Pl 12, o)k L 1)3(0 — w0, + pooy)

Here the first Bessel function comes from the gyroaverag-
ing and the second from the averaging over banana orbits,
w, = Jevg/(2mqR) is the bounce frequency, € = r/R is
the inverse aspect ratio, p;, is the banana width, pg and vg
are the gyroradius and velocity of energetic particles,
respectively, k, and k, are the wave number in the r and
6 direction, B is the magnetic field, ¢, is the electrostatic
potential, and p is the harmonics number. These two
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FIG. 4. Diffusivity for a slowing-down distribution as a func-
tion of the NBI beam ion born energy (E,,/T,) for passing (solid
and dash) and trapped (dotted) particles.

averages give rise to a dependence of D on 1/E when
taking a large argument expansion of the Bessel function.
Regarding the resonance condition, since w,, w;, > o for
energetic particles, we need p > (. Therefore the reso-
nance condition becomes w,; = pw;,, or equivalently,
Nwye = pwy, where o, = gE/(mRr(}) is the preces-
sion frequency. This is the so-called drift-bounce reso-
nance [20] underlying the ripple loss process, which
gives rise to another dependence of D on 1/E when
integrating over n since . is proportional to E. Hence,
for energetic trapped particles, the diffusivity D o 1/E?
accounting both the orbit averaging and the decorrelation
process. For passing particles, the resonance condition of
@ = kv and the orbital averaging will each give rise to a
E~'/2 dependence of D, so we expect that a diffusivity D
1/E for energetic passing particle. Indeed, when taking a
cut of Fig. 3 at ¢ = 1 and — 1, we find that the diffusivity D
depends roughly on 1/E for E > 20T,. These different
scalings result in a larger diffusivity for the energetic
passing particles than the energetic trapped particles as
shown in Fig. 3.

The measured diffusivity in phase space as shown in
Fig. 3 provides all information for calculating the diffusiv-
ity for arbitrary distribution function of energetic ions by
taking integration over the energy and pitch angle. Of par-
ticular interest is the diffusivity for the NBI ions since most
existing fusion experiments use the NBI heating. A steady-
state slowing-down distribution function [21] is commonly
used to describe the energetic NBI ions in a background
plasma consisting of thermal ions and electrons. By solv-
ing the Fokker-Planck equation including a source term in
both velocity and pitch angle, S = ms(’ﬁ S(E — E;)o(€ —
£1,), the corresponding slowing-down distribution is for-
mulated in term of Legendre polynomials, f,(E, &) =

St HECE 5% | C(E)P(€,)P(€). where H(E, — E) is

the Heaviside step function, 7, is the Spitzer slowing-
down time, E. is the critical energy, E,, &, and S are
the born speed, pitch angle, and source intensity of ener-

getic particle. We now use this slowing-down distribution
to calculate the diffusivity for energetic NBI ions
D(Eb’ fb) = f(E) f)D(E, f)/f(E) f)’ where dV3 =
2mldvdé = 2m\2EdEdE,  f(E €)= [;’ 2EdE X
JL dEF(E, €) is the phase-space integration, and E;, =
4T, is a heuristic cutoff energy separating thermal and
energetic particles in our calculation. The diffusivity for
the energetic particles as a function of the born energy E,
is calculated as shown in Fig. 4. It shows that the NBI beam
diffusivity is significant for the low born energy with E;, <
107T,, and decays very fast when E, <207,. For higher
born energy, it gradually approaches to a low level of 10%
to 15% of the diffusivity of the thermal particles. These
results may explain the differences between the older ex-
periments with a higher born energy of energetic particles
and the newer experiment with a lower born energy of
energetic particles.
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